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Minh N. Bùi1 and Patrick L. Combettes2

1Universität Graz

Institut für Mathematik und Wissenschaftliches Rechnen

8010 Graz, Austria
minh.bui@uni-graz.at

2North Carolina State University
Department of Mathematics

Raleigh, NC 27695-8205, USA

plc@math.ncsu.edu

Abstract
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and the integrand are then introduced to convert this principle into concrete scenarios that are
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Moreau envelopes, and proximity operators of integral functions by bringing the corresponding
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supported by NAWI Graz and the work of P. L. Combettes was supported by the National Science Foundation under grant

DMS-1818946.

1

mailto:minh.bui@uni-graz.at
mailto:plc@math.ncsu.edu
mailto:plc@math.ncsu.edu


1 Introduction

This paper concerns the interchange of the infimization and integration operations in the context of

the following assumption.

Assumption 1.1

[A] X is a real vector space endowed with a Souslin topology TX and associated Borel σ-algebra BX.

[B] The mapping (X× X,BX ⊗BX) → (X,BX) : (x, y) 7→ x+ y is measurable.

[C] For every λ ∈ R, the mapping (X,BX) → (X,BX) : x 7→ λx is measurable.

[D] (Ω,F, µ) is a σ-finite measure space such that µ(Ω) 6= 0, and L(Ω;X) denotes the vector space of

measurable mappings from (Ω,F) to (X,BX).

[E] X is a vector subspace of L(Ω;X).

[F] ϕ : (Ω× X,F ⊗BX) → R is an integrand in the sense that it is measurable and, for every ω ∈ Ω,

epiϕω 6= ∅, where ϕω = ϕ(ω, ·).

[G] There exists x ∈ X such that
∫
Ω max{ϕ( · , x( · )), 0}dµ < +∞.

As is customary, given a measurable function ̺ : (Ω,F) → R,
∫
Ω ̺dµ is the usual Lebesgue integral,

except when the Lebesgue integral
∫
Ω max{̺, 0}dµ is +∞, in which case

∫
Ω ̺dµ = +∞.

Many problems in analysis and its applications require the evaluation of the infimum over X of the

function f : x 7→
∫
Ω ϕ( · , x( · ))dµ. A simpler task is to evaluate the function φ : ω 7→ infϕ(ω,X) and

then compute
∫
Ω φdµ. In general, this provides only a lower bound as inf f(X ) >

∫
Ω φdµ. Conditions

under which the two quantities are equal have been established in [15], [25], and [31] under vari-

ous hypotheses on X, (Ω,F, µ), X , and ϕ. The resulting infimization-integration interchange rule is a

central tool in areas such as plasticity theory [5], convex analysis [13], multivariate analysis [15], cal-

culus of variations [17], economics [18], stochastic processes [22], optimal transport [23], stochastic

optimization [24], finance [25], variational analysis [32], and stochastic programming [37]. Note

that, in Assumption 1.1[A]–[C], we do not require that (X,TX) be a topological vector space to ac-

commodate certain applications. For instance, in [25], X is the space of càdlàg functions on [0, 1] and

TX is the Skorokhod topology. In this context, (X,TX) is a Polish space [2, Chapter 3] which is not a

topological vector space [26] but which satisfies Assumption 1.1[A]–[C].

Our first contribution is Theorem 1.2 below, which provides, under the umbrella of Assumption 1.1,

a broad setting for the interchange of infimization and integration.

Theorem 1.2 (interchange principle) Suppose that Assumption 1.1 and the following hold:

(i) infx∈X ϕ( · , x) is F-measurable.

(ii) There exists a sequence (xn)n∈N in L(Ω;X) such that the following are satisfied:

(a) infx∈X ϕ( · , x) = infn∈N ϕ( · , xn( · ) + x( · )) µ-a.e.

(b) There exists an increasing sequence (Ωk)k∈N of finite µ-measure sets in F such that
⋃

k∈NΩk =
Ω and

(∀n ∈ N)(∀k ∈ N)
{
1Axn | F ∋ A ⊂ Ωk and xn(A) is compact

}
⊂ X . (1.1)

Then

inf
x∈X

∫

Ω
ϕ
(
ω, x(ω)

)
µ(dω) =

∫

Ω
inf
x∈X

ϕ(ω, x)µ(dω). (1.2)
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Theorem 1.2 is proved in Section 3. The second contribution is the introduction of two new tools

— compliant spaces and an extended notion of normal integrands. This is done in Section 4, where

these notions are illustrated through various examples. In Section 5, compliance and normality are

utilized to build a pathway between the abstract interchange principle of Theorem 1.2 and separate

conditions on X and ϕ that capture various application settings. The main result of that section

is Theorem 5.1, which encompasses in particular the interchange rules of [15, 25, 31], as well as

those implicitly present in [28, 29, 38]. These different frameworks have so far not been brought

together and we improve them in several directions, for instance by not requiring the completeness

of (Ω,F, µ) and by relaxing the assumptions on X. This leads to new concrete scenarios under which

(1.2) holds. Our third contribution, presented in Section 6, concerns convex-analytical operations on

integral functions. By combining Theorem 1.2, compliance, and normality, we broaden conditions

for evaluating Legendre conjugates, subdifferentials, recessions, Moreau envelopes, and proximity

operators of integral functions by bringing the corresponding operations under the integral sign. These

results improve state-of-the-art convex calculus rules from [1, 22, 24, 29, 31, 38].

2 Notation and background

2.1 Measure theory

We set R = [−∞,+∞]. Let (Ω,F) be a measurable space and let A be a subset of Ω. The characteristic

function of A is denoted by 1A and the complement of A is denoted by ∁A. Now let (X,TX) be

a Hausdorff topological space with Borel σ-algebra BX. We denote by L(Ω;X) the vector space of

measurable mappings from (Ω,F) to (X,BX). Given a measure µ on (Ω,F), L1(Ω;R) is the subset

of L(Ω;R) of integrable functions, and L1(Ω;R) is defined likewise. Given a separable Banach space

(X, ‖·‖X), we set L∞(Ω;X) =
{
x ∈ L(Ω;X) | sup ‖x(Ω)‖X < +∞

}
.

2.2 Topological spaces

Given topological spaces (Y,TY) and (Z,TZ), TY ⊠ TZ denotes the standard product topology.

Let (X,TX) be a Hausdorff topological space. The Borel σ-algebra of (X,TX) is denoted by BX.

Furthermore, (X,TX) is:

• regular [7, Section I.8.4] if, for every closed subset C of (X,TX) and every x ∈ ∁C, there exist

V ∈ TX and W ∈ TX such that C ⊂ V, x ∈ W, and V ∩W = ∅;

• a Polish space [8, Section IX.6.1] if it is separable and there exists a distance d on X that induces

the same topology as TX and such that (X, d) is a complete metric space;

• a Souslin space [8, Section IX.6.2] if there exist a Polish space (Y,TY) and a continuous surjective

mapping from (Y,TY) to (X,TX);

• a Lusin space [8, Section IX.6.4] if there exists a topology T̃X on X such that TX ⊂ T̃X and (X, T̃X)
is a Polish space;

• a Fréchet space [9, Section II.4.1] if it is a locally convex real topological vector space and there

exists a distance d on X that induces the same topology as TX and such that (X, d) is a complete

metric space.

Now let f : X → R. The epigraph of f is

epi f =
{
(x, ξ) ∈ X× R | f(x) 6 ξ

}
, (2.1)
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f is proper if −∞ /∈ f(X) 6= {+∞}, and f is TX-lower semicontinuous if epi f is TX ⊠ TR-closed.

2.3 Duality

The dual of a real topological vector space (X,TX), that is, the vector space of continuous linear

functionals on (X,TX), is denoted by (X,TX)
∗.

Let X and Y be real vector spaces which are in separating duality via a bilinear form 〈 · , · 〉X,Y : X ×
Y → R, that is [9, Section II.6.1],

{
(∀x ∈ X) 〈x, · 〉X,Y = 0 ⇒ x = 0

(∀y ∈ Y) 〈 · , y〉X,Y = 0 ⇒ y = 0.
(2.2)

In addition, equip X with a locally convex topology TX which is compatible with the pairing 〈 · , · 〉X,Y in

the sense that (X,TX)
∗ = {〈· , y〉X,Y}y∈Y and, likewise, equip Y with a locally convex topology TY which

is compatible with the pairing 〈 · , · 〉X,Y in the sense that (Y,TY)
∗ = {〈x, · 〉X,Y}x∈X [9, Section IV.1.1].

Following [20], the Legendre conjugate of f : X → R is

f∗ : Y → R : y 7→ sup
x∈X

(
〈x, y〉X,Y − f(x)

)
(2.3)

and the Legendre conjugate of g : Y → R is

g∗ : X → R : x 7→ sup
y∈Y

(
〈x, y〉X,Y − g(y)

)
. (2.4)

Let f : X → R. If f is proper, its subdifferential is the set-valued operator

∂f : X → 2Y

x 7→
{
y ∈ Y | (∀z ∈ X) 〈z− x, y〉X,Y + f(x) 6 f(z)

}
=

{
y ∈ Y | f(x) + f∗(y) = 〈x, y〉X,Y

}
.

(2.5)

In addition, f is convex if epi f is a convex subset of X×R, and Γ0(X) denotes the class of proper lower

semicontinuous convex functions from X to ]−∞,+∞]. Suppose that f ∈ Γ0(X) and let z ∈ dom f. The

recession function of f is the function in Γ0(X) defined by

rec f : X → ]−∞,+∞] : x 7→ lim
0<α↑+∞

f(z+ αx)− f(z)

α
. (2.6)

Now suppose that, in addition, X = Y is Hilbertian and 〈 · , · 〉X,Y is the scalar product of X, and let

γ ∈ ]0,+∞[. The Moreau envelope of f of index γ is the function in Γ0(X) defined by

γ f : X → R : x 7→ min
y∈X

(
f(y) +

1

2γ
‖x− y‖2X

)
(2.7)

and the proximal point of x ∈ X relative to γf is the unique point proxγf x ∈ X such that

γ f(x) = f(proxγf x) +
1

2γ
‖x− proxγf x‖

2
X. (2.8)

The proximity operator proxγf : X → X thus defined can be expressed as

proxγf = (Id + γ∂f)−1. (2.9)
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3 Proof of the interchange principle

Proving Theorem 1.2 necessitates a few technical facts.

Lemma 3.1 Let (Ω,F) be a measurable space, let n be a strictly positive integer, and let (̺i)06i6n be a

family in L(Ω;R). Then there exists a family (Bi)06i6n in F such that

(Bi)06i6n are pairwise disjoint,

n⋃

i=0

Bi = Ω, and min
06i6n

̺i =

n∑

i=0

1Bi
̺i. (3.1)

Proof. We proceed by induction on n. If n = 1, we obtain (3.1) by choosing B0 = [̺0 6 ̺1] and

B1 = ∁B0. Now assume that the claim is true for n, let ̺n+1 ∈ L(Ω;R), and set

̺ = min
06i6n

̺i, D = [̺ 6 ̺n+1], Cn+1 = ∁D, and
(
∀i ∈ {0, . . . , n}

)
Ci = Bi ∩D. (3.2)

Then (Ci)06i6n+1 is a family of pairwise disjoint sets in F. Additionally,

n+1⋃

i=0

Ci = Cn+1 ∪

n⋃

i=0

Ci =
(
∁D

)
∪

n⋃

i=0

(Bi ∩D) =
(
∁D

)
∪D = Ω (3.3)

and

min
06i6n+1

̺i = min{̺, ̺n+1} = 1D̺+ 1∁D̺n+1 = 1D

n∑

i=0

1Bi
̺i + 1Cn+1

̺n+1 =

n+1∑

i=0

1Ci
̺i, (3.4)

which concludes the induction argument.

Lemma 3.2 Let (Ω,F, µ) be a σ-finite measure space such that µ(Ω) 6= 0 and let R be a nonempty subset

of L(Ω;R). Then there exists an element in L(Ω;R), denoted by ess infR and unique up to a set of

µ-measure zero, such that

(
∀ϑ ∈ L(Ω;R)

) [
(∀̺ ∈ R) ϑ 6 ̺ µ-a.e.

]
⇔ ϑ 6 ess infR µ-a.e. (3.5)

Moreover, there exists a sequence (̺n)n∈N in R such that ess infR = infn∈N ̺n.

Proof. Using Assumption 1.1[D], construct 0 < χ ∈ L1(Ω;R) such that
∫
Ω χdµ = 1 and define

P : F → [0, 1] : A 7→
∫
A
χdµ. Then (∀A ∈ F) µ(A) = 0 ⇔ P(A) = 0. Hence, the assertions follow from

[21, Proposition II-4-1 and its proof] applied in the probability space (Ω,F,P).

Lemma 3.3 Let (Ω,F, µ) be a measure space, let (X,TX) be a Souslin space, let z : (Ω,F) → (X,BX) be

measurable, and let E ∈ F be such that µ(E) < +∞. Then there exists a sequence (En)n∈N in F such

that

[
(∀n ∈ N) En ⊂ E and z(En) is compact

]
and µ(E) = µ

( ⋃

n∈N

En

)
. (3.6)

Proof. A simple adaptation of the proof of [38, Lemma 5], where (X,TX) is a locally convex Souslin

topological vector space.
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Lemma 3.4 Suppose that Assumption 1.1[A]–[D] hold. Let ψ : (Ω×X,F⊗BX) → R be measurable, let

Z be a nonempty at most countable subset of L(Ω;X), and let (Ωk)k∈N be an increasing sequence of finite

µ-measure sets in F such that
⋃

k∈NΩk = Ω. Define

D =
⋃

z∈Z

⋃

k∈N

{
1Az | F ∋ A ⊂ Ωk and z(A) is compact

}
(3.7)

and

R =
{
̺ ∈ L1(Ω;R) | (∃x ∈ D) ψ

(
· , x( · )

)
6 ̺( · ) µ-a.e.

}
. (3.8)

Suppose that

ψ( · , 0) 6 0. (3.9)

Then R 6= ∅ and ess infR 6 infz∈Z ψ( · , z( · )) µ-a.e.

Proof. Take z ∈ Z and note that (∀A ∈ F) 1Az ∈ L(Ω;X). Since z(∅) = ∅ is compact, it results from

(3.7) that 0 = 1∅z ∈ D. Hence, by (3.9), 0 ∈ R. Next, thanks to Assumption 1.1[D], there exists

χ ∈ L1(Ω;R) such that χ > 0. Let us set

(∀n ∈ N) An = Ωn ∩
[
ψ
(
· , z( · )

)
6 nχ( ·)

]
. (3.10)

Lemma 3.3 asserts that there exists a family (An,k)(n,k)∈N2 in F such that

(∀n ∈ N)





(∀k ∈ N) An,k ⊂ An and z(An,k) is compact

µ(An) = µ

( ⋃

k∈N

An,k

)
.

(3.11)

In turn, by (3.7) and (3.10),

(∀n ∈ N)(∀k ∈ N) 1An,k
z ∈ D. (3.12)

Define

(∀n ∈ N)(∀k ∈ N)(∀m ∈ N) ̺n,k,m( · ) = max
{
ψ
(
· , 1An,k

( · )z( · )
)
,−mχ( · )

}
. (3.13)

Fix temporarily (n, k,m) ∈ N
3. We infer from (3.11), (3.10), and (3.9) that

(∀ω ∈ Ω) ψ
(
ω, 1An,k

(ω)z(ω)
)
=

{
ψ
(
ω, z(ω)

)
, if ω ∈ An,k;

ψ(ω, 0), otherwise

6

{
nχ(ω), if ω ∈ An,k;

0, otherwise

6 nχ(ω). (3.14)

Therefore, −mχ 6 ̺n,k,m 6 nχ, which entails that ̺n,k,m ∈ L1(Ω;R). In turn, we derive from (3.13),

(3.12), and (3.8) that ̺n,k,m ∈ R. Thus, Lemma 3.2 guarantees that there exists Bn,k,m ∈ F such that

µ(Bn,k,m) = 0 and

(
∀ω ∈ ∁Bn,k,m

)
(ess infR)(ω) 6 ̺n,k,m(ω). (3.15)
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Now set

A =
⋂

(n,k)∈N2

∁An,k, B =
⋃

(n,k,m)∈N3

Bn,k,m, and C =
[
ψ
(
· , z( · )

)
< +∞

]
∩ (A ∪B). (3.16)

Then µ(B) = 0. Furthermore, since (3.10) yields [ψ( · , z( · )) < +∞] =
⋃

n∈NAn, it follows from (3.16)

and (3.11) that

µ
([
ψ
(
· , z( · )

)
< +∞

]
∩A

)
6

∑

n∈N

µ(An ∩A) 6
∑

n∈N

µ

(
An ∩

⋂

k∈N

∁An,k

)
= 0. (3.17)

Hence, using (3.16), we obtain

µ(C) = 0 and ∁C =
[
ψ
(
· , z( · )

)
= +∞

]
∪
(
∁A ∩ ∁B

)
. (3.18)

Now suppose that ω ∈ ∁A ∩ ∁B. Then it follows from (3.16) that there exists (n, k) ∈ N
2 such that

ω ∈ An,k ∩ ∁B. Therefore, we derive from (3.16), (3.15), and (3.13) that

(∀m ∈ N) (ess infR)(ω) 6 ̺n,k,m(ω) = max
{
ψ
(
ω, 1An,k

(ω)z(ω)
)
,−mχ(ω)

}
. (3.19)

Hence, letting m ↑ +∞ yields (ess infR)(ω) 6 ψ(ω, 1An,k
(ω)z(ω)) = ψ(ω, z(ω)). We have thus shown

that ess infR 6 ψ( · , z( · )) µ-a.e. Since Z is at most countable, the proof is complete.

Proof of Theorem 1.2. Define

Φ: L(Ω;X) → L(Ω;R) : x 7→ ϕ
(
· , x( · )

)
(3.20)

and note that, thanks to Assumption 1.1[G],

∫

Ω
infϕ( · ,X) dµ 6 inf

x∈X

∫

Ω
Φ(x)dµ 6

∫

Ω
Φ(x)dµ < +∞. (3.21)

Hence, the interchange rule (1.2) holds when infx∈X
∫
Ω Φ(x)dµ = −∞ and we assume henceforth

that

inf
x∈X

∫

Ω
Φ(x)dµ ∈ R. (3.22)

Now define

ϑ = max
{
Φ(x), 0

}
(3.23)

and

ψ : Ω× X → R : (ω, x) 7→

{
ϕ
(
ω, x+ x(ω)

)
− ϑ(ω), if ϑ(ω) < +∞;

−∞, if ϑ(ω) = +∞.
(3.24)

Then we derive from Assumption 1.1[G] that

ϑ ∈ L1(Ω;R) (3.25)

and, therefore, that

µ
(
[ϑ = +∞]

)
= 0. (3.26)
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On the other hand, Assumption 1.1[B] ensures that the mapping (Ω×X,F⊗BX) → (X,BX) : (ω, x) 7→
x+ x(ω) is measurable. Thus, it follows from Assumption 1.1[F], (3.25), and (3.24) that

ψ is F ⊗BX-measurable. (3.27)

At the same time, since

inf
x∈X

ψ( · , x) = inf
x∈X

ϕ
(
· , x+ x( · )

)
− ϑ( · ) = inf

x∈X
ϕ( · , x)− ϑ( · ) (3.28)

and since Assumption 1.1[F] yields infϕ( · ,X) < +∞, it results from (i) that

infψ( · ,X) ∈ L(Ω;R). (3.29)

Let us set

Ψ: L(Ω;X) → L(Ω;R) : x 7→ ψ
(
· , x( · )

)
. (3.30)

By (3.24) and (3.26),

(
∀ω ∈ ∁[ϑ = +∞]

)
(∀x ∈ X )

(
Ψ(x)

)
(ω) =

(
Φ(x+ x)

)
(ω)− ϑ(ω). (3.31)

Hence, upon invoking (3.25), we deduce from Assumption 1.1[E]&[G] that

inf
x∈X

∫

Ω
Ψ(x)dµ = inf

x∈X

∫

Ω

(
Φ(x+ x)− ϑ

)
dµ

= inf
x∈X

∫

Ω
Φ(x+ x)dµ −

∫

Ω
ϑdµ

= inf
x∈X

∫

Ω
Φ(x)dµ −

∫

Ω
ϑdµ (3.32)

and, likewise, from (3.28) that

∫

Ω
infψ( · ,X) dµ =

∫

Ω
infϕ( · ,X) dµ −

∫

Ω
ϑdµ. (3.33)

Now set

D =
⋃

n∈N

⋃

k∈N

{
1Axn | F ∋ A ⊂ Ωk and xn(A) is compact

}
(3.34)

and

R =
{
̺ ∈ L1(Ω;R) | (∃x ∈ D) Ψ(x) 6 ̺ µ-a.e.

}
, (3.35)

and note that (ii)(b) states that

D ⊂ X . (3.36)

Using (3.24) and (3.23), we infer from Lemma 3.4 applied to Z = {xn}n∈N that ess infR 6

infn∈NΨ(xn) µ-a.e. In turn, we derive from (3.31), (ii)(a), and (3.28) that

ess infR 6 inf
n∈N

Ψ(xn) = inf
n∈N

Φ(xn + x)− ϑ = infϕ( · ,X)− ϑ = infψ( · ,X) µ-a.e. (3.37)
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On the other hand, (3.35) implies that (∀̺ ∈ R) infψ( · ,X) 6 ̺( · ) µ-a.e. Hence, (3.29) and Lemma 3.2

guarantee that infψ( · ,X) 6 ess infR µ-a.e. Altogether, ess infR = infψ( · ,X) µ-a.e. Thus, we deduce

from Lemma 3.2 that there exists a sequence (̺n)n∈N in R such that

inf
n∈N

̺n( · ) = infψ( · ,X) µ-a.e. (3.38)

For every n ∈ N, it follows from (3.35) and (3.34) that there exist ℓn ∈ N, kn ∈ N, and F ∋ An ⊂ Ωkn

such that

xℓn(An) is compact and Ψ
(
1Anxℓn

)
6 ̺n µ-a.e. (3.39)

Let us set

(∀n ∈ N) χn = min
06i6n

̺i. (3.40)

Fix temporarily n ∈ N. Lemma 3.1 asserts that there exists a family (Bn,i)06i6n in F such that

(Bn,i)06i6n are pairwise disjoint,
n⋃

i=0

Bn,i = Ω, and χn =
n∑

i=0

1Bn,i
̺i. (3.41)

Now set

yn =

n∑

i=0

1Ai∩Bn,i
xℓi . (3.42)

For every i ∈ {0, . . . , n}, since Ai ∩Bn,i ⊂ Ai ⊂ Ωki , (3.39) implies that xℓi(Ai ∩Bn,i) is compact and,

therefore, (3.34) and (3.36) yield 1Ai∩Bn,i
xℓi ∈ D ⊂ X . Consequently, (3.42) and Assumption 1.1[E]

ensure that yn ∈ X . At the same time, we derive from (3.42), (3.41), and (3.39) that

Ψ(yn) =
n∑

i=0

1Bn,i
Ψ
(
1Ai

xℓi
)
6

n∑

i=0

1Bn,i
̺i = χn µ-a.e. (3.43)

Therefore, since yn ∈ X ,

inf
x∈X

∫

Ω
Ψ(x)dµ 6

∫

Ω
Ψ(yn)dµ 6

∫

Ω
χndµ. (3.44)

On the other hand, it results from (3.32), (3.22), and (3.25) that infx∈X
∫
ΩΨ(x)dµ ∈ R. Thus,

since χn ↓ infi∈N ̺i( · ) = infψ( · ,X) µ-a.e. by virtue of (3.40) and (3.38), (3.44) and the monotone

convergence theorem [4, Theorem 2.8.2 and Corollary 2.8.6] entail that

inf
x∈X

∫

Ω
Ψ(x)dµ 6 lim

∫

Ω
χndµ =

∫

Ω
limχn dµ =

∫

Ω
infψ( · ,X) dµ. (3.45)

Consequently, since
∫
Ω infψ( · ,X) dµ 6 infx∈X

∫
ΩΨ(x)dµ, we conclude that

inf
x∈X

∫

Ω
Ψ(x)dµ =

∫

Ω
infψ( · ,X) dµ. (3.46)

In view of (3.32), (3.33), and (3.25), the proof is complete.
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Remark 3.5 Replacing ϕ by −ϕ in items [F] and [G] of Assumption 1.1 and in Theorem 1.2 provides

conditions under which

sup
x∈X

∫

Ω
ϕ
(
ω, x(ω)

)
µ(dω) =

∫

Ω
sup
x∈X

ϕ(ω, x)µ(dω), (3.47)

with the convention that, given a measurable function ̺ : (Ω,F) → R,
∫
Ω ̺dµ is the usual Lebesgue

integral, except when the Lebesgue integral
∫
Ω min{̺, 0}dµ is −∞, in which case

∫
Ω ̺dµ = −∞.

Remark 3.6 In Theorem 1.2, suppose that infx∈X
∫
Ω ϕ( · , x( · ))dµ > −∞ and let z ∈ X . Then

∫

Ω
ϕ
(
ω, z(ω)

)
µ(dω) = min

x∈X

∫

Ω
ϕ
(
ω, x(ω)

)
µ(dω) ⇔ ϕ

(
· , z( · )

)
= minϕ( · ,X) µ-a.e. (3.48)

4 Compliant spaces and normal integrands

The objective of this section is to develop tools to convert the interchange principle of Theorem 1.2 into

interchange rules formulated in terms of explicit conditions on the ambient space X and the integrand

ϕ. Our framework hinges on a notion of compliant spaces and a notion of normal integrands in an

extended sense.

4.1 Compliant spaces

We introduce the following notion of a compliant space, which generalizes and unifies the notions of

decomposability employed in the interchange rules of [24, 25, 29, 31, 32, 37, 38].

Definition 4.1 (compliance) Suppose that Assumption 1.1[A]–[E] holds. Then X is compliant if, for

every A ∈ F such that µ(A) < +∞ and every z ∈ L(Ω;X) such that z(A) is compact, 1Az ∈ X .

Proposition 4.2 Suppose that Assumption 1.1[A]–[E] holds, together with one of the following:

(i) (X,TX) is a Souslin topological vector space and, for every A ∈ F such that µ(A) < +∞ and every

z ∈ L(Ω;X) such that z(A) is TX-bounded (in the sense that, for every neighborhood V ∈ TX of 0,

there exists α ∈ ]0,+∞[ such that z(A) ⊂
⋂

β>α βV [33]), 1Az ∈ X .

(ii) X is a separable Banach space with strong topology TX and, for every A ∈ F such that µ(A) < +∞
and every z ∈ L∞(Ω;X), 1Az ∈ X .

(iii) X is a separable Banach space with strong topology TX, µ(Ω) < +∞, and L∞(Ω;X) ⊂ X .

(iv) X is a separable Banach space with strong topology TX and X is Rockafellar-decomposable [29]

in the sense that, for every A ∈ F such that µ(A) < +∞, every z ∈ L∞(Ω;X), and every x ∈ X ,

1Az + 1∁Ax ∈ X .

(v) (X,TX) is a Souslin locally convex topological vector space and X is Valadier-decomposable [38] in

the sense that, for every A ∈ F such that µ(A) < +∞, every z ∈ L(Ω;X) such that z(A) is compact,

and every x ∈ X , 1Az + 1∁Ax ∈ X .

(vi) X is the standard Euclidean space R
N and, for every A ∈ F such that µ(A) < +∞ and every

z ∈ L∞(Ω;X), 1Az ∈ X .

Then X is compliant.
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Proof. (i): Let A ∈ F be such that µ(A) < +∞ and let z ∈ L(Ω;X) be such that z(A) is compact. It

results from [33, Theorem 1.15(b)] that z(A) is TX-bounded. Thus 1Az ∈ X .

(iii)⇒(ii)⇒(i): Clear.

(iv)⇒(ii): Clear.

(v): Clear.

(vi)⇒(ii): Clear.

4.2 Normal integrands

We introduce a notion of a normal integrand which unifies and extends those of [28, 29, 31, 38].

Definition 4.3 (normality) Let (X,TX) be a Souslin space, let (Ω,F) be a measurable space, let

ϕ : (Ω × X,F ⊗ BX) → R be measurable, and equip X × R with the topology TX ⊠ TR. Then ϕ is

a normal integrand if there exist sequences (xn)n∈N in L(Ω;X) and (̺n)n∈N in L(Ω;R) such that

(∀ω ∈ Ω)
{(
xn(ω), ̺n(ω)

)}
n∈N

⊂ epiϕω and epiϕω =
{(
xn(ω), ̺n(ω)

)}
n∈N

. (4.1)

The following theorem furnishes examples of normal integrands.

Theorem 4.4 Let (X,TX) be a Souslin space, let (Ω,F) be a measurable space, and let ϕ : Ω× X → R be

such that (∀ω ∈ Ω) epiϕω 6= ∅. Suppose that one of the following holds:

(i) ϕ is F ⊗BX-measurable and one of the following is satisfied:

(a) There exists a measure µ such that (Ω,F, µ) is complete and σ-finite.

(b) Ω is a Borel subset of RM and F is the associated Lebesgue σ-algebra.

(c) For every ω ∈ Ω, there exists Vω ∈ TX ⊠ TR such that Vω ⊂ epiϕω and Vω = epiϕω.

(d) The functions (ϕω)ω∈Ω are upper semicontinuous.

(ii) The functions (ϕ( · , x))x∈X are F-measurable and one of the following is satisfied:

(a) (X,TX) is metrizable and, for every ω ∈ Ω, there exists Vω ∈ TX⊠TR such that Vω ⊂ epiϕω =
Vω.

(b) (X,TX) is a Fréchet space and, for every ω ∈ Ω, ϕω ∈ Γ0(X) and int domϕω 6= ∅.

(c) (X,TX) is the standard Euclidean line R and, for every ω ∈ Ω, ϕω ∈ Γ0(R) and domϕω is not

a singleton.

(iii) (X,TX) is a regular Souslin space, the functions (ϕω)ω∈Ω are continuous, and the functions

(ϕ( · , x))x∈X are F-measurable.

(iv) For some separable Fréchet space (Y,TY), X = (Y,TY)
∗, TX is the weak topology, the functions

(ϕω)ω∈Ω are TX-lower semicontinuous, and one of the following is satisfied:

(a) For every closed subset C of (X× R,TX ⊠ TR),
{
ω ∈ Ω | C ∩ epiϕω 6= ∅

}
∈ F.

(b) (Ω,TΩ) is a Hausdorff topological space, F = BΩ, and ϕ is TΩ ⊠ TX-lower semicontinuous.

(c) (Ω,TΩ) is a Lusin space, F = BΩ, and ϕ is F ⊗BX-measurable.

(v) X is a separable reflexive Banach space, TX is the weak topology, (Ω,TΩ) is a Hausdorff topological

space, F = BΩ, the functions (ϕω)ω∈Ω are TX-lower semicontinuous, and one of the following is

satisfied:

(a) ϕ is TΩ ⊠ TX-lower semicontinuous.
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(b) (Ω,TΩ) is a Lusin space and ϕ is F ⊗BX-measurable.

(vi) (X,TX) is the standard Euclidean space R
N , Ω is a Borel subset of RM , F = BΩ, ϕ is F ⊗ BX-

measurable, and the functions (ϕω)ω∈Ω are lower semicontinuous.

(vii) (X,TX) is a Polish space, the functions (ϕω)ω∈Ω are lower semicontinuous, and one of the following

is satisfied:

(a) For every V ∈ TX ⊠ TR,
{
ω ∈ Ω | V ∩ epiϕω 6= ∅

}
∈ F.

(b) (X,TX) is the standard Euclidean space R
N and, for every closed subset C of X × R,{

ω ∈ Ω | C ∩ epiϕω 6= ∅
}
∈ F.

(viii) There exists a measurable function f : (X,BX) → R such that (∀ω ∈ Ω) ϕω = f.

Then ϕ is normal.

Proof. Set G =
{
(ω, x, ξ) ∈ Ω× X×R | ϕ(ω, x) 6 ξ

}
. Then

G =
{
(ω, x, ξ) ∈ Ω× X× R | (x, ξ) ∈ epiϕω

}
. (4.2)

Further, [4, Lemma 6.4.2(i)] yields

ϕ is F ⊗BX-measurable ⇔ G ∈ F ⊗BX ⊗BR = F ⊗BX×R. (4.3)

We also note that (X × R,TX ⊠ TR) is a Souslin space [8, Proposition IX.6.7].

(i)(a): Applying [11, Theorem III.22] to the mapping Υ: Ω → 2X×R : ω 7→ epiϕω, we deduce from

(4.2) and (4.3) that there exist a sequence (xn)n∈N of mappings from Ω to X and a sequence (̺n)n∈N
of functions from Ω to R such that

(∀n ∈ N) (Ω,F) → (X × R,BX×R) : ω 7→
(
xn(ω), ̺n(ω)

)
is measurable (4.4)

and

(∀ω ∈ Ω)
{(
xn(ω), ̺n(ω)

)}
n∈N

⊂ Υ(ω) and Υ(ω) =
{(
xn(ω), ̺n(ω)

)}
n∈N

. (4.5)

Moreover, since BX×R = BX ⊗ BR [4, Lemma 6.4.2(i)], it follows from (4.4) that, for every n ∈ N,

xn : (Ω,F) → (X,BX) and ̺n : (Ω,F) → (R,BR) are measurable. Altogether, ϕ is normal.

(i)(b)⇒(i)(a): Take µ to be the Lebesgue measure on Ω.

(i)(c): Let {(xn, ξn)}n∈N be a dense set in (X× R,TX ⊠ TR) and define

(∀n ∈ N) Ωn =
[
ϕ( · , xn) 6 ξn

]
. (4.6)

On the one hand, the F ⊗ BX-measurability of ϕ ensures that (∀n ∈ N) Ωn ∈ F. On the other hand,

for every ω ∈ Ω, since Vω is open, there exists n ∈ N such that (xn, ξn) ∈ Vω ⊂ epiϕω, which yields

ω ∈ Ωn and thus Ω =
⋃

k∈NΩk. This yields a sequence (Θn)n∈N of pairwise disjoint sets in F such that

Θ0 = Ω0,
⋃

n∈N

Θn = Ω, and (∀n ∈ N) Θn ⊂ Ωn. (4.7)

For every ω ∈ Ω, there exists a unique nω ∈ N such that ω ∈ Θnω . Now define

z : Ω → X : ω 7→ xnω and ϑ : Ω → R : ω 7→ ξnω . (4.8)
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Then

(∀V ∈ TX) z−1(V) =
⋃

n∈N
xn∈V

Θn ∈ F, (4.9)

which implies that z ∈ L(Ω;X). Likewise, ϑ ∈ L(Ω;R). Next, define

(∀n ∈ N) xn : Ω → X : ω 7→

{
xn, if ω ∈ Ωn;

z(ω), if ω ∈ ∁Ωn

(4.10)

and

(∀n ∈ N) ̺n : Ω → R : ω 7→

{
ξn, if ω ∈ Ωn;

ϑ(ω), if ω ∈ ∁Ωn.
(4.11)

Then (xn)n∈N and (̺n)n∈N are sequences in L(Ω;X) and L(Ω;R), respectively. Moreover, we deduce

from (4.10), (4.11), (4.6), and (4.7) that

(∀ω ∈ Ω)(∀n ∈ N)
(
xn(ω), ̺n(ω)

)
∈ epiϕω. (4.12)

On the other hand, for every ω ∈ Ω, since {(xn, ξn)}n∈N is dense in (X × R,TX ⊠ TR) and since Vω is

open, we infer from (4.10), (4.11), and (4.6) that

{(
xn(ω), ̺n(ω)

)}
n∈N

=
{
(xn, ξn)

}
n∈N

∩ epiϕω ⊃
{
(xn, ξn)

}
n∈N

∩Vω = Vω = epiϕω. (4.13)

Consequently, ϕ is normal.

(i)(d)⇒(i)(c): Set (∀ω ∈ Ω) Vω =
{
(x, ξ) ∈ X× R | ϕ(ω, x) < ξ

}
. Now fix ω ∈ Ω and (x, ξ) ∈ epiϕω.

Since the sequence (x, ξ + 2−n)n∈N lies in Vω and (x, ξ + 2−n) → (x, ξ), we obtain (x, ξ) ∈ Vω. Hence

Vω = epiϕω. At the same time, the upper semicontinuity of ϕω guarantees that Vω is open.

(ii)(a)⇒(i)(c): It suffices to show that ϕ is F ⊗ BX-measurable. Let {(xn, ξn)}n∈N be dense in

(X× R,TX ⊠ TR), let V ∈ TX ⊠ TR, and set K =
{
n ∈ N | (xn, ξn) ∈ V

}
. Then

{(xn, ξn)}n∈K = {(xn, ξn)}n∈N ∩ V = V. (4.14)

Suppose that there exists ω ∈ Ω such that

V ∩ epiϕω 6= ∅ and (∀n ∈ K) (xn, ξn) /∈ epiϕω. (4.15)

Since V is open and Vω = epiϕω, there exists (y, η) ∈ V ∩ Vω. Therefore, we infer from (4.14) that

there exists a subnet (xk(b), ξk(b))b∈B of (xn, ξn)n∈K such that (xk(b), ξk(b)) → (y, η). This and (4.15)

force (y, η) ∈ ∁ epiϕω = ∁Vω = ∁ intVω, which is in contradiction with the inclusion (y, η) ∈ Vω.

Hence, the F-measurability of the functions (ϕ( · , x))x∈X yields

{
ω ∈ Ω | V ∩ epiϕω 6= ∅

}
=

⋃

n∈K

{
ω ∈ Ω | (xn, ξn) ∈ epiϕω

}
=

⋃

n∈K

[
ϕ( · , xn) 6 ξn

]
∈ F. (4.16)

Therefore, since (X× R,TX ⊠ TR) is a separable metrizable space and the sets (epiϕω)ω∈Ω are closed,

[16, Theorem 3.5(i)] and (4.2) imply that G ∈ F ⊗ BX×R. Consequently, (4.3) asserts that ϕ is

F ⊗BX-measurable.
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(ii)(b)⇒(ii)(a): Set (∀ω ∈ Ω) Vω = int epiϕω. For every ω ∈ Ω, the assumption ensures that

epiϕω is closed and convex, and that Vω 6= ∅ [40, Theorem 2.2.20 and Corollary 2.2.10]. Thus [40,

Theorem 1.1.2(iv)] yields (∀ω ∈ Ω) epiϕω = Vω.

(ii)(c)⇒(ii)(b): Clear.

(iii): It results from [34] that there exists a topology T̃X on X such that

TX ⊂ T̃X (4.17)

and

(
X, T̃X

)
is a metrizable Souslin space. (4.18)

Set (∀ω ∈ Ω) Vω =
{
(x, ξ) ∈ X× R | ϕ(ω, x) < ξ

}
. Then, since (4.17) implies that

(∀ω ∈ Ω) ϕω is T̃X-continuous, (4.19)

it follows that

(∀ω ∈ Ω) Vω ∈ T̃X ⊠ TR and Vω
T̃X⊠TR = epiϕω

T̃X⊠TR
= epiϕω. (4.20)

On the other hand, we derive from (4.18), (4.17), and [36, Corollary 2, p. 101] that the Borel σ-

algebra of (X, T̃X) is BX. Altogether, applying (ii)(a) to the metrizable Souslin space (X, T̃X), we

deduce that ϕ is F⊗BX-measurable and that there exist sequences (xn)n∈N in L(Ω;X) and (̺n)n∈N in

L(Ω;R) such that

(∀ω ∈ Ω)
{(
xn(ω), ̺n(ω)

)}
n∈N

⊂ epiϕω and epiϕω
T̃X⊠TR

=
{(
xn(ω), ̺n(ω)

)}
n∈N

T̃X⊠TR
. (4.21)

Hence, by (4.17) and (4.20),

{(
xn(ω), ̺n(ω)

)}
n∈N

⊃
{(
xn(ω), ̺n(ω)

)}
n∈N

T̃X⊠TR
= epiϕω

T̃X⊠TR
= epiϕω. (4.22)

Consequently, ϕ is normal.

(iv): It follows from [9, Section II.4.3] that (Y×R,TY⊠TR) is a separable Fréchet space. Moreover,

by [9, Proposition II.6.8], X× R = (Y × R,TY ⊠ TR)
∗ and the weak topology of X × R is TX ⊠ TR. In

turn, arguing as in [35, Section IV-1.7], we deduce that there exists a covering (Cn)n∈N of X×R, with

respective TX ⊠ TR-induced topologies (TCn
)n∈N, such that, for every n ∈ N, (Cn,TCn

) is a compact

separable metrizable space, hence a Polish space. We also introduce

(∀n ∈ N) Qn : Ω× Cn → Ω: (ω, x, ξ) 7→ ω. (4.23)

Note that, for every subset C of X× R,

{
ω ∈ Ω | C ∩ epiϕω 6= ∅

}
=

⋃

n∈N

{
ω ∈ Ω | C ∩ Cn ∩ epiϕω 6= ∅

}
=

⋃

n∈N

Qn

(
G∩

(
Ω×(C∩Cn)

))
. (4.24)

(iv)(a): For every n ∈ N, set

Ωn =
{
ω ∈ Ω | Cn ∩ epiϕω 6= ∅

}
, (4.25)

denote by Fn the trace σ-algebra of F on Ωn, and observe that

Ωn ∈ F and Fn ⊂ F. (4.26)
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Now define

K =
{
n ∈ N | Ωn 6= ∅

}
and (∀n ∈ K) Kn : Ωn → 2Cn : ω 7→ Cn ∩ epiϕω. (4.27)

Then

K 6= ∅ and
⋃

n∈K

Ωn = Ω. (4.28)

Furthermore, the TX ⊠ TR-closedness of (epiϕω)ω∈Ω guarantees that

(∀n ∈ K)(∀ω ∈ Ω) Kn(ω) is TCn
-closed. (4.29)

On the other hand, for every n ∈ K and every closed subset D of (Cn,TCn
), there exists a closed subset

E of (X×R,TX⊠TR) such that D = Cn∩E [7, Section I.3.1] and therefore, since Cn is TX⊠TR-closed,

we deduce from (4.26) that

{
ω ∈ Ωn | D ∩Kn(ω) 6= ∅

}
= Ωn ∩

{
ω ∈ Ω | Cn ∩ E ∩ epiϕω 6= ∅

}
∈ Fn. (4.30)

Hence, for every n ∈ K, since (Cn,TCn
) is a Polish space, we deduce from [16, Theorem 3.5(i),

Theorem 5.1, and Theorem 5.6] that there exist measurable mappings yn and (zn,k)k∈N from (Ωn,Fn)
to (Cn,BCn

) such that

(∀ω ∈ Ωn) yn(ω) ∈ Kn(ω) and Kn(ω) =
{
zn,k(ω)

}
k∈N

TCn
= Cn ∩

{
zn,k(ω)

}
k∈N

. (4.31)

In addition, since [16, Theorem 3.5(i)] asserts that

(∀n ∈ K)
{
(ω, x, ξ) ∈ Ωn × Cn | (x, ξ) ∈ Cn ∩ epiϕω

}

=
{
(ω, x, ξ) ∈ Ωn × Cn | (x, ξ) ∈ Kn(ω)

}

∈ Fn ⊗BCn

⊂ F ⊗BX×R, (4.32)

we get from (4.2) that

G =
⋃

n∈K

{
(ω, x, ξ) ∈ Ωn × Cn | (x, ξ) ∈ Cn ∩ epiϕω

}
∈ F ⊗BX×R. (4.33)

Thus, in the light of (4.3), ϕ is F⊗BX-measurable. Next, using (4.28), we construct a family (Θn)n∈K
of pairwise disjoint sets in F such that

ΘminK = ΩminK,
⋃

n∈K

Θn = Ω, and (∀n ∈ K) Θn ⊂ Ωn. (4.34)

In turn, for every ω ∈ Ω, there exists a unique ℓω ∈ K such that ω ∈ Θℓω . Therefore, appealing to

(4.34), the mapping

y : Ω → X× R : ω 7→ yℓω(ω) (4.35)

is well defined and, in view of (4.31),

(∀ω ∈ Ω) y(ω) = yℓω(ω) ∈ Kℓω(ω) ⊂ epiϕω. (4.36)
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Let V ∈ TX ⊠ TR. Then, for every n ∈ K, V ∩ Cn is TCn
-open and thus the measurability of

yn : (Ωn,Fn) → (Cn,BCn
) and (4.26) ensure that y−1

n (V ∩ Cn) ∈ Fn ⊂ F. Hence, we infer from

(4.34), (4.35), and (4.31) that

y−1(V) =
⋃

n∈K

{
ω ∈ Θn | y(ω) ∈ V

}

=
⋃

n∈K

{
ω ∈ Θn | yn(ω) ∈ Cn ∩V

}

=
⋃

n∈K

(
Θn ∩ y−1

n (Cn ∩ V)
)

∈ F. (4.37)

This verifies that y : (Ω,F) → (X× R,BX×R) is measurable. We now define

(∀n ∈ K)(∀k ∈ N) xn,k : Ω → X×R : ω 7→

{
zn,k(ω), if ω ∈ Ωn;

y(ω), if ω ∈ ∁Ωn.
(4.38)

It results from (4.26) that (xn,k)n∈K,k∈N are measurable mappings from (Ω,F) to (X × R,BX×R).
Furthermore, (4.31) and (4.36) give

(∀n ∈ K)(∀k ∈ N)(∀ω ∈ Ω) xn,k(ω) ∈ epiϕω. (4.39)

Fix ω ∈ Ω and let x ∈ epiϕω. Since
⋃

n∈K(Cn ∩ epiϕω) = epiϕω, there exists N ∈ K such that ω ∈ ΩN

and x ∈ CN ∩ epiϕω = KN (ω). Thus, it results from (4.31) and (4.38) that

x ∈
{
zN,k(ω)

}
k∈N

=
{
xN,k(ω)

}
k∈N

⊂
{
xn,k(ω)

}
n∈K,k∈N

. (4.40)

Therefore, since epiϕω is closed, it follows from (4.39) and [7, Section I.3.1] that

epiϕω =
{
xn,k(ω)

}
n∈K,k∈N

. (4.41)

At the same time, for every n ∈ K and every k ∈ N, since BX×R = BX ⊗ BR [4, Lemma 6.4.2(i)] and

since xn,k : (Ω,F) → (X× R,BX×R) is measurable, there exist xn,k ∈ L(Ω;X) and ̺n,k ∈ L(Ω;R) such

that (∀ω ∈ Ω) xn,k(ω) = (xn,k(ω), ̺n,k(ω)). Altogether, ϕ is normal.

(iv)(b)⇒(iv)(a): Let C be a nonempty closed subset of (X × R,TX ⊠ TR). Note that the lower

semicontinuity of ϕ ensures that G is closed. For every n ∈ N, since G ∩ (Ω × (C ∩ Cn)) is closed

in (Ω × Cn,TΩ ⊠ TCn
), it follows from (4.23) and [7, Corollaire I.10.5 and Théorème I.10.1] that

Qn(G∩ (Ω× (C∩Cn))) is closed in (Ω,TΩ) and, therefore, that it belongs to BΩ = F. Thus, by (4.24),{
ω ∈ Ω | C ∩ epiϕω 6= ∅

}
∈ F.

(iv)(c)⇒(iv)(a): There exists a topology T̃Ω on Ω such that

TΩ ⊂ T̃Ω and
(
Ω, T̃Ω

)
is a Polish space. (4.42)

In addition, by [36, Corollary 2, p. 101], the Borel σ-algebra of (Ω, T̃Ω) is BΩ = F. Let C be a closed

subset of (X × R,TX ⊠ TR) and fix temporarily n ∈ N. Since the F ⊗ BX-measurability of ϕ and (4.3)

ensure that G ∈ F ⊗BX×R, we have G ∩ (Ω × (C ∩ Cn)) = G ∩ (Ω× C) ∩ (Ω× Cn) ∈ BΩ×Cn
. At the

same time, for every ω ∈ Ω,

{
(x, ξ) ∈ X× R | (ω, x, ξ) ∈ G ∩

(
Ω× (C ∩ Cn)

)}
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=
{
(x, ξ) ∈ X× R | (x, ξ) ∈ C ∩ Cn and (x, ξ) ∈ epiϕω

}
,

= C ∩ Cn ∩ epiϕω (4.43)

is a closed subset of the compact space (Cn,TCn
). In turn, since (Ω, T̃Ω) and (Cn,TCn

) are Polish

spaces, [10, Theorem 1] guarantees that Qn(G ∩ (Ω × (C ∩ Cn))) ∈ BΩ = F. Consequently, we infer

from (4.24) that
{
ω ∈ Ω | C ∩ epiϕω 6= ∅

}
∈ F.

(v): Let (Y,TY) be the strong dual of X. Then (Y,TY) is a separable reflexive Banach space. Conse-

quently, (v)(a) follows from (iv)(b), and (v)(b) follows from (iv)(c).

(vi)⇒(v)(b): Let TΩ be the topology on Ω induced by the standard topology on R
M . By [36,

Corollary 1, p. 102], (Ω,TΩ) is a Lusin space.

(vii)(a): The lower semicontinuity of (ϕω)ω∈Ω ensures that the sets (epiϕω)ω∈Ω are closed. Hence,

since (X×R,TX⊠TR) is a Polish space, [16, Theorem 3.5(i)] and (4.2) yield G ∈ F⊗BX×R. Therefore,

by (4.3), ϕ is F ⊗BX-measurable. Consequently, we deduce the assertion from [16, Theorem 5.6].

(vii)(b)⇒(vii)(a): This follows from [16, Theorem 3.2(ii)].

(viii): The BX-measurability of f implies that ϕ is F ⊗ BX-measurable. At the same time, since

(X×R,TX⊠TR) is a Souslin space, we deduce from [36, Proposition II.0] that there exists a sequence

{(xn, ξn)}n∈N in epi f such that {(xn, ξn)}n∈N = epi f. Altogether, upon setting

(∀n ∈ N) xn : Ω → X : ω 7→ xn and ̺n : Ω → R : ω 7→ ξn, (4.44)

we conclude that ϕ is normal.

Remark 4.5 Here are a few observations about Definition 4.3.

(i) The setting of Theorem 4.4(vii)(b) corresponds to the definition of normality in [31].

(ii) The setting of Theorem 4.4(i)(a) corresponds to the definition of normality in [38], which itself

contains that of [29].

(iii) The frameworks of (i) and (ii) above are distinct since the former does not require that (Ω,F, µ)
be complete. Definition 4.3 unifies them and, as seen in Theorem 4.4, goes beyond. For the

importance of noncompleteness in applications, see for instance [27] and [32, p. 649].

5 Interchange rules with compliant spaces and normal integrands

The main result of this section is the following interchange theorem, which brings together the abstract

principle of Theorem 1.2, the notion of compliance of Definition 4.1, and the notion of normality of

Definition 4.3.

Theorem 5.1 Suppose that Assumption 1.1 holds, that X is compliant, and that ϕ is normal. Then

inf
x∈X

∫

Ω
ϕ
(
ω, x(ω)

)
µ(dω) =

∫

Ω
inf
x∈X

ϕ(ω, x)µ(dω). (5.1)

Proof. We apply Theorem 1.2. By virtue of the normality of ϕ, per Definition 4.3, we choose sequences

(zn)n∈N in L(Ω;X) and (ϑn)n∈N in L(Ω;R) such that

(∀ω ∈ Ω)
{(
zn(ω), ϑn(ω)

)}
n∈N

⊂ epiϕω and epiϕω =
{(
zn(ω), ϑn(ω)

)}
n∈N

. (5.2)
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On the other hand, Assumption 1.1[F] ensures that (∀ω ∈ Ω) infϕ(ω,X) < +∞. Now fix ω ∈ Ω and

let ξ ∈ ]infϕ(ω,X),+∞[. Then there exits x ∈ X such that (x, ξ) ∈ epiϕω. Thus, in view of (5.2), we

obtain a subnet (ϑk(b)(ω))b∈B of (ϑn(ω))n∈N such that ϑk(b)(ω) → ξ. On the other hand,

(∀b ∈ B) infϕ(ω,X) 6 inf
n∈N

ϕ
(
ω, zn(ω)

)
6 ϕ

(
ω, zk(b)(ω)

)
6 ϑk(b)(ω). (5.3)

Hence infϕ(ω,X) 6 infn∈N ϕ(ω, zn(ω)) 6 ξ. In turn, letting ξ ↓ infϕ(ω,X) yields infϕ(ω,X) =
infn∈N ϕ(ω, zn(ω)). Therefore, property (ii)(a) in Theorem 1.2 is satisfied with (∀n ∈ N) xn = zn − x.

At the same time, property (ii)(b) in Theorem 1.2 follows from Assumption 1.1[D] and the compli-

ance of X . Finally, since the functions (ϕ( · , zn( ·)))n∈N are F-measurable by Assumption 1.1[F], so is

infn∈N ϕ( · , zn( · )) = infϕ( · ,X).

In the remainder of this section, we construct new scenarios for the validity of the interchange rule

as instantiations of Theorem 5.1.

Example 5.2 Let X be a separable real Banach space with strong topology TX, let (Ω,F, µ) be a σ-finite

measure space such that µ(Ω) 6= 0, let X be a vector subspace of L(Ω;X), and let ϕ : (Ω×X,F⊗BX) →
R be measurable. Suppose that the following are satisfied:

(i) For every A ∈ F such that µ(A) < +∞ and every z ∈ L∞(Ω;X), 1Az ∈ X .

(ii) ϕ is normal.

(iii) There exists x ∈ X such that
∫
Ω max{ϕ( · , x( · )), 0}dµ < +∞.

Then the interchange rule (5.1) holds.

Proof. Note that Assumption 1.1 is satisfied. Hence, the assertion follows from Proposition 4.2(ii) and

Theorem 5.1.

Example 5.3 Suppose that Assumption 1.1 holds, that (Ω,F, µ) is complete, and that X is compliant.

Then the interchange rule (5.1) holds.

Proof. Combine Theorem 4.4(i)(a) and Theorem 5.1.

When specialized to probability in separable Banach spaces, Theorem 5.1 yields conditions for the

interchange of infimization and expectation. Here is an illustration.

Example 5.4 Let X be a separable real Banach space, let (Ω,F,P) be a probability space, let X be a

vector subspace of L(Ω;X) which contains L∞(Ω;X), and let ϕ : (Ω × X,F ⊗ BX) → R be normal. In

addition, set φ = infϕ( · ,X) and Φ: L(Ω;X) → L(Ω;R) : x 7→ ϕ( · , x( · )), and suppose that there exists

x ∈ X such that Emax{Φ(x), 0} < +∞. Then

inf
x∈X

EΦ(x) = Eφ. (5.4)

Proof. This is a special case of Example 5.2.

Example 5.5 Suppose that Assumption 1.1 holds, that X is compliant, and that the functions (ϕω)ω∈Ω
are upper semicontinuous. Then the interchange rule (5.1) holds.

Proof. We deduce from Assumption 1.1[F] and Theorem 4.4(i)(d) that ϕ is normal. Thus, the conclu-

sion follows from Theorem 5.1.

An important realization of Example 5.5 is the case of Carathéodory integrands.
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Example 5.6 (Carathéodory integrand) Let (X,TX) be a Souslin topological vector space, let (Ω,F, µ)
be a σ-finite measure space such that µ(Ω) 6= 0, let X be a compliant vector subspace of L(Ω;X), and

let ϕ : Ω × X → R be a Carathéodory integrand in the sense that, for every (ω, x) ∈ Ω × X, ϕ(ω, ·) is

continuous with epiϕω 6= ∅, and ϕ( · , x) is F-measurable. Suppose that there exists x ∈ X such that∫
Ω max{ϕ( · , x( · )), 0}dµ < +∞. Then the interchange rule (5.1) holds.

Proof. Since (X,TX) is a Souslin topological vector space, [39, Section 35F, p. 244] implies that it is

a regular Souslin space. Thus, we deduce from Theorem 4.4(iii) that ϕ is normal and, in particular,

it is F ⊗ BX-measurable. Hence, Assumption 1.1 is satisfied. Consequently, Example 5.5 yields the

conclusion.

Remark 5.7 Here are connections with existing work.

(i) Example 5.2 unifies and extends the classical results of [15, 29, 31]:

• It captures [31, Theorem 3A], where X is a Euclidean space and X is assumed to be

Rockafellar-decomposable (see Proposition 4.2(iv) for definition).

• It covers the setting of [29], where (Ω,F µ) is assumed to be complete and where (i) and

(ii) in Example 5.2 are specialized to:

(i’) X is Rockafellar-decomposable.
(ii’) The functions (ϕω)ω∈Ω are lower semicontinuous.

The fact that property (ii) in Example 5.2 is satisfied when (Ω,F, µ) is complete is shown

in Theorem 4.4(i)(a).

• It captures [15, Theorem 2.2], where X =
{
x ∈ L(Ω;X) |

∫
Ω ‖x(ω)‖pX µ(dω) < +∞

}
with

p ∈ [1,+∞[.

(ii) An important contribution of Theorem 5.1 and, in particular, of Example 5.2 is that completeness

of the measure space (Ω,F, µ) is not required.

(iii) In the special case when X is a Banach space, an alternative framework that recovers the in-

terchange rules of [15, 29, 31] was proposed in [14, Theorem 6.1], where the right-hand side

of (1.2) is replaced by the integral of an abstract essential infimum. However, [14] does not

provide new scenarios for (1.2) beyond the known cases in Banach spaces. An interpretation of

the framework of [14] from the view point of monotone relations between partially ordered sets

is proposed in [12].

(iv) Example 5.3 captures [25, Theorem 4], where µ(Ω) < +∞ and X is Valadier-decomposable

(see Proposition 4.2(v) for definition). It also covers the setting of [38], where X is a Souslin

topological vector space and X is Valadier-decomposable.

(v) Example 5.4 contains the interchange rule of [24, 37], where X is the standard Euclidean space

R
N and X is Rockafellar-decomposable.

(vi) Example 5.6 extends [31, Theorem 3A], where X is the standard Euclidean space R
N and X is

Rockafellar-decomposable.

6 Interchanging convex-analytical operations and integration

We put the interchange principle of Theorem 1.2, compliance, and normality in action to evaluate

convex-analytical objects associated with integral functions, namely conjugate functions, subdifferen-

tial operators, recession functions, Moreau envelopes, and proximity operators. This analysis results

19



in new interchange rules for the convex calculus of integral functions. Throughout this section, we

adopt the following notation.

Notation 6.1 Let (X,TX) be a real topological vector space, let (Ω,F, µ) be a σ-finite measure space

such that µ(Ω) 6= 0, let X be a vector subspace of L(Ω;X), and let ϕ : (Ω × X,F ⊗ BX) → R be an

integrand. Then:

(i) X̃ is the vector space of equivalence classes of µ-a.e. equal mappings in X .

(ii) The equivalence class in X̃ of x ∈ X is denoted by x̃. Conversely, an arbitrary representative in

X of x̃ ∈ X̃ is denoted by x.

(iii) I
ϕ,X̃

: X̃ → R : x̃ 7→
∫
Ω ϕ(ω, x(ω))µ(dω).

We shall require the following result. Its item (i) appears in [38, Lemma 4] in the special case when

(Ω,F, µ) is complete.

Lemma 6.2 Let (Ω,F, µ) be a σ-finite measure space such that µ(Ω) 6= 0, let (X,TX) be a Souslin locally

convex real topological vector space, and let (Y,TY) be a separable locally convex real topological vector

space. Suppose that X and Y are placed in separating duality via a bilinear form 〈 · , · 〉X,Y : X × Y → R

with which TX and TY are compatible. Then the following hold:

(i) 〈 · , · 〉X,Y : (X× Y,BX ⊗BY) → R is measurable.

(ii) Let X ⊂ L(Ω;X) and Y ⊂ L(Ω;Y) be vector subspaces such that the following are satisfied:

(a) (∀x ∈ X )(∀y ∈ Y)
∫
Ω |〈x(ω), y(ω)〉X,Y|µ(dω) < +∞.

(b)
⋃

x∈X

{
1Ax | A ∈ F and µ(A) < +∞

}
⊂ X .

(c)
⋃

y∈Y

{
1Ay | A ∈ F and µ(A) < +∞

}
⊂ Y.

Then X̃ and Ỹ are in separating duality via the bilinear form 〈 · , · 〉 defined by

(∀x̃ ∈ X̃ )(∀ỹ ∈ Ỹ) 〈x̃, ỹ〉 =

∫

Ω

〈
x(ω), y(ω)

〉
X,Y

µ(dω). (6.1)

Proof. (i): We deduce from [39, Section 35F, p. 244] that (X,TX) is a regular Souslin space. On

the other hand, since TY and TX are compatible with 〈 · , · 〉X,Y, the functions (〈x, · 〉X,Y)x∈X are BY-

measurable and the functions (〈 · , y〉X,Y)y∈Y are continuous. Hence, Theorem 4.4(iii) implies that

〈 · , · 〉X,Y : (X × Y,BX ⊗BY) → R is measurable.

(ii): Note that (i) guarantees that, for every x ∈ X and every y ∈ Y, 〈x( · ), y( · )〉X,Y is F-measurable.

Now let {yn}n∈N be a dense subset of (Y,TY) and let x̃ ∈ X̃ be such that (∀ỹ ∈ Ỹ) 〈x̃, ỹ〉 = 0. Then, for

every n ∈ N and every A ∈ F such that µ(A) < +∞, since (ii)(c) ensures that 1Ayn ∈ Y, we deduce

from (6.1) that
∫
A
〈x(ω), yn〉X,Yµ(dω) =

∫
Ω〈x(ω), 1A(ω)yn〉X,Yµ(dω) = 0. Therefore, since (Ω,F, µ) is

σ-finite, it follows that (∀n ∈ N) 〈x( · ), yn〉X,Y = 0 µ-a.e. Thus x̃ = 0. Likewise, (∀ỹ ∈ Ỹ) 〈 · , ỹ〉 = 0 ⇒
ỹ = 0, which completes the proof.

The main result of this section is set in the following environment, which is well defined by virtue

of Lemma 6.2.

Assumption 6.3

[A] (X,TX) is a Souslin locally convex real topological vector space and (Y,TY) is a separable locally

convex real topological vector space. In addition, X and Y are placed in separating duality via a

bilinear form 〈 · , · 〉X,Y : X× Y → R with which TX and TY are compatible.
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[B] (Ω,F, µ) is a σ-finite measure space such that µ(Ω) 6= 0.

[C] X ⊂ L(Ω;X) and Y ⊂ L(Ω;Y) are vector subspaces such that (∀x ∈ X )(∀y ∈ Y)∫
Ω |〈x(ω), y(ω)〉X,Y|µ(dω) < +∞. In addition,

X is compliant and
⋃

y∈Y

{
1Ay | A ∈ F and µ(A) < +∞

}
⊂ Y. (6.2)

[D] X̃ and Ỹ are placed in separating duality via the bilinear form 〈 · , · 〉 defined by

(∀x̃ ∈ X̃ )(∀ỹ ∈ Ỹ) 〈x̃, ỹ〉 =

∫

Ω

〈
x(ω), y(ω)

〉
X,Y

µ(dω), (6.3)

and they are equipped with locally convex Hausdorff topologies which are compatible with 〈 · , · 〉.

[E] ϕ : (Ω × X,F ⊗BX) → ]−∞,+∞] is normal and we write ϕ∗ : Ω× Y → R : (ω, y) 7→ ϕ∗
ω(y).

[F] dom I
ϕ,X̃

6= ∅.

Proposition 6.4 Suppose that Assumption 6.3 holds. Then ϕ∗ is F ⊗BY-measurable.

Proof. According to Assumption 6.3[E] and Definition 4.3, there exist sequences (xn)n∈N in L(Ω;X)
and (̺n)n∈N in L(Ω;R) such that

(∀ω ∈ Ω)
{(
xn(ω), ̺n(ω)

)}
n∈N

⊂ epiϕω and epiϕω =
{(
xn(ω), ̺n(ω)

)}
n∈N

. (6.4)

Set

(∀n ∈ N) ψn : Ω× Y → R : (ω, y) 7→ 〈xn(ω), y〉X,Y − ̺n(ω). (6.5)

Then, for every n ∈ N, Assumption 6.3[A]–[C] and Lemma 6.2(i) ensure that ψn is F ⊗ BY-

measurable. On the other hand, since the functions (〈 · , y〉X,Y)y∈Y are continuous, we derive from

Assumption 6.3[E], (2.3), and (6.4) that

(
∀(ω, y) ∈ Ω× Y

)
ϕ∗(ω, y) = sup

(x,ξ)∈epiϕω

(
〈x, y〉X,Y − ξ

)

= sup
(x,ξ)∈epiϕω

(
〈x, y〉X,Y − ξ

)

= sup
n∈N

(
〈xn(ω), y〉X,Y − ̺n(ω)

)

= sup
n∈N

ψn(ω, y). (6.6)

Thus ϕ∗ is F ⊗BY-measurable.

We first investigate the conjugate and the subdifferential of integral functions.

Theorem 6.5 Suppose that Assumption 6.3 holds. Then the following are satisfied:

(i) I
∗

ϕ,X̃
= I

ϕ∗,Ỹ
.

(ii) Suppose that I
ϕ,X̃

is proper, let x̃ ∈ X̃ , and let ỹ ∈ Ỹ. Then ỹ ∈ ∂I
ϕ,X̃

(x̃) ⇔ y(ω) ∈ ∂ϕω(x(ω)) for

µ-almost every ω ∈ Ω.

21



Proof. (i): In view of Assumption 6.3[E] and Proposition 6.4, I
ϕ,X̃

and I
ϕ∗,Ỹ

are well defined. Further,

there exist sequences (zn)n∈N in L(Ω;X) and (ϑn)n∈N in L(Ω;R) such that

(∀ω ∈ Ω)
{(
zn(ω), ϑn(ω)

)}
n∈N

⊂ epiϕω and epiϕω =
{(
zn(ω), ϑn(ω)

)}
n∈N

. (6.7)

Let ỹ ∈ Ỹ, define ψ : Ω × X → ]−∞,+∞] : (ω, x) 7→ ϕω(x) − 〈x, y(ω)〉X,Y, and note that (∀ω ∈ Ω)
epiψω 6= ∅. Assumption 6.3[E] and Lemma 6.2(i) imply that

ψ is F ⊗BX-measurable. (6.8)

Moreover, using the continuity of the linear functionals (〈 · , y〉X,Y)y∈Y, we derive from (6.7) that

(∀ω ∈ Ω) infψ(ω,X) = inf
(x,ξ)∈epiϕω

(
ξ − 〈x, y(ω)〉X,Y

)

= inf
(x,ξ)∈epiϕω

(
ξ − 〈x, y(ω)〉X,Y

)

= inf
n∈N

(
ϑn(ω)− 〈zn(ω), y(ω)〉

)

> inf
n∈N

(
ϕω

(
zn(ω)

)
− 〈zn(ω), y(ω)〉

)

= inf
n∈N

ψ
(
ω, zn(ω)

)

> infψ(ω,X). (6.9)

Hence, (∀ω ∈ Ω) infψ(ω,X) = infn∈N ψ(ω, zn(ω)). Combining this with (6.8), we infer that infψ( · ,X)
is F-measurable and that ψ fulfills property (ii)(a) in Theorem 1.2 with (∀n ∈ N) xn = zn−x. In turn,

thanks to Assumption 6.3[B] and the compliance of X , property (ii)(b) in Theorem 1.2 is fulfilled.

Thus, by invoking (6.3) and Theorem 1.2, we obtain

I
∗

ϕ,X̃
(ỹ) = sup

x̃∈X̃

(
〈x̃, ỹ〉 − I

ϕ,X̃
(x̃)

)

= sup
x∈X

(∫

Ω

〈
x(ω), y(ω)

〉
X,Y

µ(dω)−

∫

Ω
ϕ
(
ω, x(ω)

)
µ(dω)

)

= − inf
x∈X

∫

Ω
ψ
(
ω, x(ω)

)
µ(dω)

= −

∫

Ω
inf
x∈X

ψ(ω, x)µ(dω)

=

∫

Ω
ϕ∗
ω

(
y(ω)

)
µ(dω), (6.10)

as desired.

(ii): Since the functions (ϕω)ω∈Ω are proper by Assumption 6.3[E], we derive from (2.5), (i), (6.3),

and the Fenchel–Young inequality that

ỹ ∈ ∂I
ϕ,X̃

(x̃) ⇔ I
ϕ,X̃

(x̃) + I
ϕ∗,Ỹ

(ỹ) = 〈x̃, ỹ〉

⇔

∫

Ω
ϕω

(
x(ω)

)
µ(dω) +

∫

Ω
ϕ∗
ω

(
y(ω)

)
µ(dω) =

∫

Ω

〈
x(ω), y(ω)

〉
X,Y

µ(dω)

⇔ ϕω

(
x(ω)

)
+ ϕ∗

ω

(
y(ω)

)
=

〈
x(ω), y(ω)

〉
X,Y

µ-a.e.

⇔ y(ω) ∈ ∂ϕω

(
x(ω)

)
µ-a.e., (6.11)

which completes the proof.

A first important consequence of Theorem 6.5(i) is the following.
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Proposition 6.6 Suppose that Assumption 6.3 holds, that (Y,TY) is a Souslin space, that dom I
ϕ∗,Ỹ

6=

∅, that Y is compliant, and that (∀ω ∈ Ω) ϕω ∈ Γ0(X). Then the following are satisfied:

(i) I
ϕ,X̃

∈ Γ0(X̃ ).

(ii) Set recϕ : Ω × X → ]−∞,+∞] : (ω, x) 7→ (recϕω)(x). Then recϕ is F ⊗ BX-measurable and

recI
ϕ,X̃

= I
recϕ,X̃

.

Proof. (i): Let x̃ ∈ X̃ and set

ψ : Ω× Y → ]−∞,+∞] : (ω, y) 7→ ϕ∗
ω(y)− 〈x(ω), y〉X,Y and ϑ = infψ( · ,Y). (6.12)

By Assumption 6.3[E],

ϕ
(
· , x( · )

)
is F-measurable, (6.13)

while it results from Proposition 6.4 and Lemma 6.2(i) that

ψ is F ⊗BY-measurable. (6.14)

Moreover, for every ω ∈ Ω, since ϕω ∈ Γ0(X), ϕ
∗
ω is proper and hence epiψω 6= ∅. On the other hand,

the Fenchel–Moreau biconjugation theorem yields

(∀ω ∈ Ω) ϑ(ω) = −ϕ∗∗
ω

(
x(ω)

)
= −ϕω

(
x(ω)

)
(6.15)

and it thus follows from (6.13) that ϑ is F-measurable. Now define

(∀n ∈ N) Mn : Ω → 2Y : ω 7→

{{
y ∈ Y | ψ(ω, y) 6 −n

}
, if ϑ(ω) = −∞;{

y ∈ Y | ψ(ω, y) 6 ϑ(ω) + 2−n
}
, if ϑ(ω) ∈ R.

(6.16)

Fix temporarily n ∈ N. By (6.14),
{
(ω, y) | y ∈Mn(ω)

}
∈ F ⊗ BY. Hence, since (Y,TY) is a Souslin

space, [16, Theorem 5.7] guarantees that there exist yn ∈ L(Ω;Y) and Bn ∈ F such that µ(Bn) = 0
and (∀ω ∈ ∁Bn) yn(ω) ∈ Mn(ω). Now set B =

⋃
n∈NBn. Then µ(B) = 0 and, by virtue of (6.12) and

(6.16),

(
∀ω ∈ ∁B

)
(∀n ∈ N) ϑ(ω) 6 inf

k∈N
ψ
(
ω, yk(ω)

)
6 ψ

(
ω, yn(ω)

)
6

{
−n, if ϑ(ω) = −∞;

ϑ(ω) + 2−n, if ϑ(ω) ∈ R.
(6.17)

Thus, letting n ↑ +∞ yields (∀ω ∈ ∁B) ϑ(ω) = infn∈N ψ(ω, yn(ω)). Consequently, since Y is compliant,

property (ii) in Theorem 1.2 is satisfied. In turn, we deduce from (6.15), Theorem 1.2, (6.3), and

Theorem 6.5(i) that

I
ϕ,X̃

(x̃) =

∫

Ω
ϕ
(
ω, x(ω)

)
µ(dω)

= −

∫

Ω
inf
y∈Y

ψ(ω, y)µ(dω)

= − inf
y∈Y

∫

Ω
ψ
(
ω, y(ω)

)
µ(dω)

= sup
y∈Y

(∫

Ω

〈
x(ω), y(ω)

〉
X,Y

µ(dω)−

∫

Ω
ϕ∗
ω

(
y(ω)

)
µ(dω)

)

= sup
ỹ∈Ỹ

(
〈x̃, ỹ〉 − I

∗

ϕ,X̃
(ỹ)

)

23



= I
∗∗

ϕ,X̃
(x̃). (6.18)

Thus I
ϕ,X̃

= I∗∗
ϕ,X̃

and, since I
ϕ,X̃

is proper, we conclude that I
ϕ,X̃

∈ Γ0(X̃ ).

(ii): The normality of ϕ implies that it is F ⊗ BX-measurable and that there exists u ∈ L(Ω;X)
such that (∀ω ∈ Ω) u(ω) ∈ domϕω. Hence, for every n ∈ N, the function (Ω × X,F ⊗ BX) →
]−∞,+∞] : (ω, x) 7→ ϕω(u(ω) + nx)− ϕω(u(ω)) is measurable. Since, by (2.6),

(∀ω ∈ Ω)(∀x ∈ X) (recϕ)(ω, x) = (recϕω)(x) = lim
N∋n↑+∞

ϕω

(
u(ω) + nx

)
− ϕω

(
u(ω)

)

n
, (6.19)

it follows that recϕ is F⊗BX-measurable. Now let x̃ ∈ X̃ and z̃ ∈ dom I
ϕ,X̃

. Then, for µ-almost every

ω ∈ Ω, z(ω) ∈ domϕω and it thus follows from the convexity of ϕω that the function θ : ]0,+∞[ →
]−∞,+∞] : α 7→ (ϕω(z(ω) + αx(ω)) − ϕω(z(ω)))/α is increasing. Thus, appealing to (2.6) and the

monotone convergence theorem, we deduce from (i) that

(
recI

ϕ,X̃

)
(x̃) = lim

α↑+∞

I
ϕ,X̃

(z̃ + αx̃)− I
ϕ,X̃

(z̃)

α

= lim
α↑+∞

∫

Ω

ϕω

(
z(ω) + αx(ω)

)
− ϕω

(
z(ω)

)

α
µ(dω)

=

∫

Ω
lim

α↑+∞

ϕω

(
z(ω) + αx(ω)

)
− ϕω

(
z(ω)

)

α
µ(dω)

=

∫

Ω
(recϕω)

(
x(ω)

)
µ(dω), (6.20)

as claimed.

Two key ingredients in Hilbertian convex analysis are the Moreau envelope of (2.7) and the prox-

imity operator of (2.9) [1, 19]. To compute them for integral functions, we first observe that, in the

case of Hilbert spaces identified with their duals, Assumption 6.3 can be simplified as follows.

Assumption 6.7

[A] X is a separable real Hilbert space with scalar product 〈 · | · 〉X, associated norm ‖·‖X, and strong

topology TX.

[B] (Ω,F, µ) is a σ-finite measure space such that µ(Ω) 6= 0.

[C] X =
{
x ∈ L(Ω;X) |

∫
Ω ‖x(ω)‖2X µ(dω) < +∞

}
and X̃ is the usual real Hilbert space L2(Ω;X)

with scalar product

(∀x̃ ∈ X̃ )(∀ỹ ∈ X̃ ) 〈x̃ | ỹ〉 =

∫

Ω
〈x(ω) | y(ω)〉X µ(dω). (6.21)

[D] ϕ : (Ω × X,F ⊗BX) → ]−∞,+∞] is a normal integrand such that (∀ω ∈ Ω) ϕω ∈ Γ0(X).

[E] dom I
ϕ,X̃

6= ∅ and dom I
ϕ∗,X̃

6= ∅.

Proposition 6.8 Suppose that Assumption 6.7 holds and let γ ∈ ]0,+∞[. Then the following are satis-

fied:

(i) Let x̃ ∈ X̃ and p̃ ∈ X̃ . Then p̃ = proxγI
ϕ,X̃

x̃⇔ p(ω) = proxγϕω
(x(ω)) for µ-almost every ω ∈ Ω.

(ii) Set γϕ : Ω× X → ]−∞,+∞] : (ω, x) 7→ γ(ϕω)(x). Then γϕ is normal and γ
I
ϕ,X̃

= Iγϕ,X̃
.
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Proof. Since Assumption 6.7 is an instance of Assumption 6.3, we first infer from Proposition 6.6(i)

that I
ϕ,X̃

∈ Γ0(X̃ ).

(i): We derive from (2.9) and Theorem 6.5(ii) that

p̃ = proxγI
ϕ,X̃

x̃⇔ x̃− p̃ ∈ γ∂I
ϕ,X̃

(p̃)

⇔ x(ω)− p(ω) ∈ γ∂ϕω

(
p(ω)

)
for µ-almost every ω ∈ Ω

⇔ p(ω) = proxγϕω
x(ω) for µ-almost every ω ∈ Ω. (6.22)

(ii): Since BX×R = BX ⊗ BR, it results from Assumption 6.7[D] and Definition 4.3 that there exists

a sequence (xn)n∈N in L(Ω;X× R) such that

(∀ω ∈ Ω) epiϕω =
{
xn(ω)

}
n∈N

. (6.23)

Set V =
{
(x, ξ) ∈ X× R | ‖x‖2X/(2γ) < ξ

}
. Then V is open and therefore, for every C ⊂ X × R,

C+ V = C+ V. Thus, we derive from (2.7) and (6.23) that

(∀ω ∈ Ω)
{
(x, ξ) ∈ X× R | γ(ϕω)(x) < ξ

}
=

{
(x, ξ) ∈ X× R | ϕω(x) < ξ

}
+ V

=
{
(x, ξ) ∈ X× R | ϕω(x) < ξ

}
+ V

= epiϕω + V

=
{
xn(ω)

}
n∈N

+ V

=
{
xn(ω)

}
n∈N

+ V

=
⋃

n∈N

(
xn(ω) + V

)
. (6.24)

Hence, for every x ∈ X and every ξ ∈ R, since (x, ξ) − V ∈ BX×R and {xn}n∈N ⊂ L(Ω;X × R), we

obtain

{
ω ∈ Ω | γ(ϕω)(x) < ξ

}
=

{
ω ∈ Ω

∣∣∣∣∣ (x, ξ) ∈
⋃

n∈N

(
xn(ω) + V

)
}

=
⋃

n∈N

x−1
n

(
(x, ξ)−V

)
∈ F, (6.25)

which shows that (γϕ)( · , x) is F-measurable. Hence, since (X,TX) is a Fréchet space, Theo-

rem 4.4(ii)(b) ensures that γϕ is normal. It remains to show that γ
I
ϕ,X̃

= Iγϕ,X̃
. Let x̃ ∈ X̃ and

set p̃ = proxγI
ϕ,X̃

x̃. Then, by (i), for µ-almost every ω ∈ Ω, p(ω) = proxγϕω
(x(ω)) and, therefore,

(2.8) yields γ(ϕω)(x(ω)) = ϕω(p(ω)) + ‖x(ω)− p(ω)‖2X/(2γ). Hence

γ
I
ϕ,X̃

(x̃) = I
ϕ,X̃

(p̃) +
1

2γ
‖x̃− p̃‖2

X̃

=

∫

Ω
ϕω

(
p(ω)

)
µ(dω) +

1

2γ

∫

Ω
‖x(ω)− p(ω)‖2Xµ(dω)

=

∫

Ω

γ(ϕω)
(
x(ω)

)
µ(dω)

= Iγϕ,X̃
(x̃), (6.26)

which concludes the proof.

Remark 6.9 Theorem 6.5, Proposition 6.6, and Proposition 6.8 extend the state of the art on several

fronts, in particular by removing completeness of (Ω,F, µ) when X is infinite-dimensional.
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(i) The conclusion of Theorem 6.5(i) first appeared in [28, Theorem 2] in the special case when X

is the standard Euclidean space R
N and X is Rockafellar-decomposable (see Proposition 4.2(iv)

for definition).

(ii) In view of Proposition 4.2(iv) and Theorem 4.4(i)(a), Theorem 6.5 subsumes [29, Theorem 2

and Equation (25)] (see also [30, Theorem 21]), where X is a separable Banach space, X is

Rockafellar-decomposable, and (Ω,F, µ) is complete.

(iii) The conclusion of Theorem 6.5(i) appears in [38] in the special case when X is Valadier-

decomposable (see Proposition 4.2(v) for definition) and (Ω,F, µ) is complete.

(iv) Proposition 6.6(i) subsumes [29, Corollary p. 227], where X is a separable Banach space, X is

Rockafellar-decomposable, and (Ω,F, µ) is complete.

(v) The conclusion of Proposition 6.6(ii) first appeared in [3, Proposition 1] in the context where X

is a separable reflexive Banach space, X is Rockafellar-decomposable, and (Ω,F, µ) is a complete

probability space. Another special case is [22, Theorem 2], where X is Valadier-decomposable

and either X = R
N or (Ω,F, µ) is complete.

(vi) Proposition 6.8(i) appears in [1, Proposition 24.13] in the special case when (Ω,F, µ) is com-

plete, for every ω ∈ Ω ϕω = f, and either µ(Ω) < +∞ or f > f(0) > 0.
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[23] T. Pennanen and A.-P. Perkkiö, Convex duality in nonlinear optimal transport, J. Funct. Anal.,

vol. 277, pp. 1029–1060, 2019.
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