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1 Introduction

This paper concerns the interchange of the infimization and integration operations in the context of
the following assumption.

Assumption 1.1
[A] Xis a real vector space endowed with a Souslin topology Tx and associated Borel o-algebra Bx.
[B] The mapping (X x X, Bx ® Bx) — (X, Bx): (x,y) — x +y is measurable.
[C] For every A € R, the mapping (X, Bx) — (X, Bx): x — Ax is measurable.
[D] (Q,F,n) is a o-finite measure space such that 1(2) # 0, and £(2; X) denotes the vector space of
measurable mappings from (2, F) to (X, Bx).
[E] X is a vector subspace of £(2; X).

[F] ¢: (Q x X,F ® Bx) — R is an integrand in the sense that it is measurable and, for every w € ,
epi Pw 7£ 9, where Pw = gp(w, )
[G] There exists € X such that [, max{e(-,Z(-)),0}dp < +oc0.

As is customary, given a measurable function o: (2,F) — R, [, odu is the usual Lebesgue integral,
except when the Lebesgue integral [, max{o,0}du is +oo, in which case [, odp = +o0.

Many problems in analysis and its applications require the evaluation of the infimum over X" of the
function f: x — [, (-, 2(-))du. A simpler task is to evaluate the function ¢: w — infy(w, X) and
then compute [, ¢dyu. In general, this provides only a lower bound as inf f(X) > [, ¢dy. Conditions
under which the two quantities are equal have been established in [15], [25], and [31] under vari-
ous hypotheses on X, (Q2,F, ), X, and ¢. The resulting infimization-integration interchange rule is a
central tool in areas such as plasticity theory [5], convex analysis [13], multivariate analysis [15], cal-
culus of variations [17], economics [18], stochastic processes [22], optimal transport [23], stochastic
optimization [24], finance [25], variational analysis [32], and stochastic programming [37]. Note
that, in Assumption 1.1[A]-[C], we do not require that (X,Tx) be a topological vector space to ac-
commodate certain applications. For instance, in [25], X is the space of cadlag functions on [0, 1] and
Tx is the Skorokhod topology. In this context, (X, Tx) is a Polish space [2, Chapter 3] which is not a
topological vector space [26] but which satisfies Assumption 1.1[A]-[C].

Our first contribution is Theorem 1.2 below, which provides, under the umbrella of Assumption 1.1,
a broad setting for the interchange of infimization and integration.

Theorem 1.2 (interchange principle) Suppose that Assumption 1.1 and the following hold:
(1) infiex ¢(-,x) is F-measurable.
(ii) There exists a sequence (z,,)nen in L(€2; X) such that the following are satisfied:

(@) infyex o(-,x) = infren (-, 2z, (-) +T(+)) p-a.e.
(b) There exists an increasing sequence () ren of finite y-measure sets in F such that | J, oy Q% =

Q and
(vn € N)(Vk € N)  {1az, |F > AC Q and z,(A) is compact} C X. (1.1)
Then
inf [ ol () = [ inf ol x) u(d) (1.2)



Theorem 1.2 is proved in Section 3. The second contribution is the introduction of two new tools
— compliant spaces and an extended notion of normal integrands. This is done in Section 4, where
these notions are illustrated through various examples. In Section 5, compliance and normality are
utilized to build a pathway between the abstract interchange principle of Theorem 1.2 and separate
conditions on X and ¢ that capture various application settings. The main result of that section
is Theorem 5.1, which encompasses in particular the interchange rules of [15, 25, 31], as well as
those implicitly present in [28, 29, 38]. These different frameworks have so far not been brought
together and we improve them in several directions, for instance by not requiring the completeness
of (2,F, ) and by relaxing the assumptions on X. This leads to new concrete scenarios under which
(1.2) holds. Our third contribution, presented in Section 6, concerns convex-analytical operations on
integral functions. By combining Theorem 1.2, compliance, and normality, we broaden conditions
for evaluating Legendre conjugates, subdifferentials, recessions, Moreau envelopes, and proximity
operators of integral functions by bringing the corresponding operations under the integral sign. These
results improve state-of-the-art convex calculus rules from [1, 22, 24, 29, 31, 38].

2 Notation and background

2.1 Measure theory

We set R = [—o0, +00]. Let (2, F) be a measurable space and let A be a subset of §). The characteristic
function of A is denoted by 14 and the complement of A is denoted by CA. Now let (X,Tx) be
a Hausdorff topological space with Borel o-algebra Bx. We denote by £(2; X) the vector space of
measurable mappings from (2, ) to (X, Bx). Given a measure p on (Q,5), L1(Q;R) is the subset
of £L(Q;R) of integrable functions, and £!(Q; R) is defined likewise. Given a separable Banach space
(X, I+ [Ix), we set L2(Q2;X) = {x € L(X) | sup [|z(2)[|x < 400}

2.2 Topological spaces

Given topological spaces (Y, Ty) and (Z,77), Ty X T7 denotes the standard product topology.

Let (X,Tx) be a Hausdorff topological space. The Borel o-algebra of (X,Tx) is denoted by Bx.
Furthermore, (X, Tx) is:

* regular [7, Section 1.8.4] if, for every closed subset C of (X,Tx) and every x € CC, there exist
VeTxand We TJxsuchthat Cc V,xe W,and VNW = &;

* a Polish space [8, Section IX.6.1] if it is separable and there exists a distance d on X that induces
the same topology as Tx and such that (X, d) is a complete metric space;

* a Souslin space [8, Section IX.6.2] if there exist a Polish space (Y, Jy) and a continuous surjective
mapping from (Y, Ty) to (X,Tx);

* a Lusin space [8, Section IX.6.4] if there exists a topology ‘./T; on X such that Tx C ‘j'; and (X, i/T;)
is a Polish space;

* a Fréchet space [9, Section I1.4.1] if it is a locally convex real topological vector space and there
exists a distance d on X that induces the same topology as Tx and such that (X, d) is a complete
metric space.

Now let f: X — R. The epigraph of f is

epif = {(x,£) € X x R|f(x) <&}, 2.1)



f is proper if —oco ¢ f(X) # {400}, and f is Tx-lower semicontinuous if epif is Tx X Tr-closed.

2.3 Duality

The dual of a real topological vector space (X, Tx), that is, the vector space of continuous linear
functionals on (X, Tx), is denoted by (X, Tx)*.

Let X and Y be real vector spaces which are in separating duality via a bilinear form (-, -)x y: X x
Y — R, that is [9, Section I1.6.1],

{(Vx eX) X )xy=0 = x= (2.2)

(WyeY) (.yxy=0 = y=0

In addition, equip X with a locally convex topology Tx which is compatible with the pairing (-, - )x v in
the sense that (X, Tx)* = {(-,y)x,v }yev and, likewise, equip Y with a locally convex topology Ty which
is compatible W1th the pairing (-, -)x v in the sense that (Y, Ty)* = {(x, - )x,y }xex [9, Section IV.1.1].
Following [20], the Legendre conjugate of f: X — R is

Y >Ry — su);() ((x, y)xy — f(x)) (2.3)
IS

and the Legendre conjugate of g: Y — R is

g*: X = R: x> sup (<X7y>x7y — g(y)). (2.4)
yeyY

Let f: X — R. If f is proper, its subdifferential is the set-valued operator

Of: X — 2Y

o {y €Y | (V2 €X) (2= xy)xy + ) < @)} = {y €Y | £6) + £ () = boyhxy . o

In addition, f is convex if epif is a convex subset of X x R, and I'y(X) denotes the class of proper lower
semicontinuous convex functions from X to |—oo, +00|. Suppose that f € I'y(X) and let z € dom f. The
recession function of f is the function in I'y(X) defined by

(2.6)

f —f
recf: X — |—o00,4+00] : x = lim (z+ax) (Z)
0<at+oo «

Now suppose that, in addition, X = Y is Hilbertian and (-, -)x v is the scalar product of X, and let
v € ]0,+o0]. The Moreau envelope of f of index + is the function in I'y(X) defined by

1
Tf: X = R: in|f —[Ix =yl 2.
S R:x— 1yn€1>r(1 ( (y) + 2’YHX yHX> 2.7)

and the proximal point of x € X relative to +f is the unique point prox.¢x € X such that
(x) = f(prox, ) + 5| 13 28
x) = f(prox, ¢ x > X — ProX.¢ x[|x. .
The proximity operator prox.¢: X — X thus defined can be expressed as

prox. = (Id + vof) L. (2.9)

A =



3 Proof of the interchange principle

Proving Theorem 1.2 necessitates a few technical facts.

Lemma 3.1 Let (2, F) be a measurable space, let n be a strictly positive integer, and let (9;)o<i<n be a
family in £(2;R). Then there exists a family (B;)o<i<n in F such that

0<i<n

n n
(Bi)o<i<n are pairwise disjoint, U B;=Q, and min p; = Z 1B, 0i- (3.1)
i=0 i=0

Proof. We proceed by induction on n. If n = 1, we obtain (3.1) by choosing By = [00 < p1] and
B = CBy. Now assume that the claim is true for n, let g, 1 € £(Q;R), and set

o= min g;, D =[0< 0nt1), Cni1=CD, and (Vi € {o0,... ,n}) C;=B;nNnD. (3.2)

0o<i<n

Then (C;)o<i<n+1 is a family of pairwise disjoint sets in F. Additionally,

UCZ- :CnHUOCi: (CD) UCJ(BZ-HD) =CD)uD =0 (3.3)
i=0 i=0 =0
and
n n+1
OgIzgirl;lJrl 0; = min{g, opy1} = Ilpo+ Igpont1 = 1p ; 1B,0i + 1o, 0041 = ; 1¢; 0is (3.4)

which concludes the induction argument. O

Lemma 3.2 Let (2,5, u) be a o-finite measure space such that ;u(§2) # 0 and let R be a nonempty subset
of L(Q;R). Then there exists an element in L£(2;R), denoted by essinf R and unique up to a set of
u-measure zero, such that

(V0 € LIO;R)) [(VoeR) 9<op-ae| & U<essinfR p-ae. (3.5)
Moreover; there exists a sequence (9, )nen in R such that essinf R = inf,,cy op-

Proof. Using Assumption 1.1[D], construct 0 < x € L}(;R) such that [,xdy = 1 and define
P:F—[0,1]: A~ [, xdu. Then (VA € F) u(A) = 0 < P(A) = 0. Hence, the assertions follow from
[21, Proposition II-4-1 and its proof] applied in the probability space (2, F,P). O

Lemma 3.3 Let (2, F, u) be a measure space, let (X, Tx) be a Souslin space, let z: (Q,F) — (X, Bx) be
measurable, and let E € JF be such that u(E) < +o0o. Then there exists a sequence (Ey,)nen in F such
that
[(VneN) E, C E and z(E,) is compact | and p(E) = u( U En> (3.6)
neN

Proof. A simple adaptation of the proof of [38, Lemma 5], where (X, Tx) is a locally convex Souslin
topological vector space. [



Lemma 3.4 Suppose that Assumption 1.1[A]-[D] hold. Let 1: (2 x X, F @ Bx) — R be measurable, let
Z be a nonempty at most countable subset of L(2; X), and let (. )ren be an increasing sequence of finite
p-measure sets in F such that | J;, .y Qx = 0. Define

D= U U {142 | F 2> A C Q and z(A) is compact} (3.7)
2€Z keN
and
R={oe L' (%GR)| Tz eD) (-, () <o) pae.}. (3.8)

Suppose that
¥(-,0) <0. (3.9)

Then R # @ and essinf R < inf,cz (-, 2(-)) p-a.e.

Proof. Take z € Z and note that (VA € F) 142 € L£(2; X). Since z(&) = & is compact, it results from
(3.7) that 0 = 152z € D. Hence, by (3.9), 0 € R. Next, thanks to Assumption 1.1[D], there exists
X € LY(Q;R) such that y > 0. Let us set

(YneN) A, =0 [p(-,2(-) <nx(-)]. (3.10)

Lemma 3.3 asserts that there exists a family (A, 1), k)en2 in I such that

(VkE eN) A, C A, and z(A,, ;) is compact
(v¥n € N) H(A) = u( U Am)_ (3.11)

keN

In turn, by (3.7) and (3.10),

(¥n €N)(Vk €N) 14, ,2€D. (3.12)
Define
(Vn e N)(Vk e N)(Vm € N)  0p k.m(-) = max{w(-,lAn’k(-)z(-)), —mx(-)}. (3.13)

Fix temporarily (n, k,m) € N3, We infer from (3.11), (3.10), and (3.9) that

¢(w, z(w)), if we Ay s
Y(w,0), otherwise

nx(w), if we Ay yg;

N

(Vw € Q) ¢(w, L4, (w)z(w)) = {

0, otherwise
< nx(w). (3.19)

Therefore, —my < on k.m < nX, which entails that g, ., € £}(Q;R). In turn, we derive from (3.13),
(3.12), and (3.8) that g, 1, », € R. Thus, Lemma 3.2 guarantees that there exists B,, ;. ,, € J such that
w(Bp k,m) = 0 and

(Vw € CBn,hm) (essinf R)(w) < on k,m(w). (3.15)



Now set

A= () CAwp, B= |J Bugm and C=[y(,2(+)) <+o0]N(AUB). (3.16)
(n,k)eEN2 (n,k,m)eN3

Then p(B) = 0. Furthermore, since (3.10) yields [¢(-, 2(-)) < +00] = [J,,ex An, it follows from (3.16)
and (3.11) that

”(W"Z(')) < 400 mA> <> p(AnnA) < Zu<Anm N CAn,k> = 0. (3.17)

neN neN keN

Hence, using (3.16), we obtain
w(C)=0 and CC = [¢(-,2()) =+oo] U (CANECB). (3.18)

Now suppose that w € (A N CB. Then it follows from (3.16) that there exists (n, k) € N? such that
we AN CB. Therefore, we derive from (3.16), (3.15), and (3.13) that

(Vvm € N)  (essinf R)(w) < onpm(w) = max {¢(w, 14, , (w)z(w)), —mx(w)}. (3.19)

Hence, letting m 1 +oo yields (essinfR)(w) < ¥(w, 14, , (w)2(w)) = ¥ (w, 2(w)). We have thus shown
that essinf R < ¢(-, 2(-)) p-a.e. Since Z is at most countable, the proof is complete. O

Proof of Theorem 1.2. Define
®: LX) = LIGR): 2 o+, z(+)) (3.20)

and note that, thanks to Assumption 1.1[G],

/Qinfap(-,x) dp < xlélf( Q(I)(m)du < /be(f)du < 400. (3.21)
Hence, the interchange rule (1.2) holds when inf,cy fQ ®(x)dp = —oo and we assume henceforth
that

xlg/f( A O (z)dp € R. (3.22)
Now define

¥ = max {®(Z),0} (3.23)
and

P: Qx X = R: (w,x) — {fi:x +EW) =9, i ZEZ; : 12 (3.24)
Then we derive from Assumption 1.1[G] that

9 € LY R) (3.25)
and, therefore, that

([0 = 4o00]) = 0. (3.26)



On the other hand, Assumption 1.1[B] ensures that the mapping (2 x X, F® Bx) — (X, Bx): (w,x) —
x + T(w) is measurable. Thus, it follows from Assumption 1.1[F], (3.25), and (3.24) that

1 is F ® Bx-measurable. (3.27)
At the same time, since

infy(-,x) = inf (- x+7() = 9() = inf () = () (3.28)

and since Assumption 1.1[F] yields inf p(-, X) < 400, it results from (i) that

infy(-,X) € LI R). (3.29)
Let us set
U LX) = LIGR): @ (-, z(0)). (3.30)

By (3.24) and (3.26),
(Vw € B[ = +o0]) (V2 € X)  (¥(2))(w) = (2(z +T)) (w) — F(w). (3.31)

Hence, upon invoking (3.25), we deduce from Assumption 1.1[E]&[G] that

inf | W(z)dp = inf [ (P(z+7)—9)du

T€X J T€X JO
=inf [ @ T)dp — | 9d
ot | (z +T)dp /Q I
= inf @(:U)d,u—/ﬂd,u (3.32)
zeX Jq Q

and, likewise, from (3.28) that

/ infyp(-, X)du = / info(-,X)du — / ddp. (3.33)
Q 0 Q
Now set
D= U U {14z, | F > A C Q and z,,(A) is compact} (3.34)
neN keN
and
R={o€ L' (%R) | (Iz € D) ¥(z) < o p-ae.}, (3.35)

and note that (ii) (b) states that
DcCAX. (3.36)

Using (3.24) and (3.23), we infer from Lemma 3.4 applied to Z = {x,}nen that essinf R <
inf,en ¥(zy,) p-a.e. In turn, we derive from (3.31), (ii)(a), and (3.28) that

essinf R < inIfN\I'(xn) = in&(l)(:cn +7) — ¥ =infp(-,X) — 9 =infy(-,X) p-a.e. (3.37)
ne ne

8



On the other hand, (3.35) implies that (Vo € R) inf¢ (-, X) < o(-) p-a.e. Hence, (3.29) and Lemma 3.2
guarantee that inf (-, X) < essinf R p-a.e. Altogether, essinf R = inf (-, X) u-a.e. Thus, we deduce
from Lemma 3.2 that there exists a sequence (g, )nen in R such that

;relg on(-) =1infey(-,X) p-a.e. (3.38)

For every n € N, it follows from (3.35) and (3.34) that there exist ¢, € N, k, € N, and ¥ 5 A,, C Qy,
such that

a4, (Ap) is compact and U (14,2,) < on p-ace. (3.39)
Let us set
(VneN) x,= orgnilgnn 0i. (3.40)

Fix temporarily n € N. Lemma 3.1 asserts that there exists a family (B, ;)o<i<» in F such that

n n
(Bn,i)o<i<n are pairwise disjoint, U B,;=9Q, and x,= Z 1B, ,0i- (3.41)
i=0 i=0
Now set
n
Yn = Z 1AiﬂBn,ixfi- (3.42)
i=0

For every i € {0,...,n}, since A;N B, ; C A; C Q,, (3.39) implies that z,, (A; N B,,;) is compact and,
therefore, (3.34) and (3.36) yield 1a;nB, e, €D C X. Consequently, (3.42) and Assumption 1.1[E]
ensure that y,, € X. At the same time, we derive from (3.42), (3.41), and (3.39) that

n n
U(yn) =Y 1p,, Y (1a2e) <Y 1p,,0i = Xn p-ae. (3.43)
=0 =0

Therefore, since y, € X,

inf \If(:v)d;zg/\lf(yn)d,ug/xnd,u. (3.44)
T€EX Jq Q Q

On the other hand, it results from (3.32), (3.22), and (3.25) that inf,cx fQ V(z)du € R. Thus,
since x,, | infien0i(+) = infey(-,X) p-a.e. by virtue of (3.40) and (3.38), (3.44) and the monotone
convergence theorem [4, Theorem 2.8.2 and Corollary 2.8.6] entail that

inf \If(:r:)d,uglim/ Xnd,u:/limxn d,u:/inﬁb(-,X) dps. (3.45)
z€X Jo Q Q Q

Consequently, since [, infe(-,X) dp < infyex [, ¥(x)du, we conclude that

inf \If(a:)d,u:/infi/)(-,X) dp. (3.46)
Q Q

zeX

In view of (3.32), (3.33), and (3.25), the proof is complete. O



Remark 3.5 Replacing ¢ by —¢ in items [F] and [G] of Assumption 1.1 and in Theorem 1.2 provides
conditions under which

Sup/ng(w,x(w)),u(dw):/Supgo(w,x),u(dw), (3.47)

zeX Q xeX

with the convention that, given a measurable function o: (2,F) — R, Jq odp is the usual Lebesgue
integral, except when the Lebesgue integral [, min{p,0}du is —ooc, in which case [, odp = —oo.

Remark 3.6 In Theorem 1.2, suppose that inf,cx [, (-, 2(-))dpu > —oc and let z € X. Then

/go(w,z(w)),u(dw) = mig/ po(w,z(w))p(dw) < ¢(-,2(-)) =ming(-,X) p-ae.  (3.48)
Q et Jo

4 Compliant spaces and normal integrands

The objective of this section is to develop tools to convert the interchange principle of Theorem 1.2 into
interchange rules formulated in terms of explicit conditions on the ambient space A" and the integrand
. Our framework hinges on a notion of compliant spaces and a notion of normal integrands in an
extended sense.

4.1 Compliant spaces

We introduce the following notion of a compliant space, which generalizes and unifies the notions of
decomposability employed in the interchange rules of [24, 25, 29, 31, 32, 37, 38].

Definition 4.1 (compliance) Suppose that Assumption 1.1[A]-[E] holds. Then X is compliant if, for

every A € ¥ such that u(A) < 400 and every z € £(€; X) such that z(A) is compact, 142z € X.

Proposition 4.2 Suppose that Assumption 1.1[A]-[E] holds, together with one of the following:

(1 (X,Tx) is a Souslin topological vector space and, for every A € F such that ;(A) < +oo and every
z € L(;X) such that z(A) is Tx-bounded (in the sense that, for every neighborhood V € Tx of 0,
there exists a € ]0, +o0[ such that z(A) C ﬂ6>a BV [33]), 14z € X.

(ii) X is a separable Banach space with strong topology Tx and, for every A € F such that p(A) < +oo
and every z € L2(;X), 14z € X.

(iii) X is a separable Banach space with strong topology Tx, () < 400, and L=(2;X) C X.
(iv) X is a separable Banach space with strong topology Tx and X is Rockafellar-decomposable [29]

in the sense that, for every A € JF such that u(A) < 4o, every z € L°(Q;X), and every x € X,
1az + 1EA.%' e X.

(v) (X,Tx) is a Souslin locally convex topological vector space and X is Valadier-decomposable [38] in
the sense that, for every A € J such that i(A) < 400, every z € L(§2; X) such that z(A) is compact,
and every x € X, 142+ 1p v € X.

(vi) X is the standard Euclidean space RY and, for every A € F such that u(A) < +oo and every
z € LX) X), 1az € X.

Then X is compliant.
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Proof. (i): Let A € F be such that u(A) < +oo and let z € £(£2;X) be such that z(A) is compact. It
results from [33, Theorem 1.15(b)] that z(A) is Tx-bounded. Thus 142z € X.

(iii) = (ii)=-(i): Clear.
(iv)=(ii): Clear.

(v): Clear.

(vi)=-(ii): Clear. O

4.2 Normal integrands

We introduce a notion of a normal integrand which unifies and extends those of [28, 29, 31, 38].

Definition 4.3 (normality) Let (X,Tx) be a Souslin space, let (2,F) be a measurable space, let
©0: (2 x X, ® Bx) — R be measurable, and equip X x R with the topology Tx X Tg. Then ¢ is
a normal integrand if there exist sequences (x,)nen in £(2;X) and (o, )nen in £(2; R) such that

(Vwe Q) {(zn(w),on(w)) }nEN Cepig, and epig, = {(z,(w), Qn(w))}neN. 4.1)
The following theorem furnishes examples of normal integrands.

Theorem 4.4 Let (X, Tx) be a Souslin space, let (2, F) be a measurable space, and let p: 2 x X — R be
such that (Vw € Q) epip,, # @. Suppose that one of the following holds:

(i) ¢ is F ® Bx-measurable and one of the following is satisfied:

(a) There exists a measure p such that (2, F, u) is complete and o-finite.

(b) Qs a Borel subset of RM and 7 is the associated Lebesgue o-algebra.

(c) For every w € Q, there exists V,, € Tx X T such that V., C epiy,, and V,, = epig,,.
(d) The functions (¢, )weq are upper semicontinuous.

(ii) The functions (¢(-,x))xex are F-measurable and one of the following is satisfied:

(@) (X,Tx) is metrizable and, for every w € (), there exists V,, € Tx X Tg such that V,, C epip,, =
V.

(b) (X,Tx) is a Fréchet space and, for every w € €, ¢, € I'g(X) and intdom ¢, # @.

(c) (X,Tx) is the standard Euclidean line R and, for every w € €, ¢, € I'g(R) and dom ¢,, is not

a singleton.

(iii) (X,Tx) is a regular Souslin space, the functions (¢,).cq are continuous, and the functions

(p(+,x))xex are F-measurable.
(iv) For some separable Fréchet space (Y,Tvy), X = (Y,Ty)*, Tx is the weak topology, the functions

(pw)wen are Tx-lower semicontinuous, and one of the following is satisfied:

(a) For every closed subset C of (X x R,Tx K Tg), {w € Q| CNepigp, # @} € F.

(b) (2, Tq) is a Hausdorff topological space, F = Bq, and ¢ is Tq X Tx-lower semicontinuous.

(c) (2,Tq) is a Lusin space, F = Bg, and ¢ is F ® Bx-measurable.

(v) Xis a separable reflexive Banach space, Tx is the weak topology, (2, Tq) is a Hausdorff topological

space, ¥ = B, the functions (p,,).cq are Tx-lower semicontinuous, and one of the following is
satisfied:

(@) ¢ is Tg X Tx-lower semicontinuous.
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(b) (Q,Tq) is a Lusin space and ¢ is F ® Bx-measurable.

(vi) (X,Tx) is the standard Euclidean space RY, ) is a Borel subset of RM, T = Bq, ¢ is T @ Bx-
measurable, and the functions (p,,).,cq are lower semicontinuous.

(vii) (X,Tx) is a Polish space, the functions (¢ )w.cq are lower semicontinuous, and one of the following
is satisfied:
(a) ForeveryV € Tx K Tg, {w € Q| VNepip, # 0} € 7.
(b) (X,Tx) is the standard Euclidean space R and, for every closed subset C of X x R,
{weQ|Cnepip, #2} €T

(viii) There exists a measurable function f: (X, Bx) — R such that (Yw € Q) ¢, = f.

Then ¢ is normal.
Proof. Set G = {(w,x, &) € A x X x R | p(w,x) < &}. Then

G = {(w,x,& €QAXxXXR|(x,£) €epipy}. (4.2)
Further, [4, Lemma 6.4.2(i)] yields

v is F ® Bx-measurable < G € JF® Bx® Br =F R Bxxr. (4.3)

We also note that (X x R, Tx X Jr) is a Souslin space [8, Proposition IX.6.7].

(i)(a): Applying [11, Theorem III.22] to the mapping Y: Q — 2X*R: , i epip,,, we deduce from
(4.2) and (4.3) that there exist a sequence (z,),cn of mappings from 2 to X and a sequence (g, )neN
of functions from 2 to R such that

(VneN) (Q,5) = (X xR, Bxxr): w > (25 (w), on(w)) is measurable (4.4)

and

(Vw e Q) {(zn(w),on(w)) }nEN CT(w) and T(w)={(zn(w),on(w)) }nEN' (4.5)

Moreover, since Bxxr = Bx ® Br [4, Lemma 6.4.2(i)], it follows from (4.4) that, for every n € N,
Tn: (Q,F) = (X, Bx) and o,,: (2,F) — (R, Br) are measurable. Altogether, ¢ is normal.

(i) (b)=-(i)(a): Take u to be the Lebesgue measure on ().
(1) (c): Let {(xn,&n) }nen be a dense set in (X x R, Tx X Tr) and define

(VneN) Q= [p(-,x,) <&)]. (4.6)

On the one hand, the ¥ ® Bx-measurability of ¢ ensures that (vn € N) Q,, € F. On the other hand,
for every w € (Q, since V|, is open, there exists n € N such that (x,,&,) € V., C epiy,, which yields
w € Q, and thus Q = |, Q. This yields a sequence (0,),cn of pairwise disjoint sets in F such that

O =, [(JO,=2 and (¥neN) O,CQ,. (4.7)
neN

For every w € (2, there exists a unique n,, € N such that w € ©,, . Now define

z2: Q= Xiwrx,, and ¢:Q—->R:we&,,. 4.8
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Then

(WeTx) 2 (V)= | @ne7, (4.9)

neN
Xn €V

which implies that z € £(; X). Likewise, ¥ € L(€2;R). Next, define

Xn, if we Qp;
Vn € N n: Q=X wr— 4.10
(neh) @ v {z(w), if w € 0O, (4.10)
and
&ns if we Qy;
Vn € N n: Q>R w— 411
(fneN) e “ {ﬁ(w), if w € 0O, (4.11)

Then (z,,)nen and (o, )nen are sequences in £(92; X) and £(€2;R), respectively. Moreover, we deduce
from (4.10), (4.11), (4.6), and (4.7) that

(Vw € Q)(Vn eN) (zn(w), 0n(w)) € epigp,. (4.12)

On the other hand, for every w € Q, since {(x,,&,) }nen is dense in (X x R, Tx X Tgr) and since V,, is
open, we infer from (4.10), (4.11), and (4.6) that

{(mn(w)7 Qn(w))}neN = {(Xnafn)}neN N epi Puw 2 {(Xnafn)}neN NV, = V_w = epi Puw- (4.13)

Consequently, ¢ is normal.

D (D=1 (0): Set (Vw € Q) V,, = {(x,£) € X x R | p(w,x) < £}. Now fixw € Q and (x, &) € epig,.
Since the sequence (x,§ +27"),en lies in V,, and (x,§ +27") — (x, &), we obtain (x,§) € V,,. Hence
V., = epip,. At the same time, the upper semicontinuity of ¢, guarantees that V, is open.

(ii) (@)= (i) (c): It suffices to show that ¢ is F ® Bx-measurable. Let {(xy,&,)}nen be dense in
(X xR, Tx ®Tg), let V € Tx K Tg, and set K = {n € N| (x,,&,) € V}. Then

{(xn, &n) tner = {(Xn, &n) tnen NV = V. (4.14)
Suppose that there exists w € 2 such that
VNnepip, #2@ and (Vn € K) (xn,&n) € epigy. (4.15)

Since V is open and V,, = epi ¢,,, there exists (y,n) € V N V,,. Therefore, we infer from (4.14) that
there exists a subnet (xy ), k) )beB Of (Xn;&n)nex such that (xi4), §x@p) — (y,n). This and (4.15)

force (y,n) € Cepip, = CV,, = CintV,,, which is in contradiction with the inclusion (y,n) € V..
Hence, the F-measurability of the functions (¢( -, x))xex yields

{weQ|Vnepip, #0} = U {weQ] (xn, &) €epipy} = U [o(- xn) < &) €T, (4.16)
nek nek

Therefore, since (X x R, Tx X Tg) is a separable metrizable space and the sets (epi ¢, ),cq are closed,
[16, Theorem 3.5(i)] and (4.2) imply that G € F ® Bxxgr. Consequently, (4.3) asserts that ¢ is
F ® Bx-measurable.
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(i) (b)=-(ii)(a): Set (Vw € Q) V,, = intepiyp,. For every w € (, the assumption ensures that
epi ¢, is closed and convex, and that V,, # @ [40, Theorem 2.2.20 and Corollary 2.2.10]. Thus [40,
Theorem 1.1.2(iv)] yields (Vw € Q) epip, = V,,.

(i) (c)= (i) (b): Clear.
(iii): It results from [34] that there exists a topology ‘.’T; on X such that

Tx C Tx (4.17)
and

(X, ‘}vx) is a metrizable Souslin space. (4.18)
Set (Vw € Q) V,, = {(x,€) € X x R | p(w,x) < &}. Then, since (4.17) implies that

(Vw e Q) ¢, is Tx-continuous, (4.19)

it follows that

VweQ) V, € TR Tg and V, 7% — epi gowiyx&TR = epip,. (4.20)

On the other hand, we derive from (4.18), (4.17), and [36, Corollary 2, p. 101] that the Borel o-
algebra of (X,Tx) is Bx. Altogether, applying (ii)(a) to the metrizable Souslin space (X, Tx), we
deduce that ¢ is F ® Bx-measurable and that there exist sequences (z,,)nen in £(€2; X) and (o )nen in
L(2;R) such that

(Vw € Q) {(In(W), Qn(w)) }neN Cepiyp, and epi SDWTX&TR = {(xn(w), Qn(w)) }neNTXIXTR- (4.21)
Hence, by (4.17) and (4.20),
[n (@) 00 @) Jrow 2 L@nl@)s 00 @) oo - = epign ™ = epipu. (4.22)

Consequently, ¢ is normal.

(iv): It follows from [9, Section I1.4.3] that (Y x R, Ty X TR) is a separable Fréchet space. Moreover,
by [9, Proposition I1.6.8], X x R = (Y x R, Ty X Jr)* and the weak topology of X x R is Tx X Tg. In
turn, arguing as in [35, Section IV-1.7], we deduce that there exists a covering (C,,),cn of X x R, with
respective Ty X Tr-induced topologies (T¢, )nen, such that, for every n € N, (C,,Tc,) is a compact
separable metrizable space, hence a Polish space. We also introduce

(VneN) Qn: 2xC,— Q: (w,x,§) = w. (4.23)

Note that, for every subset C of X x R,

{weQ|Cnepip, #0} = ] {welCNCinepip, # 2} = | Qn<Gm(Qx(Can))>. (4.24)

neN neN
(iv)(a): For every n € N, set
Q, ={weQ|C,Nepip, # o}, (4.25)
denote by F,, the trace o-algebra of F on 2,,, and observe that

Q,€F and T, CT (4.26)
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Now define

K={neN|Q,#o} and (VneK) K,: Q, —2°:w— C,Nepip,. (4.27)
Then
K#2 and []JQ,=0. (4.28)
nekK

Furthermore, the Tx X Tr-closedness of (epi g, ).,cn guarantees that
(Vn e K)(Vw € Q) K, (w) is Tc,-closed. (4.29)

On the other hand, for every n € K and every closed subset D of (C,,, Tc,, ), there exists a closed subset
E of (X xR, Tx X Tg) such that D = C,,NE [7, Section 1.3.1] and therefore, since C,, is Tx X Tr-closed,
we deduce from (4.26) that

{we, |IDNK,(w)# 2} =0 N{weQ|C,NENepip, # 2} € F,. (4.30)

Hence, for every n € K, since (C,,Tc,) is a Polish space, we deduce from [16, Theorem 3.5(i),
Theorem 5.1, and Theorem 5.6] that there exist measurable mappings y,, and (2, ;) ren from (2, F,)
to (C,, Bc,,) such that

(Vw e Q) y,(w) € K,(w) and K,(w)= {zn,k(w)}keN%" =C,N {zmk(w)}keN. (4.31)

In addition, since [16, Theorem 3.5(i)] asserts that

(VneK) {(w,x,€) €y xCp|(x,£) €Crnepip,}
= {(w,x,£) €, x Cp, | (x,§) € Kp(w)}
S ?n®‘Bcn
C FR Bxxr, (4.32)

we get from (4.2) that

G=J{(wx8exCy|(x¢eCynepig,} € F D Bxur. (4.33)

nek

Thus, in the light of (4.3), ¢ is ¥ ® Bx-measurable. Next, using (4.28), we construct a family (0,,),cx
of pairwise disjoint sets in F such that

Omink = Pmink, U 0,=Q, and (VneK) 0, C Q,. (4.34)
nek

In turn, for every w € (2, there exists a unique ¢,, € K such that w € Oy,. Therefore, appealing to
(4.34), the mapping

Yy: Q=X xR:w—y, (w) (4.35)
is well defined and, in view of (4.31),

(Vwe Q) yw) =y, (w) € Ky, (w) Cepigy. (4.36)
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Let V € Jx X Jr. Then, for every n € K, VN C, is T¢,-open and thus the measurability of
Yot (0, Fn) — (Cp,Be,) and (4.26) ensure that y, (VN C,) € F, C F. Hence, we infer from
(4.34), (4.35), and (4.31) that

v (V) = | {we ol yw) e V)

nek

=|J{weon|y,lw)eC,nV}
nekK

= J (@nny'(CunV))
nekK

7. (4.37)

This verifies that y: (2, F) — (X x R, Bxxg) is measurable. We now define

Zpk(w), ifweQy;

yw),  if welQ,. (4.38)

(Vn € K)(Vk € N) xn,k:Q%XxR:w»—){

It results from (4.26) that (x, )nek keny are measurable mappings from (Q,5) to (X x R, Bxxr).
Furthermore, (4.31) and (4.36) give
(Vn e K)(VE e N)(Vw € Q) x,, 1(w) € epig,,. (4.39)

Fix w € Q and let x € epip,,. Since | J,,cx(C,, Nepiy,) = epiy,, there exists N € K such that w € Qy
and x € Cy Nepiy, = Ky(w). Thus, it results from (4.31) and (4.38) that

x € {Zn k(W) ey = {@Nk (@) } ey {xnvk(w)}neK,keN' (4.40)

Therefore, since epi ¢, is closed, it follows from (4.39) and [7, Section 1.3.1] that

epiy, = {$n,k(w)}neK,keN' (4.41)

At the same time, for every n € K and every k € N, since Bxyr = Bx ® Br [4, Lemma 6.4.2(i)] and
since x,, 1, (©2,F) — (X x R, Bxr) is measurable, there exist z,, , € £(£2;X) and g,, , € L(2;R) such
that (Vw € Q) x,, 1 (w) = (pk(w), 0n k(w)). Altogether, ¢ is normal.

(iv)(b)=-(iv)(a): Let C be a nonempty closed subset of (X x R,Tx X Jg). Note that the lower
semicontinuity of ¢ ensures that G is closed. For every n € N, since G N (2 x (CNC,)) is closed
in (Q x C,,Tq X J¢,,), it follows from (4.23) and [7, Corollaire 1.10.5 and Théoréme 1.10.1] that
Qn(GN(2x(CNC,)))is closed in (2, T) and, therefore, that it belongs to B, = F. Thus, by (4.24),
{weQ|Cnepip, # 2} € 7.

(iv) (c)=-(iv) (a): There exists a topology % on () such that
T C To and (2, %) is a Polish space. (4.42)

In addition, by [36, Corollary 2, p. 101], the Borel o-algebra of (2, ‘INQ) is Bo = F. Let C be a closed
subset of (X x R, Tx X Tr) and fix temporarily n € N. Since the ¥ ® Bx-measurability of ¢ and (4.3)
ensure that G € F ® Bxxr, wehave GN (2 x (CNC,)) =GN (2 xC)N(Q2xC,) € Baxc,- At the
same time, for every w € €2,

{(x,§) EXXR|(w,x,8) €GN (Q X (CﬂCn))}
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={(x& eXxR|(x,£ €CNC, and (x,&) € epiyy},
=CNC,Nepiy, (4.43)

is a closed subset of the compact space (C,,Tc,). In turn, since (Q,TNQ) and (C,,7c, ) are Polish
spaces, [10, Theorem 1] guarantees that Q,,(G N (2 x (CNC,))) € By = F. Consequently, we infer
from (4.24) that {w € Q| CNepigp, # @} € F.

(v): Let (Y, Jy) be the strong dual of X. Then (Y, Ty) is a separable reflexive Banach space. Conse-
quently, (v)(a) follows from (iv)(b), and (v) (b) follows from (iv)(c).

(vi)=(v)(b): Let T be the topology on € induced by the standard topology on R™. By [36,
Corollary 1, p. 102], (2, Tq) is a Lusin space.

(vii) (a): The lower semicontinuity of (¢, ).cn ensures that the sets (epi ¢y, )weq are closed. Hence,
since (X xR, TxXJR) is a Polish space, [16, Theorem 3.5(i)] and (4.2) yield G € F®Bxxr. Therefore,
by (4.3), ¢ is F ® Bx-measurable. Consequently, we deduce the assertion from [16, Theorem 5.6].

(vii) (b)=-(vii)(a): This follows from [16, Theorem 3.2(ii)].

(viii): The Bx-measurability of f implies that ¢ is F ® Bx-measurable. At the same time, since
(X x R, Tx X TR) is a Souslin space, we deduce from [36, Proposition I1.0] that there exists a sequence
{(Xn,&n) }nen in epif such that {(x,, &) }nen = epif. Altogether, upon setting

(VneN) z,: Q= X:wrx, and g,: Q2 — R:w— &, (4.44)
we conclude that ¢ is normal. 0O

Remark 4.5 Here are a few observations about Definition 4.3.
(i) The setting of Theorem 4.4(vii) (b) corresponds to the definition of normality in [31].

(ii) The setting of Theorem 4.4(i) (a) corresponds to the definition of normality in [38], which itself
contains that of [29].

(iii) The frameworks of (i) and (ii) above are distinct since the former does not require that (2, &, )
be complete. Definition 4.3 unifies them and, as seen in Theorem 4.4, goes beyond. For the
importance of noncompleteness in applications, see for instance [27] and [32, p. 649].

5 Interchange rules with compliant spaces and normal integrands

The main result of this section is the following interchange theorem, which brings together the abstract
principle of Theorem 1.2, the notion of compliance of Definition 4.1, and the notion of normality of
Definition 4.3.

Theorem 5.1 Suppose that Assumption 1.1 holds, that X is compliant, and that ¢ is normal. Then

inf [ o)) n(@) = | inf ol n(d). (5.1)

Proof. We apply Theorem 1.2. By virtue of the normality of ¢, per Definition 4.3, we choose sequences
(zn)nen In £(2;X) and (U, )nen in L£(2; R) such that

(Vw € Q) {(zn(w),ﬁn(w))}neN Cepig, and epig, = {(z:(w),In(w)) }nEN' (5.2)
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On the other hand, Assumption 1.1[F] ensures that (Vw € Q) infp(w, X) < +oo. Now fix w € © and
let ¢ € Jinf p(w, X), +oo[. Then there exits x € X such that (x,¢) € epiy,. Thus, in view of (5.2), we
obtain a subnet (¥,3)(w))se B Of (U(w))nen such that ¥y (w) — €. On the other hand,

(Vb€ B) infp(w,X) < Tillellggo(w,zn(w)) < gp(w,zk(b)(w)) < ﬁk(b)(w). (5.3)

Hence infy(w,X) < infeye(w, z,(w)) < & In turn, letting ¢ | infp(w, X) yields infp(w, X) =
inf,en p(w, 2, (w)). Therefore, property (ii) (a) in Theorem 1.2 is satisfied with (Vn € N) z,, = z, — T.
At the same time, property (ii)(b) in Theorem 1.2 follows from Assumption 1.1[D] and the compli-
ance of X. Finally, since the functions (¢(-, z,(-)))nen are F-measurable by Assumption 1.1[F], so is
infren (-, 20 () =inf (-, X). O

In the remainder of this section, we construct new scenarios for the validity of the interchange rule
as instantiations of Theorem 5.1.

Example 5.2 Let X be a separable real Banach space with strong topology Tx, let (2, F, 1) be a o-finite
measure space such that 1 (2) # 0, let X be a vector subspace of £(2; X), and let p: (2xX,FRBx) —
R be measurable. Suppose that the following are satisfied:

(i) For every A € F such that u(A) < +oo and every z € L>®(Q;X), 142 € X.
(ii) ¢ is normal.
(iii) There exists Z € X such that [, max{p(-,Z(-)),0}du < +o0.
Then the interchange rule (5.1) holds.

Proof. Note that Assumption 1.1 is satisfied. Hence, the assertion follows from Proposition 4.2(ii) and
Theorem 5.1. O

Example 5.3 Suppose that Assumption 1.1 holds, that (2, F, i) is complete, and that X" is compliant.
Then the interchange rule (5.1) holds.

Proof. Combine Theorem 4.4(i)(a) and Theorem 5.1. 0O

When specialized to probability in separable Banach spaces, Theorem 5.1 yields conditions for the
interchange of infimization and expectation. Here is an illustration.

Example 5.4 Let X be a separable real Banach space, let (2, F, P) be a probability space, let X be a
vector subspace of £(€; X) which contains £>(£2; X), and let ¢: (Q x X,F ® Bx) — R be normal. In
addition, set ¢ = infy(-,X) and ®: L(Q;X) — L(Q;R): x — ¢(-,x(+)), and suppose that there exists
T € X such that Emax{®(7),0} < +oo. Then

xig/f( E®(z) = Eg. (5.4)

Proof. This is a special case of Example 5.2. O

Example 5.5 Suppose that Assumption 1.1 holds, that X is compliant, and that the functions (¢,,).cn
are upper semicontinuous. Then the interchange rule (5.1) holds.

Proof. We deduce from Assumption 1.1[F] and Theorem 4.4 (i) (d) that ¢ is normal. Thus, the conclu-
sion follows from Theorem 5.1. 0O

An important realization of Example 5.5 is the case of Carathéodory integrands.
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Example 5.6 (Carathéodory integrand) Let (X, Tx) be a Souslin topological vector space, let (Q2, F, u)
be a o-finite measure space such that x(€2) # 0, let X be a compliant vector subspace of £(£2; X), and
let p: © x X — R be a Carathéodory integrand in the sense that, for every (w,x) € Q x X, p(w, -) is
continuous with epip,, # @, and ¢(-,x) is F-measurable. Suppose that there exists T € X" such that
Jomax{e(-,Z(+)),0}du < +oc0. Then the interchange rule (5.1) holds.

Proof. Since (X, Tx) is a Souslin topological vector space, [39, Section 35F, p. 244] implies that it is
a regular Souslin space. Thus, we deduce from Theorem 4.4(iii) that ¢ is normal and, in particular,
it is ¥ ® Byx-measurable. Hence, Assumption 1.1 is satisfied. Consequently, Example 5.5 yields the
conclusion. O

Remark 5.7 Here are connections with existing work.

(i) Example 5.2 unifies and extends the classical results of [15, 29, 31]:

e It captures [31, Theorem 3A], where X is a Euclidean space and X’ is assumed to be
Rockafellar-decomposable (see Proposition 4.2(iv) for definition).

* It covers the setting of [29], where (Q,F i) is assumed to be complete and where (i) and
(ii) in Example 5.2 are specialized to:
(i) X is Rockafellar-decomposable.
(ii") The functions (¢, )wen are lower semicontinuous.
The fact that property (ii) in Example 5.2 is satisfied when (2, F, 1) is complete is shown
in Theorem 4.4(i)(a).

* It captures [15, Theorem 2.2], where X = {z € L(;X) | [, [|z(w)||& p(dw) < 400} with
p € [1,400].

(ii) Animportant contribution of Theorem 5.1 and, in particular, of Example 5.2 is that completeness
of the measure space (2, F, 1) is not required.

(iii) In the special case when X is a Banach space, an alternative framework that recovers the in-
terchange rules of [15, 29, 31] was proposed in [14, Theorem 6.1], where the right-hand side
of (1.2) is replaced by the integral of an abstract essential infimum. However, [14] does not
provide new scenarios for (1.2) beyond the known cases in Banach spaces. An interpretation of
the framework of [14] from the view point of monotone relations between partially ordered sets
is proposed in [12].

(iv) Example 5.3 captures [25, Theorem 4], where u(2) < 400 and X is Valadier-decomposable
(see Proposition 4.2(v) for definition). It also covers the setting of [38], where X is a Souslin
topological vector space and X is Valadier-decomposable.

(v) Example 5.4 contains the interchange rule of [24, 37], where X is the standard Euclidean space
RY and X is Rockafellar-decomposable.

(vi) Example 5.6 extends [31, Theorem 3A], where X is the standard Euclidean space R and X is
Rockafellar-decomposable.

6 Interchanging convex-analytical operations and integration

We put the interchange principle of Theorem 1.2, compliance, and normality in action to evaluate
convex-analytical objects associated with integral functions, namely conjugate functions, subdifferen-
tial operators, recession functions, Moreau envelopes, and proximity operators. This analysis results
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in new interchange rules for the convex calculus of integral functions. Throughout this section, we
adopt the following notation.

Notation 6.1 Let (X, Tx) be a real topological vector space, let (2, F, ) be a o-finite measure space
such that () # 0, let X be a vector subspace of £(£;X), and let p: (2 x X, ® Bx) — R be an
integrand. Then:

() X is the vector space of equivalence classes of y-a.e. equal mappings in X.

(i) The equivalence class in X of z € X is denoted by Z. Conversely, an arbitrary representative in
X of € X is denoted by =x.

(i) J, 5 X =R T [y pw,(w))p(dw).

We shall require the following result. Its item (i) appears in [38, Lemma 4] in the special case when
(Q,F, ) is complete.

Lemma 6.2 Let (2, F, 1) be a o-finite measure space such that () # 0, let (X, Tx) be a Souslin locally
convex real topological vector space, and let (Y,Ty) be a separable locally convex real topological vector
space. Suppose that X and Y are placed in separating duality via a bilinear form (-, -)xy: X xY = R
with which Tx and Ty are compatible. Then the following hold:

@ (-, )xy: (XxY,Bx ®By) — R is measurable.

(ii) Let X C L(Q2;X)and Y C L(;Y) be vector subspaces such that the following are satisfied:

(@) (Vze X)(Vy€)) [ (z(w), y(w))xy|pu(dw) < +oo.
(1) Usex {1ax| A € Fand p(A) < +o0} C X.
(© Uyey {lay | A € F and p(A) < +oo} C ).

Then X and Y are in separating duality via the bilinear form (-, -) defined by
(F e DWTET) @) = [ (o). ulw))yynld). 6.1)

Proof. (i): We deduce from [39, Section 35F, p. 244] that (X,TJx) is a regular Souslin space. On
the other hand, since Ty and Tx are compatible with (-, -)xy, the functions ((x, - )x v)xex are By-
measurable and the functions ((-,y)xy)yey are continuous. Hence, Theorem 4.4(iii) implies that
(-, )xy: (X xY,Bx ® By) = R is measurable.

(ii): Note that (i) guarantees that, for every x € X and everyy € Y, (x(-),y(-))x y is F-measurable.
Now let {y,, }nen be a dense subset of (Y, Ty) and let # € X be such that (V§ € V) (Z,7) = 0. Then, for
every n € N and every A € J such that u(A4) < 400, since (ii)(c) ensures that 14y, € ), we deduce
from (6.1) that [, (z(w), yn)x,yu(dw) = [o(x(w),1a(w)yn)x,yu(dw) = 0. Therefore, since (Q, F, 1) is
o-finite, it follows that (Vn € N) (z(-),yn)xy = 0 p-a.e. Thus z = 0. Likewise, (Vy € V) () =0=
y = 0, which completes the proof. [

The main result of this section is set in the following environment, which is well defined by virtue
of Lemma 6.2.

Assumption 6.3

[A] (X, Tx) is a Souslin locally convex real topological vector space and (Y, Jy) is a separable locally
convex real topological vector space. In addition, X and Y are placed in separating duality via a
bilinear form (-, -)x y: X x Y — R with which Tx and Ty are compatible.
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[B] (2,3, u) is a o-finite measure space such that ;(€2) # 0.

[Cl X C L(2;X) and Y C L(Y) are vector subspaces such that (Vo € X)(Vy € )
Jo l{z(w), y(w))x v |p(dw) < +oc. In addition,

X is compliant and U {1Ay | AeFand pu(A) < +oo} c ). (6.2)
yey

[D] X and ) are placed in separating duality via the bilinear form (-, -) defined by

(F e DT ET) @) = [ (a).v(w))yynldn) (6.3)

and they are equipped with locally convex Hausdorff topologies which are compatible with (-, -).
[E] ¢: (2 x X,F ® Bx) — ]—00, +00] is normal and we write p*: Q x Y — R: (w,y) = 5 (y).
[F] domjw;; £ .

Proposition 6.4 Suppose that Assumption 6.3 holds. Then ¢* is F ® By-measurable.

Proof. According to Assumption 6.3[E] and Definition 4.3, there exist sequences (z,)nen in £(£2; X)
and (g, )nen in £(€; R) such that

(Vw e Q) {(zn(w),on(w)) }nEN Cepip, and epip, = {(z,(w), Qn(w))}neN. (6.4)

Set
(VneN) 1,: QxY = R: (w,y) = (@p(w),y)xy — on(w). (6.5)

Then, for every n € N, Assumption 6.3[A]-[C] and Lemma 6.2(i) ensure that o, is ¥ ® By-
measurable. On the other hand, since the functions ((-,y)xy)yey are continuous, we derive from
Assumption 6.3[E], (2.3), and (6.4) that

(V(w,y) €QxY) ¢*(w,y)= sup ({x,y)xy —¢&)
(x,)€epipuw

= sup_ ((xyhxy —§)
(va)eepis%

= sup ((xn(w)7Y>X,Y - Qn(w))
neN

= sup Y (w,y). (6.6)
neN

Thus ¢* is F ® By-measurable. 0O
We first investigate the conjugate and the subdifferential of integral functions.
Theorem 6.5 Suppose that Assumption 6.3 holds. Then the following are satisfied:
6] 3:;72? =T, 5

(ii) Suppose that J, & is proper, let7 € X,andletje Y. Theny € 63%55(5) < y(w) € Oy (x(w)) for
p-almost every w € €.
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Proof. (i): In view of Assumption 6.3[E] and Proposition 6.4, J I, % and J .y are well defined. Further,
there exist sequences (2, )nen in £(2; X) and (9, )nen in £(€2;R) such that

(Vw € Q) {(zn(w),ﬁn(w))}neN Cepip, and epip, = {(zn(w),n(w)) }nEN' (6.7)

Let j € Y, define 1: Q x X — |—00,+00] : (w,x) > @u(x) — (x,y(w))x,v, and note that (Vw € Q)
epiv, # @. Assumption 6.3[E] and Lemma 6.2(i) imply that

1 is F ® Bx-measurable. (6.8)

Moreover, using the continuity of the linear functionals ((-,y)x v)ycy, we derive from (6.7) that
Yw e Q) infyp(w,X) = inf —
( ) w( ) (x,€)€epipw (5 )
= inf__ (£- (xy(w))xy)
)

(ng)eepi Pw

= inf (vﬂn(w) — (zn(w
/ 1I1f (ng (Zn(w)) - <Zn(w)7y(w)>)
= 1r1f1/)(w zn(w))

neN

> infy(w, X). (6.9)

Hence, (Vw € Q) infy(w, X) = inf,,en ¢ (w, 2, (w)). Combining this with (6.8), we infer that inf (-, X)
is F-measurable and that ¢ fulfills property (ii) (a) in Theorem 1.2 with (Vn € N) z,, = z, —Z. In turn,
thanks to Assumption 6.3[B] and the compliance of X, property (ii)(b) in Theorem 1.2 is fulfilled.
Thus, by invoking (6.3) and Theorem 1.2, we obtain

5 ¢@) = sup ((7,3) 3, 5(®)

TeXx
—sup ( /Q (ol ) i) — [ plonale)) ()
= inf, [ w(ea())u(de)
= —/ 1nf¢(w x) p(dw)
Q xeX
= [ L)), (6.10)

as desired.

(ii): Since the functions (¢, ).cn are proper by Assumption 6.3[E], we derive from (2.5), (i), (6.3),
and the Fenchel-Young inequality that

e, 5@ &3, 5@) + 3, 50) = @)
@/%J dw)+/<p ;
Aad ‘Pw( ( )) + QOW (y(w)) < w)7y(w)>x7y p-a.e.

& y(w) € Opy(z(w)) p-ae., (6.11)
which completes the proof. 0O

2

(v ) = [ (ol60). 60yl
(

X

A first important consequence of Theorem 6.5(i) is the following.
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Proposition 6.6 Suppose that Assumption 6.3 holds, that (Y, TJy) is a Souslin space, that dom jw* 5 #*
@, that Y is compliant, and that (Yw € Q) ¢,, € I'o(X). Then the following are satisfied:

M I, 5€ Lo(X).

(i) Set recy: Q x X — |—00,4+0] : (w,x) — (recep,)(x). Then recy is F @ Bx-measurable and

rec J%f = Jrec 0. X

Proof. (i): Letz € X and set

P QXY = ]—00,400] 1 (w,y) = ¢(y) — (z(w),y)xy and ¥ =infy(-,Y). (6.12)
By Assumption 6.3[E],

¢(+,z(+)) is F-measurable, (6.13)
while it results from Proposition 6.4 and Lemma 6.2(i) that

1 is F ® By-measurable. (6.14)

Moreover, for every w € €, since ¢, € I'g(X), ¢ is proper and hence epi ¢, # @. On the other hand,
the Fenchel-Moreau biconjugation theorem yields

(Vw e Q) J(w) = —¢ (z(w)) = —pu(z(w)) (6.15)
and it thus follows from (6.13) that ¥ is F-measurable. Now define

{yeY 9w,
{yeY|¢(wy )

Fix temporarily n € N. By (6.14), {(w,y) | y € My(w)} € F ® By. Hence, since (Y, Ty) is a Souslin
space, [16, Theorem 5.7] guarantees that there exist y,, € £(£;Y) and B,, € F such that u(B,) =0
and (Vw € CB,,) yn(w) € M, (w). Now set B = |J, .y Bn. Then u(B) = 0 and, by virtue of (6.12) and
(6.16),

n}, if ¥(w) = —oo;

I(w) +27"}, if 9(w) € (6.16)

<
VneN) M,: Q—2Y:w— =
( <

neN

—n, if Y(w) =

Hw)+27", ifd(w) € (6 17)

(Vw € CB)(Vn € N) d(w) < ]irelgqb(w,yk(w)) <Y (w, yn(w)) < {

Thus, letting n 1 +occ yields (Vw € CB) ¥(w) = inf,en ¥ (w, yn(w)). Consequently, since ) is compliant,
property (ii) in Theorem 1.2 is satisfied. In turn, we deduce from (6.15), Theorem 1.2, (6.3), and
Theorem 6.5(i) that

3,40 = [ ol aw)n(d)
— - [ inf vy u(de)
Q

yeY

— inf/w(w,y(w))u(dw)

yey

= sup ([ (o) p)eyntds) = [ e1u)utde))

yey

— sup ((7.3) - my))

yey
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= 37 (@). (6.18)

Thus I, 5=7"% and, since J, % is proper, we conclude that J, %€ Lo(X).

(ii): The normality of ¢ implies that it is F ® Bx-measurable and that there exists u € L£(;X)
such that (Vw € Q) u(w) € dom,. Hence, for every n € N, the function (2 x X,F ® Bx) —
|—00,4+00] : (w,x) = @, (u(w) + nx) — ¢, (u(w)) is measurable. Since, by (2.6),

(Vo € Q)W eX)  (rec)(w.x) = (recu)() = lim P (ulw) + ”Z) —eu(l@) 1)

©

it follows that rec ¢ is F ® Bx-measurable. Now let € X and 7 € domJ 3,5 . Then, for u-almost every
w e D, z(w ) € dom ¢, and it thus follows from the convexity of ¢, that the function ¢: ]0, 4+o00[ —

|—00,+00] : a = (pu(z(w) + ax(w)) — pu(2(w)))/a is increasing. Thus, appealing to (2.6) and the
monotone convergence theorem, we deduce from (i) that

J 5EZ4+ax) -7 (Z
(recd, 3)(@) = lim ol ) =,2)

at+oo a

i [ (o) o) = u(e6)

[ (o) osl) — o le6)

= [ (rec) (ot () (6.20)

as claimed. 0O

Two key ingredients in Hilbertian convex analysis are the Moreau envelope of (2.7) and the prox-
imity operator of (2.9) [1, 19]. To compute them for integral functions, we first observe that, in the
case of Hilbert spaces identified with their duals, Assumption 6.3 can be simplified as follows.

Assumption 6.7

[A] Xis a separable real Hilbert space with scalar product (- | -)y, associated norm ||- ||x, and strong
topology Tx.

[B] (2,3, u) is a o-finite measure space such that ;(€2) # 0.

[Cl X = {z € LX) | [, [2(w)|} pu(dw) < +oo} and X is the usual real Hilbert space L?(1;X)
with scalar product

VEe X)(VieX) (Z|)) = / w) | y(w))yx pldw). (6.21)

[D] ¢: (2 x X,F® Bx) — |—00, +0o0] is a normal integrand such that (Vw € Q) ¢,, € I'g(X).

[E] domjwvf #+ @ and domjwkv % .
Proposition 6.8 Suppose that Assumption 6.7 holds and let vy € ]0,+oc[. Then the following are satis-
fied:

() Let 7 € X and p € X. Then p = ProX,; . T < p(w) = prox,, (x(w)) for p-almost every w € €.

(i) Set7p: Q x X — ]—00,+00] : (w,x) — 7 (pw)(x). Then V¢ is normal and "V, 5=,
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Proof. Since Assumption 6.7 is an instance of Assumption 6.3, we first infer from Proposition 6.6(i)
that J, %€ o (X).

(1): We derive from (2.9) and Theorem 6.5(ii) that
p= ProX,; . TS T—pE 783%55(13)
& z(w) — p(w) € ¥0p, (p(w)) for p-almost every w € Q
< p(w) = Prox., x(w) for u-almost every w € (. (6.22)

(ii): Since Bxxr = Bx ® Br, it results from Assumption 6.7[D] and Definition 4.3 that there exists
a sequence (&, )nen in L(©; X x R) such that

(Vw e Q) epip, = {a:n }nEN (6.23)

Set V. = {(x,&) e XxR | [[x]|%/(27) <&}. Then V is open and therefore, for every C C X x R,
C +V = C + V. Thus, we derive from (2.7) and (6.23) that
(Vwe Q) {(x,8) eXxR|(pu)(x) <&} ={(x,§) eXXR|pu(x) <&} +V
={(x,§) EXXR|py(x) <&} +V
=epip, +V
T {ch }n€N+V
- {ch }n€N+V
= (zn(w) + V). (6.24)

neN

Hence, for every x € X and every ¢ € R, since (x,§) — V € Bxyr and {x,}neny C L(2;X x R), we
obtain

{we Q] (pu)(x) <&} = {weQ

(x,€) € U (2 (w) —|—V)} = U z, ' ((x,§) - V) € F, (6.25)

neN neN

which shows that (Yp)(-,x) is F-measurable. Hence, since (X,Tx) is a Fréchet space, Theo-
rem 4.4(ii) (b) ensures that 7¢ is normal. It remains to show that 'J_ & = ’Jw 7 Letz € X and

set p = Prox.; - z. Then, by (i), for u-almost every w € Q, p(w) = prox,, (z(w)) and, therefore,
(2.8) yields 7 () (@(w)) = u(p(w)) + 2(w) — p(w)]|Z/(27). Hence

"3, #@) =73, %) + —H:v - %
- /Q pulputde) + 5 [ o) = ple) ()
— [ )l de)
Q
=7,,,x(2), (6.26)

which concludes the proof. O

Remark 6.9 Theorem 6.5, Proposition 6.6, and Proposition 6.8 extend the state of the art on several
fronts, in particular by removing completeness of (€2, &, 1) when X is infinite-dimensional.
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(i) The conclusion of Theorem 6.5(i) first appeared in [28, Theorem 2] in the special case when X
is the standard Euclidean space RY and X is Rockafellar-decomposable (see Proposition 4.2 (iv)
for definition).

(i) In view of Proposition 4.2(iv) and Theorem 4.4(i)(a), Theorem 6.5 subsumes [29, Theorem 2
and Equation (25)] (see also [30, Theorem 21]), where X is a separable Banach space, X is
Rockafellar-decomposable, and (2, F, i) is complete.

(iii) The conclusion of Theorem 6.5(i) appears in [38] in the special case when X is Valadier-
decomposable (see Proposition 4.2(v) for definition) and (€2, &, i) is complete.

(iv) Proposition 6.6(i) subsumes [29, Corollary p. 227], where X is a separable Banach space, X’ is
Rockafellar-decomposable, and (2, F, i1) is complete.

(v) The conclusion of Proposition 6.6(ii) first appeared in [3, Proposition 1] in the context where X
is a separable reflexive Banach space, A" is Rockafellar-decomposable, and (2, F, 11) is a complete
probability space. Another special case is [22, Theorem 2], where X is Valadier-decomposable
and either X = R or (2, F, i) is complete.

(vi) Proposition 6.8(i) appears in [1, Proposition 24.13] in the special case when (2, F, ) is com-
plete, for every w € Q ¢, = f, and either ;(Q2) < oo or f > f(0) > 0.
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