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Abstract

A systematic study of the proximity properties of Bregman distances is carried out. This
investigation leads to the introduction of a new type of proximity operator which complements
the usual Bregman proximity operator. We establish key properties of these operators and
utilize them to devise a new alternating procedure for solving a broad class of joint minimization
problems. We provide a comprehensive convergence analysis of this algorithm. Our framework
is shown to capture and extend various optimization methods.
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1 Introduction

1.1 Standing assumptions

Throughout, X = RJ is the standard Euclidean space with inner product 〈·, ·〉 and induced norm
‖ · ‖, and

(1) f : X → ]−∞,+∞] is convex and differentiable on U = int dom f 6= ∅.

Recall that (see [19])

(2) Df : X ×X → [0,+∞] : (x, y) 7→

{
f(x)− f(y)− 〈f ′(y), x− y〉 , if y ∈ U ;
+∞, otherwise

∗Mathematics, Irving K. Barber School, The University of British Columbia Okanagan, Kelowna, B.C. V1V 1V7,
Canada. E-mail: heinz.bauschke@ubc.ca.
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is the Bregman distance associated with f , also denoted by D for brevity. Let Γ0(X) be the set
of all proper lower semicontinuous convex functions from X to ]−∞,+∞]. In addition, f satisfies
the following standard properties:

A1 f ∈ Γ0(X) is a convex function of Legendre type, i.e., f is essentially smooth and essentially
strictly convex in the sense of [40, Section 26];

A2 f ′′ exists and is continuous on U ;

A3 D is jointly convex, i.e., convex on X ×X;

A4 (∀x ∈ U) D(x, ·) is strictly convex on U ;

A5 (∀x ∈ U) D(x, ·) is coercive, i.e., the lower level set {y ∈ X : D(x, y) ≤ η} is bounded, for
every η ∈ R.

These assumptions allow us to encompass several important scenarios, see Example 2.5. Finally, ϕ
and ψ are two functions such that

(3)


ϕ ∈ Γ0(X),
(∀y ∈ U) ϕ(·) +D(·, y) is coercive,
domϕ ∩ U 6= ∅,

and


ψ ∈ Γ0(X),
(∀x ∈ U) ψ(·) +D(x, ·) is coercive,
domψ ∩ U 6= ∅.

1.2 Problem statement

Bregman distances were introduced in [11] as an extension to the usual discrepancy measure
(x, y) 7→ ‖x − y‖2 and have since found numerous applications in optimization, convex feasibil-
ity, convex inequalities, variational inequalities, monotone inclusions, equilibrium problems; see
[6, 14, 19] and the references therein. The problem under consideration in the present paper is the
joint minimization problem

(4) minimize Λ: (x, y) 7→ ϕ(x) + ψ(y) +D(x, y) over U × U.

The optimal value of (4) and its set of solutions will be denoted by

(5) p = inf Λ(U × U) and S =
{

(x, y) ∈ U × U : Λ(x, y) = p
}
,

respectively.

The objective function Λ in (4) consists of a separable term (x, y) 7→ ϕ(x) + ψ(y) and of a
coupling term D. This structure arises explicitly or implicitly in a variety of problems, for instance
in the areas of image processing [2, 43], signal recovery [22], statistics [16, 24, 29], mechanics [35],
and wavelet synthesis [38]. Further applications will be described in Section 5.

Let ∆ = {(x, x) : x ∈ X}. Then it follows from Lemma 2.4(i) and A1 that

(6) (∀(x, y) ∈ U × U) D(x, y) = 0 ⇔ (x, y) ∈ ∆.
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Therefore, Problem (4) can be viewed as a relaxation of

(7) minimize (x, y) 7→ ϕ(x) + ψ(y) + ι∆(x, y) over U × U,

which, in turn, is equivalent to the standard problem

(8) minimize ϕ+ ψ over U.

For the sake of illustration, let us consider the case when f = 1
2‖ · ‖

2, so that U = X and
D : (x, y) 7→ 1

2‖x− y‖
2. If ϕ and ψ are the indicator functions of two nonempty closed convex sets

A and B, respectively, then (8) corresponds to the convex feasibility problem of finding a point in
A ∩ B. When no such point exists, a sensible alternative is to look for a pair (x, y) ∈ A× B such
that ‖x− y‖ = inf ‖A−B‖. This formulation, which corresponds to (4), was proposed in [21] and
has found many applications in engineering [22, 35, 38]. The algorithm devised in [21] to solve this
joint best approximation problem is the alternating projections method

(9) fix x0 ∈ X and set (∀n ∈ N) yn = PB(xn) and xn+1 = PA(yn).

More generally, let proxθ : x 7→ argminy θ(y)+ 1
2‖x−y‖

2 be the proximity operator [36, 37] associated
with a function θ ∈ Γ0(X). In [1], (9) was extended to the algorithm

(10) fix x0 ∈ X and set (∀n ∈ N) yn = proxψ(xn) and xn+1 = proxϕ(yn)

in order to solve

(11) minimize (x, y) 7→ ϕ(x) + ψ(y) + 1
2‖x− y‖

2 over X ×X.

The purpose of this paper is to introduce and analyze a proximal-like method to solve (4) under
the assumptions stated above. The lack of symmetry of D prompts us to consider two single-valued
operators defined on U , namely

(12) ←−−proxϕ : y 7→ argmin
x∈U

ϕ(x) +D(x, y) and −−→proxψ : x 7→ argmin
y∈U

ψ(y) +D(x, y).

The operators←−−proxϕ and −−→proxψ will be called the left and the right proximity operator, respectively.
While left proximity operators have already been used in the literature (see [6] and the references
therein), the notion of a right proximity operator at this level of generality appears to be new. We
note that [27, p. 26f] observes (but does not exploit) a superficial similarity between the iterative
step of a multiplicative algorithm and the application of the right proximity operator −−→proxψ in the
Kullback-Leibler divergence setting (see Example 2.5(ii)), where ψ is assumed to be the sum of a
continuous convex function and the indicator function of the nonnegative orthant in X.

In this paper, we shall provide a detailed analysis of these operators and establish key properties.
With these tools in place, we shall be in a position to tackle (4) by alternating minimizations of Λ.
We thus obtain the following algorithm

(13) fix x0 ∈ U and set (∀n ∈ N) yn = −−→proxψ(xn) and xn+1 =←−−proxϕ(yn).
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It is important to realize that it is quite nontrivial to see that this iteration is even well defined.
The difficulty lies in guaranteeing that every iterate formally defined in (13) lies again in U , so that
the iterative update can be carried out. The crucial details of our analysis rely on various results on
the interplay between the Bregman distance and the assumptions A1–A5 imposed on f . Armed
with those results, we shall analyze the asymptotic behavior of this algorithm and, in particular, we
shall establish convergence to a solution of (4). In the special case when ψ = 0, we recover variants
and particular versions of the classical Bregman proximal method proposed in [18] (see also [14]
and [19]). Moreover, if we let ϕ = 0, we obtain a completely new proximal point method. We shall
also extend and recover special cases of various known parallel decomposition algorithms, including
least-squares techniques for inconsistent feasibility problems with finitely many sets. Let us also
note that if ϕ is an indicator function and ψ is the sum of an indicator function and a differentiable
convex function, then problem (4) reduces to a setting discussed in [28, Remark 2.18]. However, the
proofs in that manuscript are somewhat sketchy as several details are omitted. For instance, [28]
does not explain why the iteration (13) is well defined. Algorithm (13) may also be interpreted as a
cyclic descent or nonlinear Gauss-Seidel method. However, the typical general convergence results
for the latter methods (see, e.g., [10, Proposition 3.3.9]) fail to cover our main result (Theorem 4.4).

The paper is organized as follows. In Section 2, we collect the technical results required by our
analysis. Left and right Bregman proximity operators are introduced and studied in Section 3. The
asymptotic properties of Algorithm (13) are investigated in Section 4. Finally, various applications
and connections with previous works are described in Section 5.

Notation and conventions. Given a function g, denote its subdifferential map (resp. gradient
map, conjugate function, and domain) by ∂g (resp. g′ or ∇g, g∗ and dom g). If C is a set, then
we write ιC (resp. intC and clC) for its indicator function (resp. interior and closure). We write
N = {0, 1, 2, . . .} for the nonnegative integers. When dealing with the Boltzmann-Shannon entropy,
it will be convenient to define 0 · ln(0) = 0, and to allow expressions such as x ≤ y, x · y, and x/y,
which are understood coordinate-wise, for two vectors x and y in RJ .

2 Auxiliary results

To make the paper self contained and to improve the presentation of the proofs of the main results
in the later sections, we collect in this section several technical results.

Lemma 2.1 Let g : X → ]−∞,+∞] be a proper convex function with V = int dom g.

(i) If V 6= ∅ and g is differentiable on V , then g′ is continuous on V .

(ii) The function g admits an affine minorant.

Proof. (i): [40, Theorem 25.5]. (ii): [40, Corollary 12.1.2]. �

Lemma 2.2 [40, Corollary 14.2.2] Let g ∈ Γ0(X). Then g is coercive if and only if 0 ∈ int dom g∗.
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Lemma 2.3 Let C be an open convex subset of X and let g ∈ Γ0(X) be such that C ∩ dom g 6= ∅.
Then inf g(C) = inf g(C).

Proof. The inequality inf g(C) ≥ inf g(C) is clear. Since C ∩ dom g 6= ∅, the convexity of dom g
and [40, Corollary 6.3.2] imply that there exists c ∈ C ∩ ri dom g. Now fix x ∈ C ∩ dom g and note
that, by [40, Theorem 6.1],

(14) ]x, c] ⊂ C ∩ ri dom g.

Next, we define, for every α ∈ ]0, 1], xα = (1−α)x+αc ∈ C ∩ ri dom g. It follows from the segment
continuity property [40, Theorem 7.5] that g(x) = limα→0+ g(xα). Thus, g(x) ≥ inf g(C). We
conclude that inf g(C) ≥ inf g(C). �

Lemma 2.4

(i) (∀x ∈ X)(∀y ∈ U) D(x, y) = 0 ⇔ x = y.

(ii) (∀y ∈ U) D(·, y) is coercive.

(iii) If x ∈ U and (yn)n∈N is a sequence in U such that yn → y ∈ bdryU , then D(x, yn)→ +∞.

Proof. (i): [5, Theorem 3.7.(iv)]. (ii): [5, Theorem 3.7.(iii)]. (iii): [5, Theorem 3.8.(i)]. �

Example 2.5 [9, Example 2.16] Assumptions A1–A5 hold in the following cases, where x =
(ξj)1≤j≤J and y = (ηj)1≤j≤J are two generic points in RJ .

(i) Energy: If f : x 7→ 1
2‖x‖

2, then U = X and

D(x, y) =
1
2
‖x− y‖2.

(ii) Boltzmann-Shannon entropy: If f : x 7→
∑J

j=1 ξj ln(ξj) − ξj , then U = {x ∈ X : x > 0} and
one obtains the Kullback-Leibler divergence

D(x, y) =

{∑J
j=1 ξj ln(ξj/ηj)− ξj + ηj , if x ≥ 0 and y > 0;

+∞, otherwise.

(iii) Fermi-Dirac entropy: If f : x 7→
∑J

j=1 ξj ln(ξj) + (1 − ξj) ln(1 − ξj), then U = {x ∈ X : 0 <
x < 1} and

D(x, y) =

{∑J
j=1 ξj ln(ξj/ηj) + (1− ξj) ln

(
(1− ξj)/(1− ηj)

)
, if 0 ≤ x ≤ 1 and 0 < y < 1;

+∞, otherwise.
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Lemma 2.6 Suppose that x ∈ X and {u, v} ⊂ U . Then:

(15) D(x, v) = D(x, u) +D(u, v) +
〈
f ′(v)− f ′(u), u− x

〉
.

Moreover, D is continuous on U × U and D(u, ·) ∈ Γ0(X).

Proof. The proof of the identity (15) is clear from (2). The continuity of D on U × U follows
from Lemma 2.1(i) The function D(u, ·) is convex by A3, and proper since u ∈ U . To verify lower
semicontinuity of D(u, ·), it suffices — in view of (2) — to take a sequence (yn)n∈N in U that
converges to y ∈ cl(U) and to show that D(u, y) ≤ limD(u, yn). If y ∈ U , then D(u, yn)→ D(u, y)
by continuity of D on U ×U . If y ∈ bdry(U), then Lemma 2.4(iii) implies that D(u, yn)→ +∞ =
D(u, y). �

Identity (15) is also known as the “three points identity”, see [20, Lemma 3.1]. The next result
follows by expanding (2) and some calculus.

Lemma 2.7 Take z ∈ U and h ∈ X. Then:

(16) lim
t→0+

D(z, z + th)
t

= 0 = lim
t→0+

D(z + th, z)
t

.

Because of A2 and A3, the function Df conforms to (1) and therefore its Bregman distance
DDf

, which will play a central role in our analysis, is well-defined.

Lemma 2.8 [9, Lemma 2.9] Take {x, y, u, v} ⊂ U . Then:

(17) DDf

(
(x, y), (u, v)

)
= Df (x, y) +Df (x, u)−Df (x, v) +

〈
f ′′(v)(u− v), y − v

〉
.

Moreover, DDf
is continuous on U4.

Note that Df itself does not satisfy the counterparts of properties A1–A5; for instance, strict
convexity fails as we shall see shortly. However, the expression for DDf

becomes simpler when we
deal with the energy or the Boltzmann-Shannon entropy (which are defined in Example 2.5):

Example 2.9 [9, Example 2.12] Take {x, y, u, v} ⊂ U . Then:

(i) If f is the energy, then DDf

(
(x, y), (u, v)

)
= Df

(
x, y + (u− v)

)
.

(ii) If f is the Boltzmann-Shannon entropy, then DDf

(
(x, y), (u, v)

)
= Df

(
x, yu/v

)
, where the

product and the quotient is taken coordinate-wise.

We do not know whether a similar simplification can be obtained for the Fermi-Dirac entropy.

Lemma 2.10 Let θ : X → ]−∞,+∞] be convex and x ∈ X be such that dom θ ∩ U 6= ∅ and
θ(·) + D(x, ·) is coercive. Suppose (yn)n∈N is a sequence in U such that

(
θ(yn) + D(x, yn)

)
n∈N is

bounded. Then (yn)n∈N is bounded and all its cluster points belong to U .
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Proof. The coercivity assumption implies the boundedness of (yn)n∈N. Now let y be a cluster point
of (yn)n∈N, say ykn → y. We argue by contradiction and assume that y ∈ bdryU . By Lemma 2.1(ii),
the function θ has an affine minorant, say a. On the other hand, Lemma 2.4(iii) implies that
D(x, ykn)→ +∞. Hence −∞← θ(ykn) ≥ a(ykn)→ a(y) > −∞, which is contradictory. �

Lemma 2.11 [9, Lemma 2.20] or [6, Section 4.1] Suppose that ∅ 6= C ⊂ U and (yn)n∈N is a
sequence in U which is Bregman monotone with respect to C, i.e.,

(18) (∀x ∈ C)(∀n ∈ N) D(x, yn+1) ≤ D(x, yn).

Then (yn)n∈N converges to a point in C if and only if all cluster points of (yn)n∈N lie in C.

Lemma 2.12 Take θ ∈ Γ0(X) such that dom θ ∩ U 6= ∅. Consider the following properties:

(a) dom θ ∩ U is bounded.

(b) inf θ(U) > −∞.

(c) f is supercoercive, i.e., lim
‖x‖→+∞

f(x)/‖x‖ = +∞.

(d) (∀x ∈ U) D(x, ·) is supercoercive.

Then:

(i) If any of the conditions (a), (b), or (c) holds, then

(19) (∀y ∈ U) θ(·) +D(·, y) is coercive

or, equivalently,

(20) ran f ′ ⊂ int dom (f + θ)∗.

(ii) If any of the conditions (a), (b), or (d) holds, then

(21) (∀x ∈ U) θ(·) +D(x, ·) is coercive.

Proof. By Lemma 2.1(ii), there exists (z∗, α) ∈ X × R such that θ(·) ≥ 〈z∗, ·〉 + α. (a) ⇒ (b):
By Cauchy-Schwarz, we have inf θ(U) = inf θ(dom θ ∩ U) ≥ −‖z∗‖ · sup ‖dom θ ∩ U‖ + α > −∞
as dom θ ∩ U is bounded. (b) ⇒ (19): Suppose to the contrary that there exists a sequence
(xn)n∈N in dom f such that ‖xn‖ → +∞ and (θ(xn) +D(xn, y))n∈N is bounded. Now observe that
µ = inf θ(dom f) = inf θ(U) > −∞ by (b) and Lemma 2.3. Then we arrive at the contradiction
+∞ > supn∈N θ(xn) + D(xn, y) ≥ µ + supn∈ND(xn, y) = +∞ since, by Lemma 2.4(ii), D(·, y) is
coercive. (19) ⇔ (20): Using Lemma 2.2, we deduce that (19) ⇔ (∀y ∈ U) θ + f − 〈f ′(y), ·〉 is
coercive ⇔ (∀y ∈ U) 0 ∈ dom(θ+ f − 〈f ′(y), ·〉)∗ ⇔ (∀y ∈ U) f ′(y) ∈ int dom (f + θ)∗ ⇔ (20). (b)
⇒ (21): Arguing by contradiction as above, we get a sequence (yn)n∈N in U such that ‖yn‖ → +∞
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and +∞ > supn∈N θ(yn) + D(x, yn) ≥ µ + supn∈ND(x, yn) = +∞ by virtue of A5. (c) ⇒ (19):
Letting ‖x‖ → +∞, we obtain

(22) θ(x) +D(x, y) ≥
(
α− f(y) +

〈
f ′(y), y

〉)
+ ‖x‖

(
f(x)
‖x‖

− ‖z∗‖ − ‖f ′(y)‖
)
→ +∞.

(d) ⇒ (21): Letting ‖y‖ → +∞, we obtain

(23) θ(y) +D(x, y) ≥ α+ ‖y‖
(
D(x, y)
‖y‖

− ‖z∗‖
)
→ +∞. �

Lemma 2.13 Let g : X → ]−∞,+∞] be proper, coercive, and convex. Then inf g(X) > −∞.

Proof. Set µ = inf g(X) and take a sequence (xn)n∈N in X such that g(xn)→ µ. Since g is coercive,
(xn)n∈N is bounded and therefore it has a cluster point, say xkn → x. By Lemma 2.1(ii), there
exists an affine minorant of g, say a. Then µ← g(xkn) ≥ a(xkn)→ a(x) > −∞. �

3 Bregman envelopes and proximity operators

Definition 3.1 Take θ : X → ]−∞,+∞]. The left Bregman envelope of θ is

(24) ←−envθ : X → [−∞,+∞] : y 7→ inf
x∈X

θ(x) +D(x, y),

and the right Bregman envelope of θ is

(25) −→envθ : X → [−∞,+∞] : x 7→ inf
y∈X

θ(y) +D(x, y).

Let us provide two illustrations of these definitions.

Example 3.2 Suppose f = 1
2‖ · ‖

2 and take θ : X → ]−∞,+∞]. Then D : (x, y) 7→ 1
2‖x− y‖

2 and
←−envθ = −→envθ = θ� (1

2‖ · ‖
2) is the Moreau envelope of θ [41, Section 1.G].

Example 3.3 Let C be a subset of X. The left Bregman distance to C is defined by

(26)
←−
DC = ←−envιC : y 7→ inf

x∈C
D(x, y),

and the right Bregman distance to C is defined by

(27)
−→
DC = −→envιC : x 7→ inf

y∈C
D(x, y).

The following propositions collect some basic properties of Bregman envelopes.
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Proposition 3.4 Let θ : X → ]−∞,+∞] be such that dom θ ∩ U 6= ∅. Then:

(i) dom ←−envθ = U and (∀y ∈ U) ←−envθ(y) ≤ θ(y).

(ii) dom −→envθ = dom f and (∀x ∈ U) −→envθ(x) ≤ θ(x).

(iii) Suppose that θ is convex. Then ←−envθ is convex and continuous on U . If, in addition, (19)
holds, i.e., (∀y ∈ U) θ(·) +D(·, y) is coercive, then ←−envθ is proper.

(iv) Suppose that θ is convex. Then −→envθ is convex and continuous on U . If, in addition, (21)
holds, i.e., (∀x ∈ U) θ(·) +D(x, ·) is coercive, then −→envθ is proper.

Proof. (i) and (ii) follow at once from Definition 3.1 and (2). (iii): A3 asserts that the function
(y, z) 7→ θ(z)+D(z, y) is convex. Hence, it follows from [41, Proposition 2.22.(a)] that the marginal
function ←−envθ is also convex. The continuity of ←−envθ on U then follows from (i) and the fact that
every convex function on X is continuous on the interior of its domain [40, Theorem 10.1]. It is
clear from (i) that ←−envθ 6≡ +∞. On the other hand it follows from (19) and Lemma 2.13 that
−∞ /∈ ←−envθ(X). (iv): Similar to (iii). �

We now provide additional conditions guaranteeing that the infima in Definition 3.1 are uniquely
attained in U .

Proposition 3.5 Let θ ∈ Γ0(X) such that dom θ ∩ U 6= ∅.

(i) Suppose that y ∈ U and that θ(·) +D(·, y) is coercive. Then there exists a unique point z ∈ U
such that ←−envθ(y) = θ(z) +D(z, y).

(ii) Suppose that x ∈ U and that θ(·)+D(x, ·) is coercive. Then there exists a unique point z ∈ U
such that −→envθ(x) = θ(z) +D(x, z).

Proof. (i): Apply [6, Proposition 3.21.(ii)], [6, Proposition 3.23.(v)(b)], and [6, Proposi-
tion 3.22.(ii)(d)]. (ii): Set µ = −→envθ(x). By Lemma 2.13, µ ∈ R. Take (zn)n∈N in U such
that θ(zn) + D(x, zn) → µ. Then by Lemma 2.10, (zn)n∈N has a cluster point in U , say
zkn → z ∈ U . However, by Lemma 2.6, θ(·) + D(x, ·) is lower semicontinuous at z and there-
fore µ ≤ θ(z) +D(x, z) ≤ lim(θ(zkn) +D(x, zkn)) = µ. Furthermore, A4 implies that θ(·) +D(x, ·)
is strictly convex, which secures the uniqueness of z. �

Remark 3.6 Suppose that U 6= X (as happens for the two entropies in Example 2.5) and set
C = cl(U) in Example 3.3. Now pick z ∈ bdryU and (zn)n∈N in U such that zn → z. Then
←−
DC(zn) ≡ 0, but

←−
DC(z) = +∞. Hence

←−
DC is not lower semicontinuous at z. Therefore, left

Bregman envelopes need not belong to Γ0(X).

Proposition 3.5 allows us to define the following operators on U .

9



Definition 3.7 Let θ ∈ Γ0(X) be such that dom θ ∩ U 6= ∅. If (19) holds, then the left proximity
operator associated with θ is

(28) ←−−prox θ : U → U : y 7→ argmin
x∈X

θ(x) +D(x, y).

If (21) holds, then the right proximity operator associated with θ is

(29) −−→prox θ : U → U : x 7→ argmin
y∈X

θ(y) +D(x, y).

Left (i.e., classical Bregman) proximity operators have already been used in several works, see e.g.,
[6], [18], [19, Chapter 3], [20], [26], and [30]. On the other hand, the notion of a right proximity
operator appears to be new. We note that [27, p. 26f] discusses the formal resemblance between a
multiplicative algorithm and the right proximity operator in the Kullback-Leibler divergence setting
when θ is the sum of a continuous convex function and the indicator function of the nonnegative
orthant in X. Further, we point out below (see Example 3.9) that in the special case of indicator
functions, the right proximity operator was previously considered in [9].

Example 3.8 Suppose that f = 1
2‖ · ‖

2 and take θ ∈ Γ0(X). Since f is supercoercive, it follows
from Lemma 2.12(i) that (19) is satisfied, and we obtain Moreau’s proximity operator [36, 37, 41]:
←−−prox θ = −−→prox θ = (Id +∂θ)−1.

Example 3.9 Let C ⊂ X be a closed convex set such that C ∩ U 6= ∅. Since ιC is bounded
below, Lemma 2.12 guarantees that (19) and (21) hold; furthermore, ←−−prox ιC =

←−
PC is the (left,

i.e.,) classical Bregman projector onto C [5, 11, 16, 17] and −−→prox ιC =
−→
PC is the right Bregman

projector onto C [7, 9]. Note that in the last two references, the left and right Bregman projector
are called backward and forward Bregman projector. However, because of possible ambiguity in
the context of splitting methods, the notions of left and right Bregman projector are preferable.

From now on, we also utilize the notation ∇g to describe the derivative g′ of a given function g.
This increases readability when g is a more complicated expression. The following properties will
be needed later.

Proposition 3.10 Let θ ∈ Γ0(X) be such that dom θ ∩ U 6= ∅.

(i) Suppose that (19) holds. Then for every (x, y) ∈ U2, the following conditions are equivalent:

(a) x =←−−prox θ(y);

(b) 0 ∈ ∂θ(x) + f ′(x)− f ′(y);

(c) (∀z ∈ X) 〈f ′(y)− f ′(x), z − x〉+ θ(x) ≤ θ(z).

Moreover,

(30) ←−−prox θ = (f ′ + ∂θ)−1 ◦ f ′

is continuous on U .

10



(ii) Suppose that (21) holds. Then for every (x, y) ∈ U2, the following conditions are equivalent:

(a) y = −−→prox θ(x);

(b) 0 ∈ ∂θ(y) + f ′′(y)(y − x);

(c) (∀z ∈ X) 〈f ′′(y)(x− y), z − y〉+ θ(y) ≤ θ(z).

Moreover, −−→prox θ is continuous on U .

Proof. (i): We verify only continuity as the equivalence of (a)–(c), as well as the identity (30) are
known, see e.g. [6, Section 3.4]. Since f is Legendre by A1, it is essentially strictly convex and
so is f + θ. By [40, Theorem 26.3], (f + θ)∗ is essentially smooth. Now Lemma 2.1(i) implies
that ∇(f + θ)∗ is continuous on int dom (f + θ)∗ and that f ′ is continuous on U . Therefore,
∇(f + θ)∗ ◦ f ′ =

(
∂(f + θ)

)−1 ◦ f ′ = (f ′ + ∂θ)−1 ◦ f ′ = ←−−prox θ is continuous on U . (ii): The
equivalence of (a)–(c) is clear from (29) and convex calculus. To establish the continuity of −−→prox θ
on U , pick a sequence (xn)n∈N in U converging to x ∈ U and set yn = −−→prox θ(xn), for all n ∈ N.
Take q ∈ dom θ ∩ U . Then, using Lemma 2.6, Lemma 2.8, and item (ii)(c), we obtain

D(x, q)← D(x, q) +D(x, xn)
= DDf

(
(x, q), (xn, yn)

)
+D(x, yn)−

〈
f ′′(yn)(xn − yn), q − yn

〉
≥ D(x, yn)−

〈
f ′′(yn)(xn − yn), q − yn

〉
≥ D(x, yn) + θ(yn)− θ(q).

(31)

It follows that
(
θ(yn) +D(x, yn)

)
n∈N is bounded. By (21) and Lemma 2.10, the sequence (yn)n∈N

is bounded and its cluster points belong to U . Let us extract a converging subsequence, say
ykn → y ∈ U . In view of item (ii)(c), we have

(32) (∀z ∈ X)(∀n ∈ N)
〈
f ′′(ykn)(xkn − ykn), z − y

〉
+ θ(ykn) ≤ θ(z).

We let n tend to +∞ in (32), use continuity of f ′′ (see A2) and lower semicontinuity of θ to obtain

(33) (∀z ∈ X)
〈
f ′′(y)(x− y), z − y

〉
+ θ(y) ≤ θ(z).

The equivalence between items (ii)(a) and (ii)(c) now results in y = −−→prox θ(x). �

Remark 3.11 The proof of continuity of←−−prox θ presented above extends Lewis’ unpublished proof
[32] of continuity of

←−
PC , where C ⊂ X is a closed convex set such that C ∩ U 6= ∅. Furthermore,

the continuity of
←−
PC when f is the Boltzmann-Shannon entropy was first established in [12].

Proposition 3.12 Let θ ∈ Γ0(X) be such that dom θ ∩ U 6= ∅.

(i) If (19) holds, then ←−envθ is differentiable on U and

(34) (∀y ∈ U) ∇ ←−envθ(y) = f ′′(y)(y −←−−prox θ(y)).
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(ii) If (21) holds, then −→envθ is differentiable on U and

(35) (∀x ∈ U) ∇ −→envθ(x) = f ′(x)− f ′(−−→prox θ(x)).

Proof. (i): Fix y ∈ U , h ∈ X, and t ∈ ]0,+∞[ such that y + th ∈ U . For the sake of brevity, set
P =←−−prox θ. Using Lemma 2.6 twice, we estimate

D(y, y + th) +
〈
f ′(y + th)− f ′(y), y − P (y + th)

〉
= D(P (y + th), y + th)−D(P (y + th), y)
= θ(P (y + th)) +D(P (y + th), y + th)− θ(P (y + th))−D(P (y + th), y)
≤ θ(P (y + th)) +D(P (y + th), y + th)− θ(P (y))−D(P (y), y)
= ←−envθ(y + th)− ←−envθ(y)
≤ θ(P (y)) +D(P (y), y + th)− θ(P (y))−D(P (y), y)
= D(P (y), y + th)−D(P (y), y)
= D(y, y + th) + 〈f ′(y + th)− f ′(y), y − P (y)〉.

After dividing this chain of inequalities by t, we take the limit as t→ 0+. Lemma 2.7, A2, and the
continuity of P (see Proposition 3.10(i)) imply that the leftmost limit is the same as the rightmost
limit, namely 〈f ′′(y)(h), y − P (y)〉. It follows that

(36) lim
t→0+

←−envθ(y + th)− ←−envθ(y)
t

= 〈f ′′(y)(h), y − P (y)〉.

(ii): Fix x ∈ U , h ∈ X, and t ∈ ]0,+∞[ such that x+ th ∈ U . We set P = −−→prox θ and obtain, using
Lemma 2.6 twice,

D(x+ th, x) + 〈f ′(x)− f ′(P (x+ th)), th〉
= D(x+ th, P (x+ th))−D(x, P (x+ th))
= θ(P (x+ th)) +D(x+ th, P (x+ th))− θ(P (x+ th))−D(x, P (x+ th))
≤ θ(P (x+ th)) +D(x+ th, P (x+ th))− θ(P (x))−D(x, P (x))
= −→envθ(x+ th)− −→envθ(x)
≤ θ(P (x)) +D(x+ th, P (x))− θ(P (x))−D(x, P (x))
= D(x+ th, P (x))−D(x, P (x))
= D(x+ th, x) +

〈
f ′(x)− f ′(P (x)), th

〉
Let us divide this chain of inequalities by t, and then take the limit as t→ 0+. Lemma 2.7 and the
continuity of P (see Proposition 3.10(ii)) imply that the leftmost limit is the same as the rightmost
limit, namely 〈f ′(x)− f ′(P (x)), h〉. Thus

(37) lim
t→0+

−→envθ(x+ th)− −→envθ(x)
t

= 〈f ′(x)− f ′(P (x)), h〉. �
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Remark 3.13 Special cases of Proposition 3.12(i) have been observed previously in the literature;
see, for instance, [42, Theorem 4.1(b)] when inf θ(U) > −∞ (so that (19) holds by Lemma 2.12(i))
and [19, Proposition 3.2.3] when dom θ = X. The differentiability of

−→
DC was established in [12] for

the case where f is the Boltzmann-Shannon entropy.

Let us now provide two illustrations of Proposition 3.12.

Example 3.14 If θ ∈ Γ0(X) and f = 1
2‖ · ‖

2, then Proposition 3.12 reduces to Moreau’s gradient
formula [37, Proposition 7.d], namely ∇

(
θ� (1

2‖ · ‖
2)
)

= Id−(Id +∂θ)−1.

Example 3.15 Let C ⊂ X be a closed convex set such that C ∩ U 6= ∅ and take {x, y} ⊂ U . In
view of Examples 3.3 and 3.9, setting θ = ιC in Proposition 3.12 yields∇

←−
DC(y) = f ′′(y)(y−

←−
PC(y))

and ∇
−→
DC(x) = f ′(x)− f ′(

−→
PC(x)).

As the following proposition shows, left and right envelopes and prox operators arise naturally
in connection with our basic problem (4). Let us introduce the two auxiliary relaxed problems

(38) minimize ←−envϕ + ψ over U

and

(39) minimize ϕ+ −→envψ over U.

Their solution sets will be denoted by

(40) F =
{
y ∈ U | ←−envϕ(y) + ψ(y) = inf(←−envϕ + ψ)(U)

}
and

(41) E =
{
x ∈ U | ϕ(x) + −→envψ(x) = inf(ϕ+ −→envψ)(U)

}
,

respectively. In the standard metric setting, i.e., f = 1
2‖ · ‖

2, (38) and (39) are the two classical
partial Moreau regularizations of (8), e.g., [33]. We now relate the sets E and F to the set S,
defined in (5), as well as to the operators ←−−proxϕ and −−→proxψ.

Proposition 3.16 The following properties hold:

(i) E and F are convex.

(ii) (∀(x, y) ∈ U × U) (x, y) ∈ S ⇔
(
x =←−−proxϕ(y) and y = −−→proxψ(x)

)
.

(iii) E = Fix
(←−−proxϕ ◦ −−→proxψ

)
and F = Fix

(−−→proxψ ◦←−−proxϕ
)
.

(iv) (∀(x, y) ∈ E × F )
(
x,−−→proxψ(x)

)
∈ S and

(←−−proxϕ(y), y
)
∈ S.
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Proof. (i): In view of (3) and Proposition 3.4(iii)&(iv), E and F are convex, as sets of minimizers
of convex functions. For the remainder of the proof, we fix (x, y) ∈ U × U . (ii): Since

(42) ∇D(x, y) =
(
f ′(x)− f ′(y), f ′′(y)(y − x)

)
,

we obtain by standard convex calculus and by invoking items (i)(b) and (ii)(b) of Proposition 3.10
the chain of equivalences

(x, y) ∈ S ⇔ (0, 0) ∈ ∂Λ(x, y) =
(
∂ϕ(x) + f ′(x)− f ′(y), ∂ψ(y) + f ′′(y)(y − x)

)
⇔ 0 ∈ ∂ϕ(x) + f ′(x)− f ′(y) and 0 ∈ ∂ψ(y) + f ′′(y)(y − x)(43)
⇔ x =←−−proxϕ(y) and y = −−→proxψ(x).

(iii): It follows from Proposition 3.12(ii) and Proposition 3.10(i) that

x ∈ E ⇔ 0 ∈ ∂(ϕ+ −→envψ)(x) = ∂ϕ(x) +∇ −→envψ(x) = ∂ϕ(x) + f ′(x)− f ′(−−→proxψ(x))
⇔ x =←−−proxϕ ◦ −−→proxψ(x).(44)

Likewise, it follows from Proposition 3.12(i) and Proposition 3.10(ii) that

y ∈ F ⇔ 0 ∈ ∂(←−envϕ + ψ)(y) = ∇ ←−envϕ(y) + ∂ψ(y) = f ′′(y)(y −←−−proxϕ(y)) + ∂ψ(y)
⇔ y = −−→proxψ ◦←−−proxϕ(y).(45)

(iv) follows at once from (ii) and (iii). �

4 Alternating left and right proximity operators

Recall that the standing assumptions on our problem (4) are described by (3), that its solution set
S and its optimal value p are defined in (5).

In (13), we proposed the following algorithm to solve (4).

(46) fix x0 ∈ U and set (∀n ∈ N) yn = −−→proxψ(xn) and xn+1 =←−−proxϕ(yn).

In view of (3) and Definition 3.7, the sequences (xn)n∈N and (yn)n∈N are well-defined. We now
study the asymptotic behavior of this algorithm, starting with two key monotonicity properties.

Proposition 4.1 Let
(
(xn, yn)

)
n∈N be generated by (46). Then:

(47) (∀n ∈ N) Λ(xn+1, yn+1) ≤ Λ(xn+1, yn) ≤ Λ(xn, yn).

Proof. This is a direct consequence of Definition 3.7 and (46). �

Proposition 4.2 Let
(
(xn, yn)

)
n∈N be generated by (46) and take {x, y} ⊂ U . Then:

(48) (∀n ∈ N) D(x, xn+1) ≤ D(x, xn)− Λ(xn+1, yn) + Λ(x, y)−DDf

(
(x, y), (xn, yn)

)
.
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Proof. Fix n ∈ N. If x 6∈ domϕ or y 6∈ domψ, then (48) is clear. Otherwise, it follows from
Lemma 2.8, Lemma 2.6, Proposition 3.10 that

D(x, y) +D(x, xn) = D(x, yn) +DDf

(
(x, y), (xn, yn)

)
+
〈
f ′′(yn)(xn − yn), yn − y

〉
= D(x, xn+1) +D(xn+1, yn) +

〈
f ′(yn)− f ′(xn+1), xn+1 − x

〉
+DDf

(
(x, y), (xn, yn)

)
+
〈
f ′′(yn)(xn − yn), yn − y

〉
= D(x, xn+1) +D(xn+1, yn) +DDf

(
(x, y), (xn, yn)

)
+
〈
f ′(yn)− f ′(xn+1), xn+1 − x

〉
+ ϕ(x)− ϕ(xn+1)

+
〈
f ′′(yn)(xn − yn), yn − y

〉
+ ψ(y)− ψ(yn)

+
(
ϕ(xn+1) + ψ(yn)

)
−
(
ϕ(x) + ψ(y)

)
≥ D(x, xn+1) +D(xn+1, yn) +DDf

(
(x, y), (xn, yn)

)
+
(
ϕ(xn+1) + ψ(yn)

)
−
(
ϕ(x) + ψ(y)

)
.

(49)

Hence

D(x, xn+1)−D(x, xn) ≤ −D(xn+1, yn) +D(x, y)−DDf

(
(x, y), (xn, yn)

)
−
(
ϕ(xn+1) + ψ(yn)

)
+
(
ϕ(x) + ψ(y)

)
= −Λ(xn+1, yn) + Λ(x, y)−DDf

(
(x, y), (xn, yn)

)
. �

(50)

Corollary 4.3 Let
(
(xn, yn)

)
n∈N be generated by (46) and suppose that p in (5) is finite. Then

(51) lim Λ(xn, yn) = lim Λ(xn+1, yn) = p.

Proof. In view of Proposition 4.1, let λ = lim Λ(xn, yn) = lim Λ(xn+1, yn). Clearly, λ ∈ [p,+∞[.
Let us assume that λ > p and we shall obtain a contradiction. Take {x, y} ⊂ U and ε ∈ ]0,+∞[
such that λ = Λ(x, y) + ε. Then Proposition 4.2 yields

(52) (∀n ∈ N) D(x, xn)−D(x, xn+1) ≥ λ− Λ(x, y) = ε.

It follows that (∀n ∈ N) 0 ≤ D(x, xn) ≤ D(x, x0)− nε, which is contradictory for n > D(x, x0)/ε.
Therefore λ = p. �

Our main convergence result can now be stated and proved.

Theorem 4.4 Let
(
(xn, yn)

)
n∈N be a sequence generated by algorithm (46) and suppose that S is

nonempty (and hence p in (5) is finite). Then

(53)
∑
n∈N

(
Λ(xn+1, yn)− p

)
< +∞ and

(
∀(x, y) ∈ S

) ∑
n∈N

DDf

(
(x, y), (xn, yn)

)
< +∞.

Moreover,
(
(xn, yn)

)
n∈N converges to a point in S.
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Proof. Take (x, y) ∈ S. It follows from (48) that

(54) (∀n ∈ N) 0 ≤
(
Λ(xn+1, yn)− p

)
+DDf

(
(x, y), (xn, yn)

)
≤ D(x, xn)−D(x, xn+1).

Therefore, (53) holds. Moreover, (54) and Proposition 3.16 imply that

(55) (xn)n∈N is Bregman monotone with respect to E ⊂ U.

In view of Lemma 2.10 (with θ = 0) and A5, the sequence (xn)n∈N is bounded and all its cluster
points lie in U . Let us consider a convergent subsequence, say xkn → x̃ ∈ U . Using Proposi-
tion 3.10, let us set ỹ = −−→proxψ(x̃) = lim−−→proxψ(xkn). Continuity of D on U ×U (Lemma 2.6), lower
semicontinuity of ϕ and ψ, and Corollary 4.3 now yield

Λ(x̃, ỹ) = ϕ(x̃) + ψ(ỹ) +D(x̃, ỹ)
≤ limϕ(xkn) + limψ(ykn) + limD(xkn , ykn)
≤ lim

(
ϕ(xkn) + ψ(ykn) +D(xkn , ykn)

)
= lim Λ(xkn , ykn)
= p.

(56)

Hence (x̃, ỹ) ∈ S and thus x̃ ∈ E by Proposition 3.16(ii)&(iii). Therefore, every cluster point of
(xn)n∈N belongs to E. Consequently, utilizing (55) and Lemma 2.11, we conclude that (xn)n∈N
converges a point in E, say x̄. Set ȳ = −−→proxψ(x̄). Proposition 3.16(iv) shows that (x̄, ȳ) ∈ S.
On the other hand, Proposition 3.10 implies that yn = −−→proxψ(xn) → −−→proxψ(x̄) = ȳ. Altogether,
(xn, yn)→ (x̄, ȳ) ∈ S. �

Let us illustrate Theorem 4.4 by presenting some immediate applications; further examples will
be provided in Section 5.

Corollary 4.5 Suppose that the solution set S of the problem

(57) minimize (x, y) 7→ ϕ(x) + ψ(y) + 1
2‖x− y‖

2 over X ×X

is nonempty. Then the sequence
(
(xn, yn)

)
n∈N generated by the algorithm

(58) fix x0 ∈ X and set (∀n ∈ N) yn = (I + ∂ψ)−1(xn) and xn+1 = (I + ∂ϕ)−1(yn)

converges to a point in S.

Proof. This is a consequence of Example 3.8 and Theorem 4.4. �

Remark 4.6 For an extension of Corollary 4.5, see [1, Théorème 2(ii)] and, for further refinements,
[8, Theorem 4.6]. If we specialize Corollary 4.5 to indicator functions or Corollary 4.7 to the energy,
then we recover a classical result due to Cheney and Goldstein [21].
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Corollary 4.7 Let A and B be closed convex sets in X such that A ∩ U 6= ∅ and B ∩ U 6= ∅.
Suppose that the solution set S of the problem

(59) minimize D over (A×B) ∩ (U × U)

is nonempty. Then the sequence
(
(xn, yn)

)
n∈N generated by the alternating left-right projections

algorithm

(60) fix x0 ∈ U and set (∀n ∈ N) yn =
−→
PB(xn) and xn+1 =

←−
PA(yn).

converges to a point in S.

Proof. This is a consequence of Example 3.9 and Theorem 4.4. �

Remark 4.8 Corollary 4.7 corresponds to Csiszár and Tusnády’s classical alternating minimiza-
tion procedure (see their seminal work [24]) which, in turn, covers the expectation-maximization
method for a specific Poisson model [29]. For an alternative proof of Corollary 4.7 when A∩B 6= ∅,
see [7, Application 5.5].

Corollary 4.9 Take θ ∈ Γ0(X) and suppose that its set M of minimizers over U is nonempty.

(i) If θ satisfies (19), then the sequence (zn)n∈N generated by the left proximal point algorithm

(61) fix z0 ∈ U and set (∀n ∈ N) zn+1 =←−−prox θ(zn)

converges to a point in M .

(ii) If θ satisfies (21), then the sequence (zn)n∈N generated by the right proximal point algorithm

(62) fix z0 ∈ U and set (∀n ∈ N) zn+1 = −−→prox θ(zn)

converges to a point in M .

Proof. (i): Set ϕ = θ and ψ = 0 in Theorem 4.4. (ii): Set ϕ = 0 and ψ = θ in Theorem 4.4. �

Remark 4.10 Item (i) in Corollary 4.9 goes back to [18]. A special case of item (ii) in the context
of the Kullback-Leibler divergence appears in [27], see also [28, Remark 2.18]. If f = 1

2‖ · ‖
2, then

items (i) and (ii) reduce to a classical result of Martinet [34].

The next two statements concern the invariance of the solution set S.

Corollary 4.11 Take {(x, y), (x̃, ỹ)} ⊂ S. Then: DDf

(
(x, y), (x̃, ỹ)

)
= 0.

Proof. Consider the iteration (46) with starting point x0 = x̃. Using Proposition 3.16, we see that
xn ≡ x̃ and yn ≡ ỹ. Hence (53) yields DDf

(
(x, y), (x̃, ỹ)

)
= 0. �
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Example 4.12 Take
{

(x, y), (x̃, ỹ)
}
⊂ S. Then:

(i) If f is the energy, then y − x = ỹ − x̃.

(ii) If f is the Boltzmann-Shannon entropy, then y/x = ỹ/x̃.

Proof. Combine Corollary 4.11, Example 2.9, and (6). �

We now turn to an optimization problem dual to (4), namely, to determine

(63) − min
(x∗,y∗)∈X×X

ϕ∗(x∗) + ψ∗(y∗) +D∗(−x∗,−y∗).

This is precisely the standard Fenchel dual of the optimization problem (4) — the minus sign is
simply added to ensure that the optimal values of the two problems coincide. Now (3) implies
the standard constraint qualification which in the present setting states that int domDf = U × U
and dom

(
(x, y) 7→ ϕ(x) + ψ(y)

)
= domϕ × domψ possess common points. Consequently, by [40,

Corollary 6.3.2 and Theorem 31.1], the minimum in (63) is always attained. More information can
be obtained when (4) has solutions:

Proposition 4.13 Suppose that S 6= ∅. Then the minimum in (63) is attained at a unique
point (x∗, y∗) and, for every (x, y) ∈ S, (x∗, y∗) =

(
f ′(y) − f ′(x), f ′′(y)(x − y)

)
. Consequently, if(

(xn, yn)
)
n∈N is generated by (46), then

(
f ′(yn)− f ′(xn), f ′′(yn)(xn − yn)

)
→ (x∗, y∗).

Proof. Let (x∗, y∗) be a solution of (63) and take (x, y) ∈ S, i.e., (x, y) solves (4). Then, using the
Fenchel Duality Theorem [40, Theorem 31.1] and the Fenchel-Young inequality, we obtain

0 = ϕ(x) + ψ(y) +D(x, y) + ϕ∗(x∗) + ψ∗(y∗) +D∗(−x∗,−y∗)
≥ 〈x∗, x〉+ 〈y∗, y〉+D(x, y) +D∗(−x∗,−y∗)
≥ 0.

(64)

Hence D(x, y) +D∗(−x∗,−y∗) = 〈(−x∗,−y∗), (x, y)〉 and thus, with the help of (42), we obtain

(65) (−x∗,−y∗) = ∇D(x, y) =
(
f ′(x)− f ′(y), f ′′(y)(y − x)

)
.

The “Consequently” part follows from Theorem 4.4 and the continuity of f ′ and f ′′ (see A2). �

Remark 4.14 Take (x, y) ∈ S. Proposition 4.13 asserts that (x∗, y∗) =
(
f ′(y)−f ′(x), f ′′(y)(x−y)

)
is the unique solution of (63).

(i) If f is the energy, then
(x∗, y∗) = (y − x, x− y) = (x∗,−x∗).

(ii) If f is the Boltzmann-Shannon entropy, then

(x∗, y∗) =
(

ln(y/x), x/y − 1
)

=
(
x∗, exp(−x∗)− 1

)
.

18



(iii) If f is the Fermi-Dirac entropy, then

(x∗, y∗) =
(

ln
y/x

(1− y)/(1− x)
,
x− y
y(1− y)

)
.

Note that (i) and (ii) combined with the uniqueness of (x∗, y∗) lead to an alternative proof of the
identities in Example 4.12.

5 Applications and connections with previous works

5.1 Preliminaries

In this section, we discuss various applications of Theorem 4.4 revolving around the basic con-
strained optimization problem

(66) minimize θ over C ∩ U,

where θ ∈ Γ0(X), dom θ ∩ U 6= ∅, and C is a closed convex subset of X such that C ∩ U 6= ∅. We
are going to consider increasingly specialized realizations of (66). First, suppose that C = X, that
I is an ordered finite index set, and that θ can be decomposed as θ =

∑
i∈I ωiθi, where

(67) (∀i ∈ I) θi ∈ Γ0(X) and dom θi ∩ U 6= ∅,

and the weights {ωi}i∈I ⊂ ]0, 1] satisfy
∑

i∈I ωi = 1. Then (66) becomes

(68) minimize
∑
i∈I

ωiθi over U.

In particular, if we set

(69) (∀i ∈ I) θi = 1
2 max{0, gi}2, where gi ∈ Γ0(X) and dom gi ∩ U 6= ∅,

then (68) reduces to solving a system of convex inequalities, namely,

(70) find x ∈ U such that max
i∈I

gi(x) ≤ 0.

Furthermore, if we set (gi)i∈I = (ιSi)i∈I , where (Si)i∈I is a family of closed convex sets such that,
for every i ∈ I, Si ∩ U 6= ∅, then (70) reduces to the basic convex feasibility problem

(71) find x ∈ U ∩
⋂
i∈I

Si.

We shall employ a product space setup initially introduced in [39] for metric projection methods
and revisited in [19, Section 5.9] in the context of feasibility problems with Bregman distances.
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Denote the standard Euclidean product space XI by X and write x = (xi)i∈I , for x ∈ X (hence,
‖x‖2 =

∑
i∈I ‖xi‖2). Now define

(72)


∆ =

{
(x, . . . , x) ∈ X : x ∈ X

}
,

f : X→ ]−∞,+∞] : x 7→
∑

i∈Iωif(xi),
U = U I = int dom f ,
θ : X→ ]−∞,+∞] : x 7→

∑
i∈I ωiθi(xi).

Then f induces a Bregman distance D on X defined by

(73) (∀(x,y) ∈ X×X) D(x,y) =
∑
i∈I

ωiD(xi, yi).

It is straightforward to verify that f satisfies A1–A5, that dom θ ∩U 6= ∅, and that ∆ ∩U 6= ∅.

When (66) is not guaranteed to have solutions, one can turn to the Bregman relaxations (38)
and (39). Let us now explore these relaxed formulations and derive algorithms to solve them.

5.2 Left Bregman relaxation

Setting ϕ = θ and ψ = ιC in (8) yields (66). Accordingly, the left relaxation of (66) with respect
to θ is derived from (38) to be

(74) minimize ←−envθ over C ∩ U.

A direct application of Theorem 4.4 and Proposition 3.16 then yields the following result.

Proposition 5.1 Suppose that (19) holds and that the solution set F of (74) is nonempty. Then
the sequence (yn)n∈N generated by

(75) y0 ∈ U and (∀n ∈ N) yn+1 =
(−→
PC ◦←−−prox θ

)
(yn)

converges to a point in F .

Next, we consider the problem

(76) minimize
∑
i∈I

ωi
←−envθi

over U

as a left relaxation of (68) under the assumption that the functions (θi)i∈I satisfy (19) (hence so
does θ). The convenience of the product space setup of (72) becomes apparent in the following
result.

Proposition 5.2 Let (x,y) ∈ U2. Then:

(i) ←−envθ(y) =
∑

i∈I ωi
←−envθi

(yi).
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(ii)
−→
P∆(x) = (z, . . . , z), where z =

∑
i∈I ωixi.

(iii) ←−−proxθ(y) =
(←−−prox θi

(yi)
)
i∈I .

(iv) Fix
−→
P∆ ◦←−−proxθ =

{
(z, · · · , z) : z solves (76)

}
.

Proof. (i): By definition,

←−envθ(y) = inf
x∈X

θ(x) + D(x,y) = inf
x∈X

∑
i∈I

ωi
(
θi(yi) +D(xi, yi)

)
=
∑
i∈I

ωi inf
xi∈X

θi(yi) +D(xi, yi) =
∑
i∈I

ωi
←−envθi

(yi).
(77)

(ii): See [7, Example 3.16(ii)]. (iii): It follows from Proposition 3.10(i) that

x =←−−proxθ(y)⇔ 0 ∈ ∂θ(x) + f ′(x)− f ′(y) =
(
ωi∂θi(xi)

)
i∈I +

(
ωif

′(xi)− ωif ′(yi)
)
i∈I

⇔ (∀i ∈ I) 0 ∈ ∂θi(xi) + f ′(xi)− f ′(yi)⇔ (∀i ∈ I) xi =←−−prox θi
(yi).

(78)

(iv): Since Fix
−→
P∆ ◦ ←−−proxθ ⊂∆ ∩U, let us fix z ∈∆ ∩U, say z = (z, · · · , z), where z ∈ U . Then

it follows from (ii), (iii), A1, A2, and (34) that

z ∈ Fix
−→
P∆ ◦←−−proxθ ⇔ z =

∑
i∈I

ωi
←−−prox θi

(z)

⇔ 0 = f ′′(z)

(∑
i∈I

ωi
(
z −←−−prox θi

(z)
))

=
∑
i∈I

ωif
′′(z)

(
z −←−−prox θi

(z)
)

⇔ 0 =
∑
i∈I

ωi∇←−envθi
(z) = ∇

(∑
i∈I

ωi
←−envθi

)
(z)

⇔ z solves (76). �

(79)

Important conclusions can be drawn from the above proposition. First, item (i) asserts that
Problem (76) in X is equivalent to

(80) minimize ←−envθ over ∆ ∩ U

in X. This is a special case of (74) for which Algorithm (75) becomes

(81) y0 ∈ U and (∀n ∈ N) yn+1 =
(−→
P∆ ◦←−−proxθ

)
(yn).

A direct application of Propositions 5.1 and 3.16 shows that (yn)n∈N converges to a fixed point
of
−→
P∆ ◦ ←−−proxθ, provided that such a point exists. In view of Proposition 5.2(ii)–(iv), we therefore

obtain the following proposition.
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Proposition 5.3 Suppose that the solution set G of (76) is nonempty and let (yn)n∈N be a sequence
generated by

(82) y0 ∈ U and (∀n ∈ N) yn+1 =
∑
i∈I

ωi
←−−prox θi

(yn).

Then (yn)n∈N converges to a point in G.

The above result can be applied to the problem of finding relaxed solutions to the inequality
problem (70) by choosing (θi)i∈I as in (69). This approach is of special interest when (70) has
no solution since the standard subgradient projection techniques that are available to solve this
problem [4, 23, 31] all fail in this situation. In the particular case of the convex feasibility problem
(71), the relaxed problem (76) becomes (see Example 3.3)

(83) minimize
∑
i∈I

ωi
←−
DSi over U.

Proposition 5.3 now reduces to the following statement.

Proposition 5.4 Suppose that the solution set G of (83) is nonempty and let (yn)n∈N be a sequence
generated by

(84) y0 ∈ U and (∀n ∈ N) yn+1 =
∑
i∈I

ωi
←−
PSi(yn)

Then (yn)n∈N converges to a point in G.

5.3 Right Bregman relaxation

The left relaxation techniques developed in Section 5.2 have natural right counterparts. Since the
resulting statements have largely similar proofs, we shall only highlight the main aspects of this
approach.

The right relaxation of (66) with respect θ is obtained by setting ϕ = ιC and ψ = θ in (39),
which yields

(85) minimize −→envθ over C ∩ U.

We derive at once from Theorem 4.4 and Proposition 3.16 the following result.

Proposition 5.5 Suppose that (21) holds and that the solution set E of (85) is nonempty. Then
the sequence (xn)n∈N generated by

(86) x0 ∈ U and (∀n ∈ N) xn+1 =
(←−
PC ◦ −−→prox θ

)
(xn)

converges to a point in E.
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Now assume that the functions (θi)i∈I in (67) satisfy (21) (hence so does θ). Then a right relaxation
of (68) is

(87) minimize
∑
i∈I

ωi
−→envθi

over U.

The next two results are the right counterparts of Propositions 5.2 and 5.3.

Proposition 5.6 Let (x,y) ∈ U2. Then:

(i) −→envθ(x) =
∑

i∈I ωi
−→envθi

(xi).

(ii)
←−
P∆(y) = (z, . . . , z), where z = ∇f∗

(∑
i∈I ωi∇f(yi)

)
.

(iii) −−→proxθ(x) =
(−−→prox θi

(xi)
)
i∈I .

(iv) Fix
←−
P∆ ◦ −−→proxθ =

{
(z, · · · , z) : z solves (87)

}
.

Proof. (i): Proceed as in Proposition 5.2(i). (ii): See [7, Example 3.16(i)]. (iii): It follows from
Proposition 3.10(ii) that

y = −−→proxθ(x)⇔ 0 ∈ ∂θ(y) + f ′′(y)(y − x) =
(
ωi∂θi(yi)

)
i∈I +

(
ωif

′′(yi)(yi − xi)
)
i∈I

⇔ (∀i ∈ I) 0 ∈ ∂θi(yi) + f ′′(yi)(yi − xi)⇔ (∀i ∈ I) yi = −−→prox θi
(xi).

(88)

(iv): Take z ∈∆ ∩U, say z = (z, · · · , z). Then it follows from (ii), (iii), and (35) that

z ∈ Fix
←−
P∆ ◦ −−→proxθ ⇔ f ′(z) =

∑
i∈I

ωif
′(−−→prox θi

(z)
)

⇔ 0 =
∑
i∈I

ωi
(
f ′(z)− f ′(−−→prox θi

(z))
)

⇔ 0 = ∇

(∑
i∈I

ωi
−→envθi

)
(z)

⇔ z solves (87). �

(89)

Proposition 5.7 Suppose that the solution set G of (87) is nonempty and let (xn)n∈N be a sequence
generated by

(90) x0 ∈ U and (∀n ∈ N) xn+1 = ∇f∗
(∑
i∈I

ωi∇f
(−−→prox θi

(xn)
))

.

Then (xn)n∈N converges to a point in G.
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We conclude with an application of this proposition to the right Bregman relaxation of (71):

(91) minimize
∑
i∈I

ωi
−→
DSi over U.

Proposition 5.8 Suppose that the solution set G of (91) is nonempty and let (xn)n∈N be a sequence
generated by

(92) x0 ∈ U and (∀n ∈ N) xn+1 = ∇f∗
(∑
i∈I

ωi∇f
(−→
PSi(xn)

))
.

Then (xn)n∈N converges to a point in G.

5.4 Connections with previous works

We conclude by providing links between the results of Sections 5.2 and 5.3 and previous works.

Remark 5.9

(i) When f = 1
2‖ · ‖

2, Algorithms (82) and (90) coincide with [39, Algorithm 3.1] (see also [33]).

(ii) When f = 1
2‖ · ‖

2, (83) and (91) reduce to the problem of minimizing a weighted sum of the
squares of the distances to the sets whereas (84) and (92) reduce to the method of barycentric
metric projections. This framework has been explored from different viewpoints in [3, 22, 25].

(iii) Algorithm (84) has been studied at various levels of generality in [12, 13, 16]. Proposition 5.4
is a particular case of the comparable results in [13, 14].

(iv) Algorithm (92) is discussed in [7, 15].
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