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l1-optimization
Key idea:

minimize 1-norm of a vector =⇒ zero components.

Simplest result: Lemma. There exist a solution x∗ of optimization problem

‖x‖1 −→ min s.t. Ax = b,

with A ∈ Rm×n, m < n, with ≤ m nonzero components.

l1 everywhere!

• Regression (Lasso)

• Optimization (Exact penalties, basis pursuit)

• Estimation (Least absolute values)

• Signal and image processing (Compressed Sensing)

• Classification and recognition (SVM)

• and beyond... Titles like “L1-revolution”.
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l1 in control
3 directions of research:

• Optimal control with l1 performance index or constraints

• l1-filtering

• Reducing the number of controls, states, outputs.

But there are many other applications of l1 techniques in control.
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Optimal control
We focus on discrete-time case. Simplest example is linear system with l1 performance index.

xk ∈ Rn, uk ∈ Rl, x0 = 0, d ∈ Rm

xk+1 = Axk + Buk, CxN = d

min ||u||1 =

N−1∑

k=0

l∑

i=1

|ui
k|.

Here N is fixed, matrices A, B, C and vector d are known.

Assumptions — pair (A, B) is controllable, rank C equals m, N ≥ m.
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Properties of the solution
Theorem The solution u∗ of the above problem with no more than m nonzero entries exists.

Proof. xN = BuN−1 + ABuN−2 + ... + AN−1Bu0, thus the basic problem is equivalent to
l1-optimization problem

min ||u||1, CHu = d, H = [B|AB|...|AN−1B]

Matrix CH has rank m under assumptions, hence we are in the framework of the main lemma.

Explicit solution: the simplest case l = 1, m = 1 (scalar control, target set is a hyperplane). Then
we find i = argmaxk|CAN−k−1B|, u∗i = d

CAN−i−1B
, u∗k = 0, k 6= i.
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Solution for n = m = 2, l = 1
Scalar control, 2D state, terminal point fixed:

min ||u||1 =

N−1∑

k=0

|uk|

xk+1 = Axk + Buk, x0 = 0, xN = d.

Construct vectors si+1 = AiB, i = 0, ..., N − 1, sN+i+1 = −AiB, i = 0, ..., N − 1, on
the plane and their convex hull SN = conv(si, i = 1, ..., 2N). This is the attainable set SN

(for unit ball constraints). Intersection of the ray λd with this set defines the optimal value
||u∗||1 = min{1/λ : λd ∈ SN}; the optimal control u∗ can be easily constructed as well. It
contains no more than 2 nonzero entries.

It is convenient to use codes convhull, convhulln in Matlab.
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Example

A =


 0.8 5

0 0.9


 , B =


 0

1


 , x0 =


 0

0


 , x20 =


 1

0
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x are for ±AkB, blue line is a convex hull of these points (attainable set).

Matrix A is stable, the solution u∗ for N ≥ 9 does not depend on N :

||u∗||1 = 0.1089, u∗N−1 = −0.0328, u∗N−9 = 0.0761.
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Another example
D.Tabak, B.C.Kuo, Optimal control by mathematical programming, Prentice-Hall, 1971. Section
5.5 ”Fuel-optimal rendezvous problem”.

Space flight, 4 states, 2 controls, fixed terminal point: n = 4, l = 2, m = 4. Optimal solution
found by LP, it has 4 nonzero impulses.

We have solved many similar examples.
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Related problems
1. Weighted norm ||u||1 =

∑
k αk|uk|, αk > 0 — all results hold true.

2. uk ≥ 0, min
∑

k αkuk — similar approach.

3. No terminal constraints, ||u||1 ≤ 1, min F (xN ), F is a concave function. The solution is attained
at a vertex of attainable set and contains one impulse.

4. Minimum-time problem: control is bounded ||u||1 ≤ r, terminal point xN is fixed, find minimal
N . The problem can have no solution (e.g. if A is stable, and r small enough). If optimal solution
exists, it has no more n nonzero components.

Comparison with l∞ constrained control: the optimal solution always exists and bang-bang
principle holds.
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More complicated problems
Mixed performance index:

min

(∑

k

[(Pxk, xk) + (Quk, uk)] + µ||u||1
)

xk+1 = Axk + Buk.

The number of nonzero variables depends on µ > 0 . Similar example will be discussed later
(l1-filtering).

Another cases — mixed l1 and l∞ control constraints or state constraints.
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l1-filterimg
• Examples

• Time series

• General smoothing and filtering problem

• Discussion
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Fault detection
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Green line — true signal (unit step), blue — signal + noise (σ = 0.2), black — smoothing by
quadratic minimization, red — by l1 technique.
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Large noise
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The same for σ = 0.5.
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Piece-wise linear approximation
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True signal is triangular.
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RTS index
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Real data — RTS index for January-February, 2010.

15



'

&

$

%

Time series — quadratic filtering
Basic problem: given time series yk, k = 1, ..., N , present it as yk = xk + vk, where xk is trend,
vk is noise.

Typical is Hodrick-Prescott (HP) smoother: xk is the solution of quadratic optimization problem

min

(
N∑

k=1

(xk − yk)2 + µ

N−1∑

k=2

(xk+1 − 2xk + xk−1)2

)

or

min

(
N∑

k=1

(xk − yk)2 + µ

N−1∑

k=1

(xk+1 − xk)2

)
,

here µ > 0 is a parameter.
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Time series — l1 filtering
Boyd (Boyd, Vanderberghe, Convex Optimization, 2004; Boyd a.o. SIAM Review, 2009, 51, No
2, 339-360) proposed the same estimates, but with l2 norm replaced with l1 in the second term:

min

(
N∑

k=1

(xk − yk)2 + µ

N−1∑

k=2

|xk+1 − 2xk + xk−1|
)

min

(
N∑

k=1

(xk − yk)2 + µ

N−1∑

k=1

|xk+1 − xk|
)

.

We call them Boyd estimates of the first and zero order respectively. Their properties:

• The solution is piece-wise linear (piece-wise constant) function of k. The number of brakes
and their location depends on data yk and on µ.

• The solution can be found either by standard quadratic programming or by special methods
tailored for such optimization problems. For instance Boyd developed l1-ls software. We
exploited CVX, also developed by Boyd.
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Kalman filter
System dynamics:

xk+1 = Akxk + Bkuk + Gkwk, k = 1, ..., N

measurements
yk = Ckxk + Dkuk + Hkwk + vk, k = 1, ..., N

matrices Ak, Bk, Ck, Dk, Gk, Hk are known, inputs uk are available, noises wk, vk are Gaussian,
mutually independent, zero mean with covariance matrices Qk, Rk. The goal is to estimate states
{xk} under measurements {yk}. Then the best linear unbiased estimate coincides with least
squares estimate. Its recurrent form defines Kalman filter.

In simplest case with uk = 0, Gk = G, Hk = 0, Ak = A, Ck = C, Qk = σ2
1 , Rk = σ2

2 Kalman
filtering is equivalent to MLS

min

(∑

k

(yk − Cxk)2 + µ
∑

k

w2
k

)
, µ = σ2

2/σ2
1

subject to
xk+1 = Axk + Gwk k = 1, ..., N.

This is linear-quadratic regulator problem with free terminal point and its solution can be found
explicitly; let’s denote it x̂k, ŵk.
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Properties of Kalman filter
Advantages: explicit formula for x̂k, recurrent form of the estimate (however the best x̂k requires
all N measurements, not the first k ones). Code zkalman in Matlab implements the filter.

Disadvantages: covariation matrices and initial conditions are needed. But the main objection
are too restricted assumptions on noises. Are they really unbiased? Are they Gaussian? These
assumptions are very unnatural for noises wk in state equations. For instance, these terms can
be caused by another player’s actions; then they are not random.
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l1 - smoothing
For the same problem as above

xk+1 = Axk + Gwk, yk = Cxk + vk, k = 1, ..., N

we propose l1 alternative to Kalman filter. Solve optimization problem

min
x,w

(∑

k

||yk − Cxk||2 + µ
∑

k

|wk|
)

,

subject to
xk+1 = Axk + Gwk k = 1, ..., N

and denote its solution x̂k, ŵk. Then x̂k is the desired estimate for xk.

Time-series filtering can be treated as a particular case of this general scheme for state equations

xk+1 = xk + wk, yk = xk + vk

or
xk+1 = 2xk − xk−1 + wk, yk = xk + vk

after exclusion of variables wk.
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Discussion
1. Motivation. Noises in measurements vk in most cases are random and approximately Gaussian,thus
they can be treated by LS method. However perturbations wk in state equation are typically non
random. We can assume them bounded in l1 norm: ||w||1 ≤ r. Translating this constraint into
performance index by use of Lagrange multipliers, we arrive to above considered optimization
problem.

2. Properties of the solution. Estimates x̂k have the same structure as in l1 control problem —
many ŵk are equal zero. That means that x̂k+1 = Ax̂k for many k — no perturbations in state
equation.

3. Computationally the problem is not hard, for instance CVX software is convenient.

4. In contrast with Kalman filtering the problem should be solved off-line. However its on-line
versions can be designed.

5. The choice of µ requires some a-priori information.

6. We have many test problems solved; however we have no experience in real-life filtering
problems.

7. Extension and theoretical validation can be found in: A.Yuditsky, A.Nemirovski a.o. “On the
accuracy of l1-filtering of signals with block-sparse structure”, Conference “Neural Information
Processing Systems”, Granada, Spain, December 2011.
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Reducing the number of controls, states, outputs
Linear system:

ẋ = Ax + Bu

y = Cx

x ∈ Rn — state y ∈ Rl — output u ∈ Rk — control (A, B) — controllable, (A, C) —
observable

Goal — design controller K as linear state feedback

u = Kx

or static output feedback
u = Ky

• stabilizing closed-loop system

• optimizing one of the following criteria:

• number of controls =⇒ number of actuators

• number of states exploited for feedback =⇒ number of sensors
• number of outputs =⇒ “minimal” information transmitted

Controller information←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Plant
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LMI approach
Function

V (x) = xTQx, Q Â 0

is quadratic Lyapunov function for closed-loop system if ⇐⇒ AT
c Q + QAc ≺ 0 or

AcP + PAT
c ≺ 0, P = Q−1

State feedback: u = Kx =⇒ Ac = A + BK

AP + PAT + BKP + PBTKT ≺ 0, P Â 0

Output feedback: u = Ky =⇒ Ac = A + BKC

AP + PAT + BKCP + PCTBTKT ≺ 0, P Â 0

K and P are variables!

• However matrix inequality is nonlinear in K, P .

• Constraints are nonconvex.

• Static output feedback does not exist in general.
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Design of gain
Let’s try to reduce the number of nonzero rows of K

u =




. . . . . . . . . . . . . .

0 0 · · · 0

. . . . . . . . . . . . . .

0 0 · · · 0

. . . . . . . . . . . . . .




︸ ︷︷ ︸
K

x

=⇒ use small number of controls

or — reduce the number of nonzero columns of K

u =




· · · 0 · · · 0 · · ·
· · · 0 · · · 0 · · ·
. . . . . . . . . . . . . . . . . . . . .

· · · 0 · · · 0 · · ·




︸ ︷︷ ︸
K

x

=⇒ use small number of states
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Special matrix norms
Let M ∈ Rm×n

Introduce norms:

‖M‖r1 =
m∑

i=1

max
16j6n

|mij |

‖M‖c1 =
n∑

j=1

max
16i6m

|mij |

Theorem Solution of
min ||M ||

(Ai, M) = bi, i = 1, . . . , l

contains ≤ l nonzero rows (columns).

Seeking controller:

• stabilizing closed-loop system

• with minimal r1-нормой =⇒ with reduced number of nonzero rows (r1-optimization)

or

• with minimal c1-norm =⇒ with reduced number of nonzero columns. (c1-optimization)
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Preserving matrix structure
Left multiplication:




· · · · · · · · ·
· · · · · · · · ·
· · · · · · · · ·
· · · · · · · · ·



×




· · · 0 · · ·
· · · 0 · · ·
. . . . . . . . . . . .

· · · 0 · · ·




=




· · · 0 · · ·
· · · 0 · · ·
. . . . . . . . . . . .

· · · 0 · · ·




Right multiplication:



. . . . . . . . . . . . . . .

0 0 · · · 0

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .



×




· · · · · · · · ·
· · · · · · · · ·
· · · · · · · · ·
· · · · · · · · ·




=




. . . . . . . . . . . . . . .

0 0 · · · 0

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .
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r1-optimization: reducing number of controls
Control system:

ẋ = Ax + Bu

Goal: stabilizing controller u = Kx, reducing number of controls

Lyapunov:
AP + PAT + BKP + PKTBT ≺ 0, P Â 0

Introduce Y = KP =⇒ LMI

AP + PAT + BY + Y TBT ≺ 0, P Â 0

matrix Y with reduced number of nonzero rows

⇓
gain K = Y P−1 with reduced number of nonzero rows

⇓
reduced number of controls!
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r1-optimization: reducing number of controls
Proposition 1. Let Ŷ , P̂ — the solution of minimization problem

‖Y ‖r1 −→ min

subject to
AP + PAT + BY + Y TBT ≺ 0, P Â 0.

Typically Ŷ has some zero rows, then the same number zero rows is in

K̂ = Ŷ P̂−1

and u = K̂x is the stabilizing controller.

• We distinguish controls which are sufficient to design a stabilizing controller

• Constraint AP + PAT + BY + Y TBT 4 −2αP =⇒ α allows to fix stability degree of the
system.

• We arrive to SDP

• LMI techniques is exploited
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Example 1: stabilizing helicopter Bell201-A

A =




−0.0046 0.038 0,3259 −0,0045 −0,402 −0,073 −9,81 0

−0.1978 −0.5667 0,357 −0,0378 −0,2149 0,5683 0 0

0.0039 −0.0029 −0,2947 0,007 0,2266 0,0148 0 0

0.0133 −0.0014 −0,4076 −0,0654 −0,4093 0,2674 0 9,81

0.0127 −0.01 −0,8152 −0,0397 −0,821 0,1442 0 0

−0.0285 −0.0232 0.1064 0.0709 −0.2786 −0.7396 0 0

0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0




B =




0.0676 0.1221 −0.0001 −0.0016

−1.1151 0.1055 0.0039 0.0035

0.0062 −0.0682 0.001 −0.0035

−0.017 0.0049 0.1067 0.1692

−0.0129 0.0106 0.2227 0.143

0.139 0.0059 0.0326 −0.407

0 0 0 0

0 0 0 0




Leibfritz F., Lipinski W. Description of the benchmark examples in COMPleib 1.0. Technical report.
University of Trier, 2003. URL: www.complib.de
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Example 1 (cont)

Ŷ =




0 0 0 0 0 0 0 0

−0.0368 −0.0368 0.0370 0.0351 −0.0333 0.0369 0.0370 −0.0370

−0.0067 0.0075 −0.0076 0.0074 −0.0076 −0.0076 −0.0076 −0.0076

0 0 0 0 0 0 0 0




⇓

K̂ =




0 0 0 0 0 0 0 0

−0.0383 0.0046 4.7623 −0.0178 −2.3057 −0.2035 2.2435 −3.5635

0.0091 0.0094 −0.7096 −0.0057 −0.7954 −0.0939 −0.8332 −0.7581

0 0 0 0 0 0 0 0




=⇒ use controls u2 и u3

max
i

Re λi(A + BK̂) = −0.0500
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c1-optimization: state feedback
Control system:

ẋ = Ax + u

(dimensions of state and control coincide)

Goal: control u = Kx, exploiting reduced number of states.

Lyapunov function provides:

ATQ + QA + QK + KTQ ≺ 0, Q Â 0

Introduce Y = QK =⇒ LMI

ATQ + QA + Y + Y T ≺ 0, Q Â 0

Proposition 2. LetŶ , Q̂ be the solution of

‖Y ‖c1 −→ min s.t. ATQ + QA + Y + Y T ≺ 0, Q Â 0.

Typically Ŷ has zero columns, then the same number of zero columns has gain

K̂ = Q̂−1Ŷ

of state feedback stabilizing controller.

• That is we find the states which are sufficient for stabilization
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Example 2
ẋ = Ax + u

A =




0 13 0 1

1 0 −1 0

0 13 −1 0

−1 0 0 1




Ŷ =




−0.1930 0 0 −0.0144

−0.1930 0 0 −0.0719

−0.1930 0 0 0.0721

−0.0878 0 0 −0.0721




=⇒ K̂ =




−2.5325 0 0 0.0319

−0.4642 0 0 −0.0143

−1.3742 0 0 0.2368

−0.7718 0 0 −0.8593




max
i

Re λi(A + K̂) = −0.0503

Control uses x1 and x4only!

Ŷ =




−0.5661 0 0 0

−0.5654 0 0 0

−0.5660 0 0 0

0.0482 0 0 0




=⇒ K̂ =




−3.4039 0 0 0

−0.6387 0 0 0

−1.6738 0 0 0

−1.7367 0 0 0




, max
i

Re λi(Ac) = −0.0503
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c1-optimization: output feedback
System considered:

ẋ = Ax + u

y = Cx

Goal: control u = Ky, with reduced number of outputs exploited.

As above:
ATQ + QA + QKC + CTKTQ ≺ 0, Q Â 0

Introduce Y = QK =⇒ LMI

ATQ + QA + Y C + CTY T ≺ 0, Q Â 0

Proposition 3. Let Ŷ , Q̂ be the solution of

‖Y ‖c1 −→ min s.t. ATQ + QA + Y C + CTY T ≺ 0, Q Â 0.

Matrix Ŷ has typically some zero columns, then gain

K̂ = Q̂−1Ŷ

has the same number zero columns.

• Of course for B = I stabilizing static output feedback exists.

• That is we distinguish outputs which allow to stabilize the system
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Example 3

A =




0 13 0 1

1 0 −1 0

0 13 −1 0

−1 0 0 1




, C =




1 0 1 0

0 1 −1 0

0 1 0 1




Ŷ =




−0.1167 0 −0.0729

−0.1167 0 −0.0729

−0.1167 0 0.0729

−0.0397 0 −0.0729




=⇒ K̂ =




−1.5180 0 −0.3871

−0.2754 0 −0.0898

−0.8551 0 −0.0050

−0.3385 0 −0.9296




max
i

Re λi(A + K̂C) = −0.0506

Control exploits outputs y1 и y3 only!

Ŷ =




−0.3013 0 0

−0.3009 0 0

−0.3012 0 0

0.0881 0 0




=⇒ K̂ =




−2.2317 0 0

−0.4130 0 0

−1.1678 0 0

−0.8547 0 0




, max
i

Re λi(Ac) = −0.0508
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Design of linear output
System:

ẋ = Ax + Bu

Goal:

• find matrix C with reduced number of rows

y = Cx

such that it is possible to design • stabilizing static output feedback u = Ky.

Motivation

Low-dimensional output =⇒ reduces information quantity transmitted from plant to controller
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Design of linear output (cont)
Zero columns in Y

⇓

u = Kx =




× 0 × 0 ×
× 0 × 0 ×
. . . . . . . . . . . . . . . . . .

× 0 × 0 ×




︸ ︷︷ ︸
Y




× × · · · ×
. . . . . . . . . . . . . . . .

× × · · · ×
. . . . . . . . . . . . . . . .

× × · · · ×




︸ ︷︷ ︸
P−1

x = K̃ C̃x︸︷︷︸
y

Proposition 4. Suppose Ŷ , P̂ is a solution of

‖Y ‖c1 −→ min s.t. AP + PAT + BY + Y TBT ≺ 0, P Â 0.

Then gain K̃ consists of nonzero columns of Ŷ , and outputs C̃ coincide with columns of P̂−1.

• We design low-dimensional output

• We get rid of assumption B = I
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Example 4

A =




0 1 0

0 0 1

0 13 0


 , B =




0

0

1




We get:
Ŷ =

(
1.7400 −15.6830 0

)

=⇒ K̃ =
(
1.7400 −15.6830

)
, C̃ =


0.4000 0.1527 0.0127

0.1527 0.8994 0.2368




max
i

Re λi(A + BK̃C̃) = −0.0509

Let

Ŷ =
(
0 −15.6830 0

)
=⇒ K̃ = −15.6830, C̃ =

(
0.1527 0.8994 0.2368

)

max
i

Re λi(A + BK̃C̃) = −0.0609

Syrmos V.L., Abdallah C.T., Dorato P., Grigoriadis K. Static output feedback: a survey // Automatica.
1997. Vol. 33. P. 125–137.
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Conclusions
• The technique of l1-optimization works in optimal control.

• l1-alternative to Kalman filter looks promising.

• We believe that the new approach — reduction of number of states, outputs or controls —
has numerous applications.
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