
Chapter 10

Proximal Splitting Methods in Signal Processing

Patrick L. Combettes and Jean-Christophe Pesquet

Abstract The proximity operator of a convex function is a natural extension of the

notion of a projection operator onto a convex set. This tool, which plays a central

role in the analysis and the numerical solution of convex optimization problems, has

recently been introduced in the arena of inverse problems and, especially, in signal

processing, where it has become increasingly important. In this paper, we review the

basic properties of proximity operators which are relevant to signal processing and

present optimization methods based on these operators. These proximal splitting

methods are shown to capture and extend several well-known algorithms in a unify-

ing framework. Applications of proximal methods in signal recovery and synthesis

are discussed.
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10.1 Introduction

Early signal processing methods were essentially linear, as they were based on

classical functional analysis and linear algebra. With the development of nonlin-

ear analysis in mathematics in the late 1950s and early 1960s (see the bibliogra-

phies of [6,142]) and the availability of faster computers, nonlinear techniques have

slowly become prevalent. In particular, convex optimization has been shown to pro-

vide efficient algorithms for computing reliable solutions in a broadening spectrum

of applications.

Many signal processing problems can in fine be formulated as convex optimiza-

tion problems of the form

minimize
x∈RN

f1(x)+ · · ·+ fm(x), (10.1)

where f1, . . . , fm are convex functions from R
N to ]−∞,+∞]. A major difficulty that

arises in solving this problem stems from the fact that, typically, some of the func-

tions are not differentiable, which rules out conventional smooth optimization tech-

niques. In this paper, we describe a class of efficient convex optimization algorithms

to solve (10.1). These methods proceed by splitting in that the functions f1, . . . , fm

are used individually so as to yield an easily implementable algorithm. They are

called proximal because each nonsmooth function in (10.1) is involved via its prox-

imity operator. Although proximal methods, which can be traced back to the work

of Martinet [98], have been introduced in signal processing only recently [46, 55],

their use is spreading rapidly.

Our main objective is to familiarize the reader with proximity operators, their

main properties, and a variety of proximal algorithms for solving signal and im-

age processing problems. The power and flexibility of proximal methods will be

emphasized. In particular, it will be shown that a number of apparently unrelated,

well-known algorithms (e.g., iterative thresholding, projected Landweber, projected

gradient, alternating projections, alternating-direction method of multipliers, alter-

nating split Bregman) are special instances of proximal algorithms. In this respect,

the proximal formalism provides a unifying framework for analyzing and develop-

ing a broad class of convex optimization algorithms. Although many of the subse-

quent results are extendible to infinite-dimensional spaces, we restrict ourselves to

a finite-dimensional setting to avoid technical digressions.

The paper is organized as follows. Proximity operators are introduced in Sec-

tion 10.2, where we also discuss their main properties and provide examples. In Sec-

tions 10.3 and 10.4, we describe the main proximal splitting algorithms, namely the

forward–backward algorithm and the Douglas–Rachford algorithm. In Section 10.5,

we present a proximal extension of Dykstra’s projection method which is tailored to

problems featuring strongly convex objectives. Composite problems involving lin-

ear transformations of the variables are addressed in Section 10.6. The algorithms

discussed so far are designed for m = 2 functions. In Section 10.7, we discuss paral-
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lel variants of these algorithms for problems involving m ≥ 2 functions. Concluding

remarks are given in Section 10.8.

10.1.1 Notation

We denote by R
N the usual N-dimensional Euclidean space, by k·k its norm, and by

I the identity matrix. Standard definitions and notation from convex analysis will be

used [13, 87, 114]. The domain of a function f : RN → ]−∞,+∞] is dom f = {x ∈
R

N | f (x) < +∞}. Γ0(R
N) is the class of lower semicontinuous convex functions

from R
N to ]−∞,+∞] such that dom f 6=∅. Let f ∈ Γ0(R

N). The conjugate of f is

the function f ∗ ∈ Γ0(R
N) defined by

f ∗ : RN → ]−∞,+∞] : u 7→ sup
x∈RN

x⊤u− f (x), (10.2)

and the subdifferential of f is the set-valued operator

∂ f : RN → 2R
N

: x 7→
�

u ∈ R
N | (∀y ∈ R

N) (y− x)⊤u+ f (x)≤ f (y)
	
. (10.3)

Let C be a nonempty subset of RN . The indicator function of C is

ιC : x 7→
(

0, if x ∈C;

+∞, if x /∈C,
(10.4)

the support function of C is

σC = ι∗C : RN → ]−∞,+∞] : u 7→ sup
x∈C

u⊤x, (10.5)

the distance from x ∈ R
N to C is dC(x) = infy∈Ckx− yk, and the relative interior of

C (i.e., interior of C relative to its affine hull) is the nonempty set denoted by riC. If

C is closed and convex, the projection of x ∈R
N onto C is the unique point PCx ∈C

such that dC(x) = kx−PCxk.

10.2 From projection to proximity operators

One of the first widely used convex optimization splitting algorithms in signal pro-

cessing is POCS (Projection Onto Convex Sets) [31, 42, 141]. This algorithm is

employed to recover/synthesize a signal satisfying simultaneously several convex

constraints. Such a problem can be formalized within the framework of (10.1) by

letting each function fi be the indicator function of a nonempty closed convex set Ci

modeling a constraint. This reduces (10.1) to the classical convex feasibility prob-

lem [31, 42, 44, 86, 93, 121, 122, 128, 141]
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find x ∈
m\

i=1

Ci. (10.6)

The POCS algorithm [25, 141] activates each set Ci individually by means of its

projection operator PCi
. It is governed by the updating rule

xn+1 = PC1
· · ·PCmxn. (10.7)

When
Tm

i=1 Ci 6= ∅ the sequence (xn)n∈N thus produced converges to a solution to

(10.6) [25]. Projection algorithms have been enriched with many extensions of this

basic iteration to solve (10.6) [10, 43, 45, 90]. Variants have also been proposed to

solve more general problems, e.g., that of finding the projection of a signal onto an

intersection of convex sets [22,47,137]. Beyond such problems, however, projection

methods are not appropriate and more general operators are required to tackle (10.1).

Among the various generalizations of the notion of a convex projection operator that

exist [10, 11, 44, 90], proximity operators are best suited for our purposes.

The projection PCx of x ∈R
N onto the nonempty closed convex set C ⊂R

N is the

solution to the problem

minimize
y∈RN

ιC(y)+
1

2
kx− yk2. (10.8)

Under the above hypotheses, the function ιC belongs to Γ0(R
N). In 1962, Moreau

[101] proposed the following extension of the notion of a projection operator,

whereby the function ιC in (10.8) is replaced by an arbitrary function f ∈ Γ0(R
N).

Definition 10.1 (Proximity operator) Let f ∈ Γ0(R
N). For every x ∈ R

N, the min-

imization problem

minimize
y∈RN

f (y)+
1

2
kx− yk2 (10.9)

admits a unique solution, which is denoted by prox f x. The operator prox f : RN →
R

N thus defined is the proximity operator of f .

Let f ∈ Γ0(R
N). The proximity operator of f is characterized by the inclusion

(∀(x, p) ∈ R
N ×R

N) p = prox f x ⇔ x− p ∈ ∂ f (p), (10.10)

which reduces to

(∀(x, p) ∈ R
N ×R

N) p = prox f x ⇔ x− p = ∇ f (p) (10.11)

if f is differentiable. Proximity operators have very attractive properties that make

them particularly well suited for iterative minimization algorithms. For instance,

prox f is firmly nonexpansive, i.e.,
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(∀x ∈ R
N)(∀y ∈ R

N) kprox f x− prox f yk2 +k(x−prox f x)− (y−prox f y)k2

≤ kx− yk2, (10.12)

and its fixed point set is precisely the set of minimizers of f . Such properties allow us

to envision the possibility of developing algorithms based on the proximity operators

(prox fi
)1≤i≤m to solve (10.1), mimicking to some extent the way convex feasibility

algorithms employ the projection operators (PCi
)1≤i≤m to solve (10.6). As shown in

Table 10.1, proximity operators enjoy many additional properties. One will find in

Table 10.2 closed-form expressions of the proximity operators of various functions

in Γ0(R) (in the case of functions such as | · |p, proximity operators implicitly appear

in several places, e.g., [3, 4, 35]).

From a signal processing perspective, proximity operators have a very natural

interpretation in terms of denoising. Let us consider the standard denoising problem

of recovering a signal x ∈ R
N from an observation

y = x+w, (10.13)

where w ∈ R
N models noise. This problem can be formulated as (10.9), where

k ·−yk2/2 plays the role of a data fidelity term and where f models a priori knowl-

edge about x. Such a formulation derives in particular from a Bayesian approach

to denoising [21, 124, 126] in the presence of Gaussian noise and of a prior with a

log-concave density exp(− f ).

10.3 Forward-backward splitting

In this section, we consider the case of m = 2 functions in (10.1), one of which is

smooth.

Problem 10.2 Let f1 ∈ Γ0(R
N), let f2 : RN → R be convex and differentiable with

a β -Lipschitz continuous gradient ∇ f2, i.e.,

(∀(x,y) ∈ R
N ×R

N) k∇ f2(x)−∇ f2(y)k≤ βkx− yk, (10.14)

where β ∈ ]0,+∞[. Suppose that f1(x)+ f2(x) →+∞ as kxk→ +∞. The problem

is to

minimize
x∈RN

f1(x)+ f2(x). (10.15)

It can be shown [55] that Problem 10.2 admits at least one solution and that, for

any γ ∈ ]0,+∞[, its solutions are characterized by the fixed point equation

x = proxγ f1

�
x− γ∇ f2(x)

�
. (10.16)

This equation suggests the possibility of iterating
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Table 10.1 Properties of proximity operators [27, 37, 53–55, 102]: ϕ ∈ Γ0(R
N); C ⊂ R

N is

nonempty, closed, and convex; x ∈ R
N .

Property f (x) prox f x

i translation ϕ(x− z), z ∈R
N z+proxϕ (x− z)

ii scaling ϕ(x/ρ), ρ ∈ Rr{0} ρproxϕ/ρ2 (x/ρ)

iii reflection ϕ(−x) −proxϕ (−x)

iv quadratic ϕ(x)+αkxk2/2+u⊤x+ γ proxϕ/(α+1)

�
(x−u)/(α +1)

�

perturbation u ∈R
N , α ≥ 0, γ ∈ R

v conjugation ϕ∗(x) x−proxϕ x

vi squared distance
1

2
d2

C(x)
1

2
(x+PCx)

vii Moreau envelope eϕ(x) = inf
y∈RN

ϕ(y)+
1

2
kx− yk2 1

2

�
x+prox2ϕ x

�

viii Moreau complement
1

2
k · k2 − eϕ(x) x−proxϕ/2(x/2)

ix decomposition ∑N
k=1 φk(x

⊤bk) ∑N
k=1 proxφk

(x⊤bk)bk

in an orthonormal

basis (bk)1≤k≤N
φk ∈ Γ0(R)

x semi-orthogonal ϕ(Lx) x+ν−1L⊤�proxνϕ (Lx)−Lx
�

linear transform L ∈ R
M×N , LL⊤ = νI, ν > 0

xi quadratic function γkLx− yk2/2 (I + γL⊤L)−1(x+ γL⊤y)

L ∈ R
M×N , γ > 0, y ∈R

M

xii indicator function ιC(x) =

(
0 if x ∈C

+∞ otherwise
PCx

xiii distance function γdC(x), γ > 0





x+ γ(PCx− x)/dC(x)

if dC(x) > γ

PCx otherwise

xv function of

distance

φ (dC(x))

φ ∈ Γ0(R) even, differentiable

at 0 with φ ′(0) = 0





x+

�
1−

proxφ dC(x)

dC(x)

�
(PCx− x)

if x /∈C

x otherwise

xv support function σC(x) x−PCx

xvii thresholding
σC(x)+φ (kxk)
φ ∈ Γ0(R) even

and not constant





proxφ dC(x)

dC(x)
(x−PCx)

if dC(x) > maxArgminφ

x−PCx otherwise

xn+1 = proxγn f1| {z }
backward step

�
xn − γn∇ f2(xn)| {z }

forward step

�
(10.17)

for values of the step-size parameter γn in a suitable bounded interval. This type of

scheme is known as a forward–backward splitting algorithm for, using the termi-

nology used in discretization schemes in numerical analysis [132], it can be broken
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up into a forward (explicit) gradient step using the function f2, and a backward (im-

plicit) step using the function f1. The forward–backward algorithm finds its roots in

the projected gradient method [94] and in decomposition methods for solving vari-

ational inequalities [99, 119]. More recent forms of the algorithm and refinements

can be found in [23,40,48,85,130]. Let us note that, on the one hand, when f1 = 0,

(10.17) reduces to the gradient method

xn+1 = xn − γn∇ f2(xn) (10.18)

for minimizing a function with a Lipschitz continuous gradient [19,61]. On the other

hand, when f2 = 0, (10.17) reduces to the proximal point algorithm

xn+1 = proxγn f1
xn (10.19)

for minimizing a nondifferentiable function [26, 48, 91, 98, 115]. The forward–

backward algorithm can therefore be considered as a combination of these two basic

schemes. The following version incorporates relaxation parameters (λn)n∈N.

Algorithm 10.3 (Forward-backward algorithm)

Fix ε ∈ ]0,min{1,1/β}[, x0 ∈ R
N

For n = 0,1, . . .

γn ∈ [ε,2/β − ε]

yn = xn − γn∇ f2(xn)

λn ∈ [ε,1]

xn+1 = xn +λn(proxγn f1
yn − xn).

(10.20)

Proposition 10.4 [55] Every sequence (xn)n∈N generated by Algorithm 10.3 con-

verges to a solution to Problem 10.2.

The above forward–backward algorithm features varying step-sizes (γn)n∈N but

its relaxation parameters (λn)n∈N cannot exceed 1. The following variant uses con-

stant step-sizes and larger relaxation parameters.

Algorithm 10.5 (Constant-step forward–backward algorithm)

Fix ε ∈ ]0,3/4[ and x0 ∈ R
N

For n = 0,1, . . .
yn = xn −β−1∇ f2(xn)

λn ∈ [ε,3/2− ε]

xn+1 = xn +λn(proxβ−1 f1
yn − xn).

(10.21)

Proposition 10.6 [13] Every sequence (xn)n∈N generated by Algorithm 10.5 con-

verges to a solution to Problem 10.2.

Although they may have limited impact on actual numerical performance, it

may be of interest to know whether linear convergence rates are available for the

forward–backward algorithm. In general, the answer is negative: even in the simple
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setting of Example 10.12 below, linear convergence of the iterates (xn)n∈N gener-

ated by Algorithm 10.3 fails [9, 139]. Nonetheless it can be achieved at the expense

of additional assumptions on the problem [10, 24, 40, 61, 92, 99, 100, 115, 119, 144].

Another type of convergence rate is that pertaining to the objective values

( f1(xn)+ f2(xn))n∈N. This rate has been investigated in several places [16, 24, 83]

and variants of Algorithm 10.3 have been developed to improve it [15, 16, 84, 104,

105,131,136] in the spirit of classical work by Nesterov [106]. It is important to note

that the convergence of the sequence of iterates (xn)n∈N, which is often crucial in

practice, is no longer guaranteed in general in such variants. The proximal gradient

method proposed in [15, 16] assumes the following form.

Algorithm 10.7 (Beck-Teboulle proximal gradient algorithm)

Fix x0 ∈R
N , set z0 = x0 and t0 = 1

For n = 0,1, . . .

yn = zn −β−1∇ f2(zn)

xn+1 = proxβ−1 f1
yn

tn+1 =
1+

p
4t2

n +1

2

λn = 1+
tn −1

tn+1

zn+1 = xn +λn(xn+1 − xn).

(10.22)

While little is known about the actual convergence of sequences produced by Al-

gorithm 10.7, the O(1/n2) rate of convergence of the objective function they achieve

is optimal [103], although the practical impact of such property is not always man-

ifest in concrete problems (see Figure 10.2 for a comparison with the Forward-

Backward algorithm).

Proposition 10.8 [16] Assume that, for every y∈ dom f1, ∂ f1(y) 6=∅, and let x be a

solution to Problem 10.2. Then every sequence (xn)n∈N generated by Algorithm 10.7

satisfies

(∀n ∈ Nr{0}) f1(xn)+ f2(xn)≤ f1(x)+ f2(x)+
2βkx0 − xk2

(n+1)2
. (10.23)

Other variations of the forward–backward algorithm have also been reported to

yield improved convergence profiles [20, 70, 97, 134, 135].

Problem 10.2 and Proposition 10.4 cover a wide variety of signal processing

problems and solution methods [55]. For the sake of illustration, let us provide a

few examples. For notational convenience, we set λn ≡ 1 in Algorithm 10.3, which

reduces the updating rule to (10.17).

Example 10.9 (projected gradient) In Problem 10.2, suppose that f1 = ιC, where

C is a closed convex subset of RN such that {x ∈ C | f2(x) ≤ η} is nonempty and

bounded for some η ∈ R. Then we obtain the constrained minimization problem
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Table 10.2 Proximity operator of φ ∈ Γ0(R); α ∈ R, κ > 0, κ > 0, κ > 0, ω > 0, ω < ω , q > 1,

τ ≥ 0 [37, 53, 55].

φ (x) proxφ x

i ι[ω,ω](x) P[ω,ω] x

ii σ[ω,ω](x) =





ωx if x < 0

0 if x = 0

ωx otherwise

soft[ω,ω](x) =





x−ω if x < ω

0 if x ∈ [ω,ω]

x−ω if x > ω

iii

ψ(x)+σ[ω,ω](x)

ψ ∈ Γ0(R) differentiable at 0

ψ ′(0) = 0

proxψ

�
soft[ω,ω](x)

�

iv d[−ω,ω] = max{|x|−ω,0}





x if |x|< ω

sign(x)ω if ω ≤ |x|≤ ω +1

sign(x)(|x|−1) if |x|> ω +1

v κ |x|q sign(x)p,

where p ≥ 0 and p+qκ pq−1 = |x|

vi

(
κx2 if |x|≤ ω/

√
2κ

ω
√

2κ |x|−ω2/2 otherwise

(
x/(2κ +1) if |x|≤ ω(2κ +1)/

√
2κ

x−ω
√

2κ sign(x) otherwise

vii ω|x|+ τ |x|2+κ |x|q sign(x)proxκ|·|q/(2τ+1)

max{|x|−ω,0}
2τ +1

viii ω|x|− ln(1+ω|x|)
(2ω)−1 sign(x)

�
ω|x|−ω2 −1

+

q��ω|x|−ω2 −1
��2 +4ω|x|

�

ix

(
ωx if x ≥ 0

+∞ otherwise

(
x−ω if x ≥ ω

0 otherwise

x

(
−ωx1/q if x ≥ 0

+∞ otherwise

p1/q,

where p > 0 and p2q−1 − xpq−1 = q−1ω

xi

(
ωx−q if x > 0

+∞ otherwise

p > 0

such that pq+2 − xpq+1 = ωq

xii





x ln(x) if x > 0

0 if x = 0

+∞ otherwise

W (ex−1),

where W is the Lambert W-function

xiii





− ln(x−ω)+ ln(−ω) if x ∈ ]ω ,0]

− ln(ω − x)+ ln(ω) if x ∈ ]0,ω[

+∞ otherwise





1

2

�
x+ω +

q
|x−ω|2 +4

�
if x < 1/ω

1

2

�
x+ω −

q
|x−ω|2 +4

�
if x > 1/ω

0 otherwise

ω < 0 < ω (see Figure 10.1)

xiv

(
−κ ln(x)+ τx2/2+αx if x > 0

+∞ otherwise

1

2(1+ τ)

�
x−α +

q
|x−α |2 +4κ(1+ τ)

�

xv

(
−κ ln(x)+αx+ωx−1 if x > 0

+∞ otherwise

p > 0

such that p3 +(α − x)p2 −κ p = ω

xvi

(
−κ ln(x)+ωxq if x > 0

+∞ otherwise

p > 0

such that qω pq + p2 − xp = κ

xvii





−κ ln(x−ω)−κ ln(ω − x)

if x ∈ ]ω,ω[

+∞ otherwise

p ∈ ]ω,ω[

such that p3 − (ω +ω + x)p2+�
ωω −κ −κ +(ω +ω)x

�
p = ωωx−ωκ −ωκ
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ξ

proxφ ξ

1/ω

1/ω

ω

ω

Fig. 10.1 Proximity operator of the function

φ : R→ ]−∞,+∞] : ξ 7→





− ln(ξ −ω)+ ln(−ω) if ξ ∈ ]ω,0]

− ln(ω −ξ )+ ln(ω) if ξ ∈ ]0,ω[

+∞ otherwise.

The proximity operator thresholds over the interval [1/ω,1/ω], and saturates at −∞ and +∞ with

asymptotes at ω and ω , respectively (see Table 10.2.xiii and [53]).

minimize
x∈C

f2(x). (10.24)

Since proxγ f1
= PC (see Table 10.1.xii), the forward–backward iteration reduces to

the projected gradient method

xn+1 = PC

�
xn − γn∇ f2(xn)

�
, ε ≤ γn ≤ 2/β − ε. (10.25)

This algorithm has been used in numerous signal processing problems, in particular

in total variation denoising [34], in image deblurring [18], in pulse shape design

[50], and in compressed sensing [73].
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Example 10.10 (projected Landweber) In Example 10.9, setting f2 : x 7→ kLx−
yk2/2, where L ∈ R

M×N
r {0} and y ∈ R

M , yields the constrained least-squares

problem

minimize
x∈C

1

2
kLx− yk2. (10.26)

Since ∇ f2 : x 7→ L⊤(Lx − y) has Lipschitz constant β = kLk2, (10.25) yields the

projected Landweber method [68]

xn+1 = PC

�
xn + γnL⊤(y−Lxn)

�
, ε ≤ γn ≤ 2/kLk2 − ε. (10.27)

This method has been used in particular in computer vision [89] and in signal

restoration [129].

Example 10.11 (backward–backward algorithm) Let f and g be functions in

Γ0(R
N). Consider the problem

minimize
x∈RN

f (x)+ eg(x), (10.28)

where eg is the Moreau envelope of g (see Table 10.1.vii), and suppose that f (x)+
eg(x)→ +∞ as kxk→ +∞. This is a special case of Problem 10.2 with f1 = f and

f2 = eg. Since ∇ f2 : x 7→ x−proxgx has Lipschitz constant β = 1 [55,102], Proposi-

tion 10.4 with γn ≡ 1 asserts that the sequence (xn)n∈N generated by the backward–

backward algorithm

xn+1 = prox f (proxgxn) (10.29)

converges to a solution to (10.28). Detailed analyses of this scheme can be found

in [1, 14, 48, 108].

Example 10.12 (alternating projections) In Example 10.11, let f and g be respec-

tively the indicator functions of nonempty closed convex sets C and D, one of which

is bounded. Then (10.28) amounts to finding a signal x in C at closest distance from

D, i.e.,

minimize
x∈C

1

2
d2

D(x). (10.30)

Moreover, since prox f = PC and proxg = PD, (10.29) yields the alternating projec-

tion method

xn+1 = PC(PDxn), (10.31)

which was first analyzed in this context in [41]. Signal processing applications can

be found in the areas of spectral estimation [80], pulse shape design [107], wavelet

construction [109], and signal synthesis [140].

Example 10.13 (iterative thresholding) Let (bk)1≤k≤N be an orthonormal basis of

R
N , let (ωk)1≤k≤N be strictly positive real numbers, let L ∈ R

M×N
r {0}, and let

y ∈ R
M . Consider the ℓ1–ℓ2 problem



14 Patrick L. Combettes and Jean-Christophe Pesquet

�

C

D

x0 x1
x∞

�

C

D

z0 = x0

z1 = x1

y0

y1 y2

x2
z2

x∞� �
�

Fig. 10.2 Forward-backward versus Beck-Teboulle : As in Example 10.12, let C and D be two

closed convex sets and consider the problem (10.30) of finding a point x∞ in C at minimum distance

from D. Let us set f1 = ιC and f2 = d2
D/2. Top: The forward–backward algorithm with γn ≡ 1.9

and λn ≡ 1. As seen in Example 10.12, it reduces to the alternating projection method (10.31).

Bottom: The Beck-Teboulle algorithm.
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minimize
x∈RN

N

∑
k=1

ωk|x⊤bk|+
1

2
kLx− yk2. (10.32)

This type of formulation arises in signal recovery problems in which y is the ob-

served signal and the original signal is known to have a sparse representation in the

basis (bk)1≤k≤N , e.g., [17, 20, 56, 58, 72, 73, 125, 127]. We observe that (10.32) is a

special case of (10.15) with

(
f1 : x 7→ ∑1≤k≤N ωk|x⊤bk|
f2 : x 7→ kLx− yk2/2.

(10.33)

Since proxγ f1
: x 7→ ∑1≤k≤N soft[−γωk ,γωk]

(x⊤bk) bk (see Table 10.1.viii and Ta-

ble 10.2.ii), it follows from Proposition 10.4 that the sequence (xn)n∈N generated

by the iterative thresholding algorithm

xn+1 =
N

∑
k=1

ξk,nbk, where

(
ξk,n = soft[−γnωk,γnωk]

�
xn + γnL⊤(y−Lxn)

�⊤
bk

ε ≤ γn ≤ 2/kLk2 − ε,
(10.34)

converges to a solution to (10.32).

Additional applications of the forward–backward algorithm in signal and image

processing can be found in [28–30, 32, 36, 37, 53, 55, 57, 74].

10.4 Douglas–Rachford splitting

The forward–backward algorithm of Section 10.3 requires that one of the functions

be differentiable, with a Lipschitz continuous gradient. In this section, we relax this

assumption.

Problem 10.14 Let f1 and f2 be functions in Γ0(R
N) such that

(ridom f1)∩ (ridom f2) 6=∅ (10.35)

and f1(x)+ f2(x)→+∞ as kxk→+∞. The problem is to

minimize
x∈RN

f1(x)+ f2(x). (10.36)

What is nowadays referred to as the Douglas–Rachford algorithm goes back to

a method originally proposed in [60] for solving matrix equations of the form u =
Ax+Bx, where A and B are positive-definite matrices (see also [132]). The method



16 Patrick L. Combettes and Jean-Christophe Pesquet

was transformed in [95] to handle nonlinear problems and further improved in [96]

to address monotone inclusion problems. For further developments, see [48,49,66].

Problem 10.14 admits at least one solution and, for any γ ∈ ]0,+∞[, its solutions

are characterized by the two-level condition [52]

(
x = proxγ f2

y

proxγ f2
y = proxγ f1

(2proxγ f2
y− y),

(10.37)

which motivates the following scheme.

Algorithm 10.15 (Douglas–Rachford algorithm)

Fix ε ∈ ]0,1[, γ > 0, y0 ∈R
N

For n = 0,1, . . .
xn = proxγ f2

yn

λn ∈ [ε,2− ε]

yn+1 = yn +λn

�
proxγ f1

�
2xn − yn

�
− xn

�
.

(10.38)

Proposition 10.16 [52] Every sequence (xn)n∈N generated by Algorithm 10.15

converges to a solution to Problem 10.14.

Just like the forward–backward algorithm, the Douglas–Rachford algorithm op-

erates by splitting since it employs the functions f1 and f2 separately. It can be

viewed as more general in scope than the forward–backward algorithm in that it

does not require that any of the functions have a Lipschitz continuous gradient.

However, this observation must be weighed against the fact that it may be more

demanding numerically as it requires the implementation of two proximal steps at

each iteration, whereas only one is needed in the forward–backward algorithm. In

some problems, both may be easily implementable (see Fig. 10.3 for an example)

and it is not clear a priori which algorithm may be more efficient.

Applications of the Douglas–Rachford algorithm to signal and image processing

can be found in [38, 52, 62, 63, 117, 118, 123].

The limiting case of the Douglas–Rachford algorithm in which λn ≡ 2 is the

Peaceman–Rachford algorithm [48, 66, 96]. Its convergence requires additional as-

sumptions (for instance, that f2 be strictly convex and real-valued) [49].

10.5 Dykstra-like splitting

In this section we consider problems involving a quadratic term penalizing the de-

viation from a reference signal r.

Problem 10.17 Let f and g be functions in Γ0(R
N) such that dom f ∩ domg 6= ∅,

and let r ∈ R
N . The problem is to
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Fig. 10.3 Forward-backward versus Douglas–Rachford: As in Example 10.12, let C and D be two

closed convex sets and consider the problem (10.30) of finding a point x∞ in C at minimum distance

from D. Let us set f1 = ιC and f2 = d2
D/2. Top: The forward–backward algorithm with γn ≡ 1 and

λn ≡ 1. As seen in Example 10.12, it assumes the form of the alternating projection method (10.31).

Bottom: The Douglas–Rachford algorithm with γ = 1 and λn ≡ 1. Table 10.1.xii yields prox f1
= PC

and Table 10.1.vi yields prox f2
: x 7→ (x+PDx)/2. Therefore the updating rule in Algorithm 10.15

reduces to xn = (yn +PDyn)/2 and yn+1 = PC(2xn − yn)+ yn − xn = PC(PDyn)+ yn − xn.
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minimize
x∈RN

f (x)+g(x)+
1

2
kx− rk2. (10.39)

It follows at once from (10.9) that Problem 10.17 admits a unique solution,

namely x = prox f+g r. Unfortunately, the proximity operator of the sum of two

functions is usually intractable. To compute it iteratively, we can observe that

(10.39) can be viewed as an instance of (10.36) in Problem 10.14 with f1 = f and

f2 = g+ k ·−rk2/2. However, in this Douglas–Rachford framework, the additional

qualification condition (10.35) needs to be imposed. In the present setting we require

only the minimal feasibility condition dom f ∩domg 6=∅.

Algorithm 10.18 (Dykstra-like proximal algorithm)

Set x0 = r, p0 = 0, q0 = 0

For n = 0,1, . . .

yn = proxg(xn + pn)

pn+1 = xn + pn − yn

xn+1 = prox f (yn +qn)

qn+1 = yn +qn − xn+1.

(10.40)

Proposition 10.19 [12] Every sequence (xn)n∈N generated by Algorithm 10.18

converges to the solution to Problem 10.17.

Example 10.20 (best approximation) Let f and g be the indicator functions of

closed convex sets C and D, respectively, in Problem 10.17. Then the problem is to

find the best approximation to r from C∩D, i.e., the projection of r onto C∩D. In

this case, since prox f =PC and proxg =PD, the above algorithm reduces to Dykstra’s

projection method [22, 64].

Example 10.21 (denoising) Consider the problem of recovering a signal x from a

noisy observation r = x+w, where w models noise. If f and g are functions in

Γ0(R
N) promoting certain properties of x, adopting a least-squares data fitting ob-

jective leads to the variational denoising problem (10.39).

10.6 Composite problems

We focus on variational problems with m = 2 functions involving explicitly a linear

transformation.

Problem 10.22 Let f ∈ Γ0(R
N), let g ∈ Γ0(R

M), and let L ∈ R
M×N

r {0} be such

that domg∩L(dom f ) 6=∅ and f (x)+ g(Lx)→+∞ as kxk→+∞. The problem is

to

minimize
x∈RN

f (x)+g(Lx). (10.41)
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Our assumptions guarantee that Problem 10.22 possesses at least one solution.

To find such a solution, several scenarios can be contemplated.

10.6.1 Forward-backward splitting

Suppose that in Problem 10.22 g is differentiable with a τ-Lipschitz continuous

gradient (see (10.14)). Now set f1 = f and f2 = g◦L. Then f2 is differentiable and

its gradient

∇ f2 = L⊤ ◦∇g◦L (10.42)

is β -Lipschitz continuous, with β = τkLk2. Hence, we can apply the forward–

backward splitting method, as implemented in Algorithm 10.3. As seen in (10.20),

it operates with the updating rule



γn ∈ [ε,2/(τkLk2)− ε]

yn = xn − γnL⊤∇g(Lxn)

λn ∈ [ε,1]

xn+1 = xn +λn(proxγn f yn − xn).

(10.43)

Convergence is guaranteed by Proposition 10.4.

10.6.2 Douglas–Rachford splitting

Suppose that in Problem 10.22 the matrix L satisfies

LL⊤ = νI, where ν ∈ ]0,+∞[ (10.44)

and (ridomg)∩ riL(dom f ) 6= ∅. Let us set f1 = f and f2 = g ◦L. As seen in Ta-

ble 10.1.x, prox f2
has a closed-form expression in terms of proxg and we can there-

fore apply the Douglas–Rachford splitting method (Algorithm 10.15). In this sce-

nario, the updating rule reads


xn = yn +ν−1L⊤�proxγνg(Lyn)−Lyn

�

λn ∈ [ε,2− ε]

yn+1 = yn +λn

�
proxγ f

�
2xn − yn

�
− xn

�
.

(10.45)

Convergence is guaranteed by Proposition 10.16.
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10.6.3 Dual forward–backward splitting

Suppose that in Problem 10.22 f = h+k ·−rk2/2, where h ∈ Γ0(R
N) and r ∈ R

N .

Then (10.41) becomes

minimize
x∈RN

h(x)+g(Lx)+
1

2
kx− rk2, (10.46)

which models various signal recovery problems, e.g., [33, 34, 51, 59, 112, 138]. If

(10.44) holds, proxg◦L is decomposable, and (10.46) can be solved with the Dykstra-

like method of Section 10.5, where f1 = h + k ·−rk2/2 (see Table 10.1.iv) and

f2 = g ◦L (see Table 10.1.x). Otherwise, we can exploit the nice properties of the

Fenchel-Moreau-Rockafellar dual of (10.46), solve this dual problem by forward–

backward splitting, and recover the unique solution to (10.46) [51].

Algorithm 10.23 (Dual forward–backward algorithm)

Fix ε ∈
�
0,min{1,1/kLk2}

�
, u0 ∈ R

M

For n = 0,1, . . .

xn = proxh(r−L⊤un)

γn ∈
�
ε,2/kLk2 − ε

�

λn ∈ [ε,1]

un+1 = un +λn

�
proxγng∗(un + γnLxn)−un

�
.

(10.47)

Proposition 10.24 [51] Assume that (ridomg)∩ riL(domh) 6= ∅. Then every se-

quence (xn)n∈N generated by the dual forward–backward algorithm 10.23 converges

to the solution to (10.46).

10.6.4 Alternating-direction method of multipliers

Augmented Lagrangian techniques are classical approaches for solving Problem 10.22

[77, 78] (see also [75, 79]). First, observe that (10.41) is equivalent to

minimize
x∈RN , y∈RM

Lx=y

f (x)+g(y). (10.48)

The augmented Lagrangian of index γ ∈ ]0,+∞[ associated with (10.48) is the sad-

dle function

Lγ : RN ×R
M ×R

M → ]−∞,+∞]

(x,y,z) 7→ f (x)+g(y)+
1

γ
z⊤(Lx− y)+

1

2γ
kLx− yk2. (10.49)
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The alternating-direction method of multipliers consists in minimizing Lγ over x,

then over y, and then applying a proximal maximization step with respect to the

Lagrange multiplier z. Now suppose that

L⊤L is invertible and (ridomg)∩ riL(dom f ) 6=∅. (10.50)

By analogy with (10.9), if we denote by proxL
f the operator which maps a point

y ∈R
M to the unique minimizer of x 7→ f (x)+kLx−yk2/2, we obtain the following

implementation.

Algorithm 10.25 (Alternating-direction method of multipliers (ADMM))

Fix γ > 0, y0 ∈ R
M , z0 ∈ R

M

For n = 0,1, . . .

xn = proxL
γ f (yn − zn)

sn = Lxn

yn+1 = proxγg(sn + zn)

zn+1 = zn + sn − yn+1.

(10.51)

The convergence of the sequence (xn)n∈N thus produced under assumption

(10.50) has been investigated in several places, e.g., [75, 77, 79]. It was first ob-

served in [76] that the ADMM algorithm can be derived from an application of

the Douglas–Rachford algorithm to the dual of (10.41). This analysis was pursued

in [66], where the convergence of (xn)n∈N to a solution to (10.41) is shown. Variants

of the method relaxing the requirements on L in (10.50) have been proposed [5,39].

In image processing, ADMM was applied in [81] to an ℓ1 regularization prob-

lem under the name “alternating split Bregman algorithm.” Further applications and

connections are found in [2, 69, 117, 143].

10.7 Problems with m ≥ 2 functions

We return to the general minimization problem (10.1).

Problem 10.26 Let f1,. . . , fm be functions in Γ0(R
N) such that

(ridom f1)∩ · · ·∩ (ridom fm) 6=∅ (10.52)

and f1(x)+ · · ·+ fm(x)→+∞ as kxk→+∞. The problem is to

minimize
x∈RN

f1(x)+ · · ·+ fm(x). (10.53)

Since the methods described so far are designed for m = 2 functions, we can

attempt to reformulate (10.53) as a 2-function problem in the m-fold product space

H = R
N ×·· ·×R

N (10.54)
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(such techniques were introduced in [110,111] and have been used in the context of

convex feasibility problems in [10,43,45]). To this end, observe that (10.53) can be

rewritten in H as

minimize
(x1,...,xm)∈H

x1=···=xm

f1(x1)+ · · ·+ fm(xm). (10.55)

If we denote by x = (x1, . . . ,xm) a generic element in H , (10.55) is equivalent to

minimize
x∈H

ιD(x)+ f (x), (10.56)

where (
D =

�
(x, . . . ,x) ∈ H | x ∈R

N
	

f : x 7→ f1(x1)+ · · ·+ fm(xm).
(10.57)

We are thus back to a problem involving two functions in the larger space H . In

some cases, this observation makes it possible to obtain convergent methods from

the algorithms discussed in the preceding sections. For instance, the following par-

allel algorithm was derived from the Douglas–Rachford algorithm in [54] (see also

[49] for further analysis and connections with Spingarn’s splitting method [120]).

Algorithm 10.27 (Parallel proximal algorithm (PPXA))

Fix ε ∈ ]0,1[, γ > 0, (ωi)1≤i≤m ∈ ]0,1]m such that

∑m
i=1 ωi = 1, y1,0 ∈R

N , . . . ,ym,0 ∈ R
N

Set x0 = ∑m
i=1 ωiyi,0

For n = 0,1, . . .

For i = 1, . . . ,mj
pi,n = proxγ fi/ωi

yi,n

pn =
m

∑
i=1

ωi pi,n

ε ≤ λn ≤ 2− ε

For i = 1, . . . ,m�
yi,n+1 = yi,n +λn

�
2pn − xn − pi,n

�

xn+1 = xn +λn(pn − xn).

Proposition 10.28 [54] Every sequence (xn)n∈N generated by Algorithm 10.27

converges to a solution to Problem 10.26.

Example 10.29 (image recovery) In many imaging problems, we record an obser-

vation y∈R
M of an image z ∈R

K degraded by a matrix L ∈R
M×K and corrupted by

noise. In the spirit of a number of recent investigations (see [37] and the references

therein), a tight frame representation of the images under consideration can be used.

This representation is defined through a synthesis matrix F⊤ ∈R
K×N (with K ≤ N)

such that F⊤F = νI, for some ν ∈ ]0,+∞[. Thus, the original image can be written
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as z = F⊤x, where x ∈ R
N is a vector of frame coefficients to be estimated. For this

purpose, we consider the problem

minimize
x∈C

1

2
kLF⊤x− yk2+Φ(x)+ tv(F⊤x), (10.58)

where C is a closed convex set modeling a constraint on z, the quadratic term is the

standard least-squares data fidelity term, Φ is a real-valued convex function on R
N

(e.g., a weighted ℓ1 norm) introducing a regularization on the frame coefficients, and

tv is a discrete total variation function aiming at preserving piecewise smooth areas

and sharp edges [116]. Using appropriate gradient filters in the computation of tv, it

is possible to decompose it as a sum of convex functions (tvi)1≤i≤q, the proximity

operators of which can be expressed in closed form [54,113]. Thus, (10.58) appears

as a special case of (10.53) with m = q+3, f1 = ιC, f2 = kLF⊤ ·−yk2/2, f3 = Φ ,

and f3+i = tvi(F
⊤·) for i∈ {1, . . . ,q}. Since a tight frame is employed, the proximity

operators of f2 and ( f3+i)1≤i≤q can be deduced from Table 10.1.x. Thus, the PPXA

algorithm is well suited for solving this problem numerically.

A product space strategy can also be adopted to address the following extension

of Problem 10.17.

Problem 10.30 Let f1, . . . , fm be functions in Γ0(R
N) such that dom f1 ∩ · · · ∩

dom fm 6= ∅, let (ωi)1≤i≤m ∈ ]0,1]m be such that ∑m
i=1 ωi = 1, and let r ∈ R

N . The

problem is to

minimize
x∈RN

m

∑
i=1

ωi fi(x)+
1

2
kx− rk2. (10.59)

Algorithm 10.31 (Parallel Dykstra-like proximal algorithm)

Set x0 = r, z1,0 = x0, . . . , zm,0 = x0

For n = 0,1, . . .

For i = 1, . . . ,mj
pi,n = prox fi

zi,n

xn+1 = ∑m
i=1 ωi pi,n

For i = 1, . . . ,m�
zi,n+1 = xn+1 + zi,n− pi,n.

(10.60)

Proposition 10.32 [49] Every sequence (xn)n∈N generated by Algorithm 10.31

converges to the solution to Problem 10.30.

Next, we consider a composite problem.

Problem 10.33 For every i ∈ {1, . . . ,m}, let gi ∈ Γ0(R
Mi) and let Li ∈ R

Mi×N . As-

sume that

(∃q ∈ R
N) L1q ∈ ridomg1, . . . ,Lmq ∈ ridomgm, (10.61)
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that g1(L1x) + · · ·+ gm(Lmx) → +∞ as kxk → +∞, and that Q = ∑1≤i≤m L⊤
i Li is

invertible. The problem is to

minimize
x∈RN

g1(L1x)+ · · ·+ gm(Lmx). (10.62)

Proceeding as in (10.55) and (10.56), (10.62) can be recast as

minimize
x∈H , y∈G

y=Lx

ιD(x)+ g(y), (10.63)

where 



H = R
N ×·· ·×R

N, G = R
M1 ×·· ·×R

Mm

L : H → G : x 7→ (L1x1, . . . ,Lmxm)

g : G → ]−∞,+∞] : y 7→ g1(y1)+ · · ·+gm(ym).

(10.64)

In turn, a solution to (10.62) can be obtained as the limit of the sequence (xn)n∈N
constructed by the following algorithm, which can be derived from the alternating-

direction method of multipliers of Section 10.6.4 (alternative parallel offsprings of

ADMM exist, see for instance [65]).

Algorithm 10.34 (Simultaneous-direction method of multipliers (SDMM))

Fix γ > 0, y1,0 ∈ R
M1 , . . . , ym,0 ∈ R

Mm , z1,0 ∈ R
M1 , . . . , zm,0 ∈ R

Mm

For n = 0,1, . . .

xn = Q−1 ∑m
i=1 L⊤

i (yi,n − zi,n)

For i = 1, . . . ,m
si,n = Lixn

yi,n+1 = proxγgi
(si,n + zi,n)

zi,n+1 = zi,n + si,n − yi,n+1

(10.65)

This algorithm was derived from a slightly different viewpoint in [118] with a

connection with the work of [71]. In these papers, SDMM is applied to deblurring

in the presence of Poisson noise. The computation of xn in (10.65) requires the so-

lution of a positive-definite symmetric system of linear equations. Efficient methods

for solving such systems can be found in [82]. In certain situations, fast Fourier

diagonalization is also an option [2, 71].

In the above algorithms, the proximal vectors, as well as the auxiliary vectors,

can be computed simultaneously at each iteration. This parallel structure is use-

ful when the algorithms are implemented on multicore architectures. A parallel

proximal algorithm is also available to solve multicomponent signal processing

problems [27]. This framework captures in particular problem formulations found

in [7, 8, 80, 88, 133]. Let us add that an alternative splitting framework applicable to

(10.53) was recently proposed in [67].
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10.8 Conclusion

We have presented a panel of convex optimization algorithms sharing two main

features. First, they employ proximity operators, a powerful generalization of the

notion of a projection operator. Second, they operate by splitting the objective to

be minimized into simpler functions that are dealt with individually. These methods

are applicable to a wide class of signal and image processing problems ranging from

restoration and reconstruction to synthesis and design. One of the main advantages

of these algorithms is that they can be used to minimize nondifferentiable objectives,

such as those commonly encountered in sparse approximation and compressed sens-

ing, or in hard-constrained problems. Finally, let us note that the variational prob-

lems described in (10.39), (10.46), and (10.59), consist of computing a proximity

operator. Therefore the associated algorithms can be used as a subroutine to compute

approximately proximity operators within a proximal splitting algorithm, provided

the latter is error tolerant (see [48, 49, 51, 66, 115] for convergence properties under

approximate proximal computations). An application of this principle can be found

in [38].
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Mathématiques d’Orsay. Université de Paris-XI, Orsay, France (1980)

101. Moreau, J.J.: Fonctions convexes duales et points proximaux dans un espace hilbertien. C.

R. Acad. Sci. Paris Sér. A Math. 255, 2897–2899 (1962)
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