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Introduction

A dynamic programming problem Γ(z0) = (Z ,F , r ,z0) given by a non
empty set of states Z , an initial state z0, a transition correspondence F
from Z to Z with non empty values, and a reward mapping r from Z to
[0,1]. (bounded payoffs)

A player chooses z1 in F (z0), has a payoff of r(z1), then he chooses z2 in
F (z1), etc...
Admissible plays: S(z0) = {s = (z1, ...,zt , ...) ∈ Z∞,∀t ≥ 1,zt ∈ F (zt−1)}.

n-stage problem, for n ≥ 1:
vn(z) = sups∈S(z)

1
n (∑

n
t=1 r(zt)) .

λ -discounted pb, for λ ∈ (0,1]:
vλ (z) = sups∈S(z)

(
λ ∑

∞
t=1 (1−λ )t−1r(zt)

)
.

More generally, for each proba θ = (θt)t≥1 on positive integers, define
the θ -value by vθ (z) = sups∈S(z)

(
∑t≥1 θtr(zt)

)
.
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We have:

vn(z) = supz ′∈F (z)

(
1
n
r(z ′) +

n−1
n

vn−1(z ′)
)
, so |vn(z)−supz ′∈F (z)vn(z ′)| ≤ 2

n

vλ (z) = supz ′∈F (z)

(
λ r(z ′) + (1−λ )vλ (z ′)

)
, so |vλ (z)−supz ′∈F (z)vλ (z ′)| ≤ λ

|vθ (z)− supz ′∈F (z)vθ (z ′)| ≤ θ1 +
∞

∑
t=1
|θt+1−θt |.

Example 0:

��
��
��
��

��
��

��
��

��
��

z4

z0 z1 z2 z3
1 1 1 0

0

?
6

- - - �

*

Limit value at z0: v∗(z0) = 1/2.
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Questions: 1) General uniform convergence: existence and equality of the
uniform limits of vn, vλ and vθ when the “length" becomes large: n→ ∞,
λ → 0, ∑t≥1 |θt+1−θt | → 0?

Ex: - Cesàro θ = (1/n, ...,1/n,0, ....,0, ...) with n large.
- Discounted: θ = (λ (1−λ )t−1)t≥1, with ∑t≥1 |θt+1−θt |= λ small.
- θ = (θt)t≥1, with θt+1 ≤ θt and ∑t≥1 |θt+1−θt |= θ1 small.
- Shifted Cesàro: θ = (0, ...,0,1/n, ...1/n,0, ....,0, ...) with arbitrary many
early zeros, and n large.

Say that there is general uniform CV if : for each ε > 0 there exists
α > 0 such that if ∑t≥1 |θt+1−θt | ≤ α, then ‖vθ −v∗‖ ≤ ε.
Characterization of the limit v∗ ?

0 player (ie. F single-valued): (vn(z))n converges iif (vλ (z))λ converges,
and in case of CV both limits are the same (Hardy-Littlewood).

1-player: limn→∞vn(z) and limλ→0vλ (z) may exist and differ.
(vn)n converges uniformly iif (vλ )λ converges uniformly, and in case of
CV both limits are the same (Lehrer-Sorin 1992). Same for particular
families (vθ ) satisfying θt+1 ≤ θt for each t + extra conditions (Sorin
Monderer 1993). 4/40
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Questions: 2) Uniform and general uniform value.
Large unknown horizon: when is it possible to play ε-optimally
simultaneously in any “long" enough problem ?

Say that Γ(z) has a (Cesàro-)uniform value if (vn(z))n has a limit v∗(z),
and one can guarantee this limit: ∀ε > 0,∃s = (z1, ...,zt , ...) ∈ S(z),∃n0
∀n ≥ n0,

1
n (∑

n
t=1 r(zt))≥ v∗(z)− ε.

If Γ(z) has a (Cesàro-)uniform value, it has a discounted uniform value.
The uniform CV of (vn) does not imply the existence of the uniform
value (Monderer Sorin 93, Lehrer Monderer 94).
Sufficient conditions for the existence of the uniform value given by
Mertens and Neyman 1982, from stochastic games (convergence of (vλ )λ

with a BV condition).

Say that Γ(z) has a general uniform value if (vθ (z))θ has a limit v∗(z),
and one can guarantee this limit:
∀ε > 0,∃s = (z1, ...,zt , ...) ∈ S(z),∃α > 0,

∞

∑
t=1

θtr(zt)≥ v∗(z)− ε whenever ∑
t≥1
|θt+1−θt | ≤ α
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2. Examples

3. General Results
3.a) The auxiliary functions vm,n and uniform CV of (vn)
3.b) Uniform convergence for (vθ )
3.c) The auxiliary functions wm,n and existence of the uniform value
3.d) The compact non expansive case: characterizing the limit value
v∗(with X. Venel)
3.e) On computing v∗ and the speed of convergence

4. Applications
4.a) Standard Markov Decision Processes with finitely many states
4.b) Non expansive control problems (with M. Quincampoix)
4.c) MDP with imperfect observation with finitely many states.
4.d) Repeated games with an informed controller
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2. Examples

Ex 1: A Markov decision process
K = {a,b,c}. b and c are absorbing with payoffs 1 and 0. Start at a,
choose α ∈ [0,1/2], and move to b with proba α and to c with proba α l ,
with l > 1.

��
��

a
0

��
��

b
1* ��

��
c
0*

	

�

α

1−α−α l

α lR

→ Dynamic Programming Pb with Z = ∆(K ), r(z) = zb, z0 = δa and
F (z) = {(za(1−α−α l),zb + zaα,zc + zaα l),α ∈ [0,1/2]}.

The uniform value exists and v∗(z0) = 1. no ergodicity
We have vλ (a) = 1−Cλ (l−1)/l +o(λ (l−1)/l), with C = l

(l−1)
l−1
l
.
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Ex 2: Z = {z ∈ C, |z |= 1}, F (e iα ) = e i(α+1) for all α. Then

v∗(z0) =
1
2π

∫ 2π

0
r(e iα )dα

Ex 3: (Aumann Maschler) A finite family (G k)k∈K of payoff matrices in
[0,1]I×J , and p ∈∆(K ) define a zero-sum repeated game where: first,
some k is selected according to p and told to player 1 only, then G k is
repeated over and over.

vn(p) = supx∈∆(I )K

(
1
n
g(p,x) +

n−1
n ∑

i∈I
x(p)(i)vn−1(p̂(x , i))

)
.

where p ∈∆(K ), g(p,x) = minj(∑k pkG k(xk , j)) and p̂(x , i) is the
conditional belief on ∆(K ) given p, x , i .
Can be written as a “standard" dynamic programming problem with state
space ∆f (∆(K ))× [0,1].
Well known: the limit value exists. Define u(p) = Val

(
∑k pkG k

)
, then

v∗ = cavu = inf{v : ∆(K )→ [0,1],v concave v ≥ u}
8/40
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3a. The auxiliary functions vm,n and the uniform CV of (vn)
For m ≥ 0 and n ≥ 1, s = (zt)t≥1, define:

γm,n(s) =
1
n

n

∑
t=1

r(zm+t) and vm,n(z) = sups∈S(z)γm,n(s).

The player first makes m moves in order to reach a “good initial state",
then plays n moves for payoffs.
Write v−(z) = liminfn vn(z), v+(z) = limsupn vn(z),
v∗ = infn≥1supm≥0vm,n(z).

Lemma 1: v−(z) = supm≥0infn≥1vm,n(z).

Lemma 2: ∀m0,
infn≥1supm≤m0

vm,n(z)≤ v−(z)≤ v+(z)≤ infn≥1supm≥0vm,n(z).

can be restated as:
infn≥1supz ′∈Gm0 (z)vn(z ′)≤ v−(z)≤ v+(z)≤ v∗(z) = infn≥1supz ′∈G∞(z)vn(z ′).
where Gm0(z) is the set of states that can be reached from z in at most
m0 stages, and G∞(z) = ∪mGm(z).
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Define V = {vn,n ≥ 1} ⊂ {v : Z −→ [0,1]}, endowed with
d∞(v ,v ′) = supz |v(z)−v ′(z)|.

Thm 1 (R, JEMS 2011): (vn)n CVU iff V is precompact.
And the uniform limit v∗ can only be:

v∗(z) = infn≥1supm≥0vm,n(z) = supm≥0infn≥1vm,n(z)

Sketch of proof:
1) Define d(z ,z ′) = supn≥1|vn(z)−vn(z ′)|. Prove that (Z ,d) is
pseudometric precompact. Clearly, each vn is 1-Lipschitz for d .
2) Fix z . Prove that: ∀ε > 0, ∃m0, ∀z ′ ∈ G∞(z),∃z ′′ ∈ Gm0(z) s.t.
d(z ′,z ′′)≤ ε.
3) Use
infn≥1supz ′∈Gm0 (z)vn(z ′)≤ v−(z)≤ v+(z)≤ infn≥1supz ′∈G∞(z)vn(z ′),
and conclude.
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3b. Uniform CV of(vθ )θ

Let (θ k)k≥1 be a family of probas s.t. ∑t≥1 |θ k
t+1−θ k

t | → 0. Write
vk = v

θk and for each m put vm,k(z) = sups∈S(z) ∑t≥1 θ k
t r(zm+t).

Proposition: infk≥1supm≥0v
m,k(z) = v∗(z) (= infn≥1supm≥0vm,n(z)).

Lemma 3: ∀m0,
infksupm≤m0

vm,k(z)≤ liminfk vk(z)≤ limsupk vk(z)≤ infk≥1supm≥0v
m,k(z).

Theorem (11-2011): (vk)k CVU iff {vk ,k ≥ 1} is precompact.
And the uniform limit can only be:

v∗(z) = infn≥1supm≥0vm,n(z) = infk≥1supm≥0v
m,k(z).

All sequences (vk)k have a unique limit point which is v∗.
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A counterexample: Z countable, (vn) pointwise CV to 1/2, (vk)k CVU
to 1.
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Corollary 1: In the following cases, we have general uniform convergence:
for each ε > 0 there exists α > 0 such that:
if ∑t≥1 |θt+1−θt | ≤ α, then ‖vθ −v∗‖ ≤ ε.

a) Z is endowed with a distance d such that (Z ,d) is precompact, and
the family (vθ )θ is uniformly equicontinuous.

b) Z is endowed with a distance d such that (Z ,d) is compact, r is
continuous and F is non expansive:
∀z ∈ Z ,∀z ′ ∈ Z ,∀z1 ∈ F (z),∃z ′1 ∈ F (z ′) s.t. d(z1,z ′1)≤ d(z ,z ′).

c) Z is finite (Blackwell, 1962).
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3.c. The auxiliary functions wm,n and the Cesàro-uniform value

For m ≥ 0 and n ≥ 1, s = (zt)t≥1, we define:
γm,n(s) = 1

n ∑
n
t=1 r(zm+t), and vm,n(z) = sups∈S(z)γm,n(s).

µm,n(s) = min{γm,t(s), t ∈ {1, ...,n}}, and wm,n(z) = sups∈S(z)µm,n(s).

wm,n: the player first makes m moves in order to reach a “good initial
state", but then his payoff only is the minimum of his next n average
rewards.

Lemma 3:
v+(z)≤ infn≥1supm≥0wm,n(z) = infn≥1supm≥0vm,n(z) :=def v∗(z).

Consider W = {(wm,n)m≥0,n≥1}, endowed with the metric
d∞(w ,w ′) = sup{|w(z)−w ′(z)|,z ∈ Z}.

Thm 2 (R, JEMS 2011): Assume that W is precompact.
Then for every initial state z in Z , the pb has a Cesàro-uniform value
which is: v∗(z) = supm≥0infn≥1wm,n(z) = supm≥0infn≥1vm,n(z). And
(vn)n uniformly converges to v∗.
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Corollary 2: W is precompact, and thus the previous theorem applies in
the following cases:

a) Z is endowed with a distance d such that (Z ,d) is precompact, and
the family (wm,n)m≥0,n≥1 is uniformly equicontinuous.

b) Z is endowed with a distance d such that (Z ,d) is compact, r is
continuous and F is non expansive.

c) Z is finite.
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3.d. The compact non expansive case; characterizing v∗ (with X. Venel)
Fix Z compact metric, and F non expansive, and put
E = {r : Z −→ [0,1], r C 0}. For each r in E , there is a limit value Φ(r).
We have Φ(r) = infn≥1supm≥0vm,n[r ].

What are the properties of Φ : E −→ E ?

Ex: 0 player, ergodic Markov chain on a finite set: Φ(r) =<m∗, r >, with
m∗ the unique invariant measure.

Define A = {r ∈ E ,Φ(r) = 0}, and
B = {x ∈ E , ∀z x(z) = supz ′∈F (z)x(z ′)}. For each r , Φ(r) ∈ B.

Proposition:
1) B is the set of fixed points of Φ, and Φ◦Φ = Φ.
2) for each r , r −Φ(r) ∈ A. Hence we have r = v +w , with
v = Φ(r) ∈ B, and w = r −Φ(r) ∈ A.
3) There exists a smallest function v in B such that r −v ∈ A, and this
function is Φ(r).

Φ(r) = min{v ,v ∈ B and r −v ∈ A}.
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Particular cases:

1) If the problem is ergodic (Φ(r) is constant for each r), then the
decomposition r = v +w with v in B and w in A is unique: Φ is the
projection onto B along A .

2) Assume the game is leavable, i.e. z ∈ Γ(z) for each z . Then
B = {x ∈ E , ∀z x(z)≥ supz ′∈F (z)x(z ′)} (excessive functions) is convex,
and

Φ(r) = min{v ,v ∈ B,v ≥ r}

(Gambling Fundamental Theorem, Dubins Savage 1965)
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General results

X is a metric compact space, F : X ⇒ ∆f (X ) is non expansive (for the W
distance), r : X → [0,1] is continuous (and linearly extended to ∆(X )).

Define F̂ : ∆f (X ) ⇒ ∆f (X ) the mixed extension of F by:

F̂ (u) =

{∫
p∈X

f (p)du(p),where f (p) ∈ convF (p)for all p
}
.

We now have a dynamic programming problem (∆f (X ), F̂ , r) where for
each θ , vθ is affine. Put:

R = {u ∈∆(X ),(u,u) ∈ Graph F̂},and

v∗(p) = inf{w(p),w : ∆(X )→ [0,1] affine C 0 s.t.

(1)∀p′ ∈ X ,w(p′)≥ supu∈F (p′)w(u)

(2)∀u ∈ R,w(u)≥ r(u)}.
Theorem 3 (R-Venel 11-2011): For each ε > 0 there exists α > 0 such
that if θ satisfies ∑t≥1 |θt+1−θt | ≤ α, then ‖vθ −v∗‖ ≤ ε.

Moreover, for each u in ∆f (X ) and ε > 0, there exists a play σ in Ŝ(u)
and α > 0 such that: (∑

∞
t=1 θtr(ut))≥ v∗(u)− ε if ∑t≥1 |θt+1−θt | ≤ α
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On the limit values in dynamic optimization
General results

3.e. Computing v∗ and the speed of convergence (with X. venel)
Markov Decision Processes with finite state and actions: in a
neighborhood of zero, vλ is a rational function. So
vλ (z) = v∗(z) +O(λ ), and also vn(z) = v∗(z) +O(1/n).

Untrue with infinitely many actions: example 2 with r > 1

��
��

a
0

��
��

b
1* ��

��
c
0*

	

�

α

1−α−α r

α rR

We have vλ (a) = 1−Cλ (r−1)/r +o(λ (r−1)/r ), with C = r

(r−1)
r−1
r

.
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Pb: compute limλ vλ , where:

vλ (z) = supz ′∈F (z)λ r(z ′) + (1−λ )vλ (z ′).

One has: v∗(z) = supz ′∈F (z)v
∗(z ′), but r has disappeared.

Assume ergodicity, with an expansion vλ (z) = v∗+ λV (z) +o(λ ), for
some function V . Then the Average Cost Optimality Equation holds:

v∗+V (z) = supz ′∈F (z)r(z ′) +V (z ′).

What if no ergodicity, or if the speed of CV is different ?

Idea: write λ r(z ′) + (1−λ )vλ (z ′)∼ vλ (z ′) + λ r(z ′)−λv∗(z ′), and
consider an (approximate) solution of:

hλ (z) = supz ′∈F (z)hλ (z ′) + λ (r(z ′)−v∗(z ′)).
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Verification principle :
Assume that (hλ )λ uniformly converges to some h0 : Z → [0,1], and that
1
λ
‖hλ − h̃λ‖ −→ 0, where h̃λ (z) = supz ′∈F (z)hλ (z ′) + λ (r(z ′)−h0(z ′)).

Then (vλ )λ also uniformly converges to h0, and
‖vλ −h0‖ ≤ 2‖hλ −h0‖+ 1

λ
‖hλ − h̃λ‖ −→λ→0 0.

And if vλ UCV to h0, then vλ itself satisfies 1
λ
‖vλ − ṽλ‖ −→ 0.

Rem: a similar principle holds for limnvn.
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Ex: ��
��

a
0

��
��

b
1* ��

��
c
0*

	

�

α

1−α + α

ln(α)

− α

ln(α)
R

We have vλ (a) = 1+ 1
ln(λ )

+O(λ ).

Ex: a blind MDP with 2 states and 2 actions where ‖vλ −1‖ ∼ Cλ ln(λ ).

��
��

��
��

k1 k2

-proba 1/2, r = 0

?proba 1/2
r = 0

?
r = 0

- r = 1- r = 0
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• The value is difficult to compute. K = {a,b}, p = (1/2,1/2),

M =

(
α 1−α

1−α α

)
, G a =

(
1 0
0 0

)
and Gb =

(
0 0
0 1

)
.

If α = 1, the value is 1/4 (Aumann Maschler setup).
If α ∈ [1/2,2/3], the value is α

4α−1 (Hörner et al. 2006, Marino 2005 for
α = 2/3).
What is the value for α = 0.9 ?
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On the limit values in dynamic optimization
Applications

4.a. Standard Markov Decision Processes with a finite set of states
Controlled Markov chains

����
���� ���� ���� ����

k5

k1 k2 k3 k4

?0
6

1

-1 -1

-
1

-1

-
1

�0
� 0

*1

MDP Ψ(p0): A finite set of states K , a non empty set of actions A, a
transition function q from K ×A to ∆(K ), a reward function
g : K ×A−→ [0,1], and an initial probability p0 on K .

k1 in K is selected according to p0 and told to the player, then he selects
a1 in A and receives a payoff of g(k1,a1). A new state k2 is selected
according to q(k1,a1) and told to the player, etc...
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Applications

A pure strategy: σ = (σt)t≥1, with ∀t, σt : (K ×A)t−1×K −→ A defines
the action to be played at stage t. (p0,σ) generates a proba on plays,
one can define the expected payoffs and the n-stage values.

→ Auxiliary deterministic Pb Γ(z0): new set of states Z = ∆(K )× [0,1],
a new initial state z0 = (p0,0), new payoff function r(p,y) = y for all
(p,y) in Z , a transition correspondence such that for every z = (p,y) in
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And there is general uniform value if we allow for mixed strategies. The
expression for v∗ becomes:

v∗ = inf{v : ∆(K )→ [0,1] affine s.t.

(1) ∀k ∈ K ,v(k)≥ supa∈Av(q(k,a))

(2) ∀(p,y) ∈ R, ∑
k
pkv(k)≥ y}.

where R = {(p,y) ∈∆(K )× [0,1],(p,y) ∈
conv{(∑k pkq(k,ak),∑k pkg(k,ak)),∀k,ak ∈ A}.
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4.b. Application to non expansive control problems (with M.
Quincampoix)

We consider a control problem of the following form:

Vt(x0) = supu∈U
1
t

∫ t

s=0
g(xx0,u(s),u(s))ds, (1)

where t > 0, U is a non empty measurable set of controls (subset of a
Polish space), U = {u : IR+ −→ U measurable},
g : IRn×U −→ [0,1] is measurable, and xx0,u is the solution of:

ẋ(s) = f (x(s),u(s)), x(0) = x0. (2)

x0 is an initial state in IRn, f : IRn×U −→ IRn is measurable, Lipschitz
in x uniformly in u, and s.t. ∃a> 0,∀x ,u,‖f (x ,u)‖ ≤ a(1+‖x‖).

Say the problem has a Cesàro-uniform value if it has a limit value
V ∗(x0) = limt→∞Vt(x0) and:

∀ε > 0,∃u ∈U ,∃t0,∀t ≥ t0,
1
t

∫ t

s=0
g(xx0,u(s),u(s))ds ≥ V ∗(x0)− ε.
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No ergodicity condition here (Arisawa-Lions 98, Bettiol 2005,...).
The limit value may depend on the initial state.

Example 1: in the complex plane, f (x ,u) = ix .
if g(x ,u) = g(x), then

Vt(x0)−−−→
t→∞

1
2π|x0|

∫
|z|=|x0|

g(z)dz .

Example 2: in the complex plane, f (x ,u) = ixu, with u ∈ U ⊂ IR.
g(x ,u) = g(x) continuous.

Example 3: f (x ,u) =−x +u, with u ∈ U compact subset of IRn.
g(x ,u) = g(x) continuous.
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Example 4: in IR2, x(0) = (0,0), control set U = [0,1],

ẋ = f (x ,u) =

(
u(1−x1)
u2(1−x1)

)
, and g(x) = x1(1−x2).

if u = ε constant, then x1(t) = 1− exp(−εt) and x2(t) = εx1(t).

Uniform value V (0,0) = 1.
V (x1,x2) = 1−x2. no ergodicity

Notations: for every t > 0, m ≥ 0, x0 ∈ IRn and u ∈U , we define the
average payoff induced by u between time m and time m+ t by:

γm,t(x0,u) =
1
t

∫ m+t

m
g(xx0,u(s),u(s))ds,

and the value of the problem where the time interval [0,m] can be
devoted to reach a good initial state, is denoted by:

Vm,t(x0) = supu∈U γm,t(x0,u).
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Theorem (R- Quincampoix SICON 2011) Assume that:
(H1) g = g(x) is continuous on IRn.
(H2) G (x0) is bounded.
(H3) ∀x ∈ K , ∀y ∈ K , supu∈U infv∈U < x−y , f (x ,u)− f (y ,v) >≤ 0.

Then Vt(x0)−−−→
t→∞

V ∗(x0). The convergence is uniform over G (x0), and

V ∗(x0) = inft≥1 supm≥0 Vm,t(x0) = supm≥0inft≥1 Vm,t(x0). And the value
is Cesàro-uniform.
11-2011: moreover we have general uniform convergence

supu∈U

∫ +∞

s=0
θsg(xx0,u(s))ds→V ∗(x0) when

∫ +∞

s=0
|θ(s+1)−θ(s)|ds→ 0.

(and general uniform value if we allow for random controls)

• example 1 & 2: in the complex plane, f (x ,u) = ixu, with u ∈ U ⊂ IR.
• example 3: f (x ,u) =−x +u, whith u ∈ U compact subset of IRn.
• example 4: H3 not satisfied (but conclusions satisfied). ->
generalization of the theorem to deal with more general distances.
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4.c. MDPs with partial observation. Hidden controlled Markov chain
More general model where the player may not perfectly observe the state.
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-
r = 0,s = s3

R

r = 0
s = s4

s = s3
r = 0 �

?
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s = 3
4 s1 + 1

4 s2

?
r = 0

s = 1
4 s1 + 3

4 s2

?
r = 1
s = s3??

?
r = 0
s = s4??

-
r = 0,s = s4

States K = {k1,k2,k3,k4}, Actions y,y,y, Signals: {s1,s2,s3,s4}.
p0 = 1/2δk1 +1/2δk2 .

Playing y for a large number of stages, and then y or y depending on
the stream of signals received, is ε-optimal. v∗(p0) = 1, the uniform
value exists, but non existence of 0-optimal strategies.
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Finite set of states K , initial probability p0 on K , non empty set of
actions A, and also a non empty set of signals S . Transition
q : K ×A→∆f (S×K ), and reward function g : K ×A→ [0,1].

k1 in K is selected according to p0 and is not told to the player. At stage
t the player selects an action at ∈ A, and has a (unobserved) payoff
g(kt ,at). Then a pair (st ,kt+1) is selected according to q(kt ,at), and st
is told to the player. The new state is kt+1, and the play goes to stage
t +1.
Rosenberg Solan Vieille 2002: for K , A and S finite the Cesàro uniform
value exists.
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Write X = ∆(K ). Assume that the state of some stage has been selected
according to p in X and the player plays some action a in A. This defines
a probability q̂(p,a) on the future belief of the player on the state of the
next stage. q̂(p,a) ∈∆f (X ).

→ Auxiliary deterministic Pb Γ(z0): new set of states Z = ∆f (X )× [0,1],
new initial state z0 = (δp0 ,0), new payoff function r(u,y) = y for all
(u,y) in Z , transition correspondence such that for every z = (u,y) in Z ,

F (z) = {(H(u, f ),R(u, f )) , f : X −→∆f (A)} ,

where H(u, f ) = ∑p∈X u(p)(∑a∈A f (p)(a)q̂(p,a)) ∈∆f (X ),
and R(u, f ) = ∑p∈X u(p)

(
∑k∈K ,a∈A pk f (p)(a)g(k,a)

)
.

Use ‖.‖1 on X . ∆(X ): Borel probabilities over X , with the weak-*
topology. Topology metrized by the Wasserstein distance :

∀u ∈∆(X ),∀v ∈∆(X ), d(u,v) = supf ∈E1
|u(f )−v(f )|.
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Z is precompact metric and all the values vθ are 1-Lipschitz. Apply
corollary a to obtain the general CV of (vθ )θ

And use the distance d∗ and theorem 3 to get the existence of the
general uniform value (R-Venel 11-2011).
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Let K be finite, X = ∆(K ) endowed with ‖.‖1.
We define:
D = {f : X → IR,∀p f (p) = Val(∑k pkG k) for some matrices G 1,...,GK

with values in [−1,1]},
and

D ′ = {f : X → IR,∀a,b ≥ 0,∀x ,y ∈ X ,af (x)−b(y)≤ ‖ax−by‖}.

We have D ⊂ D ′ ⊂ Lip1.

d∗(u,v) =def supf ∈D |u(f )−v(f )|
= supf ∈D ′ |u(f )−v(f )|

= inf(P,Q)∈R(u,v)

(∫ ∫
‖P(x ,y)x−Q(x ,y)y‖du(x)dv(y)

)
where R(u,v) ={

(P,Q) : X 2→ [0,1],
∫
y
P(x ,y)dv(y) = 1 u a.s. and

∫
x
Q(x ,y)d(ux) = 1 v a.s

}
.

Then for each finite S , the map Ψ : ∆(K ×S)→∆f (X ) is non expansive.
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4.d. Application to repeated games with an informed controller

General zero-sum repeated game. Γ(π)
• Five non empty and finite sets
a set of states: K ,
sets of actions: I for player 1, and J for player 2,
sets of signals: C for player 1, and D for player 2.

• an initial distribution π ∈∆(K ×C ×D),
a payoff function g from K × I ×J to [0,1],
and a transition q from K × I ×J to ∆(K ×C ×D).

At stage 1: (k1,c1,d1) is selected according to π, player 1 learns c1 and
player 2 learns d1. Then simultaneously player 1 chooses i1 in I and
player 2 chooses j1 in J. The payoff for player 1 is g(k1, i1, j1).

At any stage t ≥ 2: (kt ,ct ,dt) is selected according to q(kt−1, it−1, jt−1),
player 1 learns ct and player 2 learns dt . Simultaneously, player 1 chooses
it in I and player 2 chooses jt in J. The stage payoff for player 1 is
g(kt , it , jt).
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At stage 1: (k1,c1,d1) is selected according to π, player 1 learns c1 and
player 2 learns d1. Then simultaneously player 1 chooses i1 in I and
player 2 chooses j1 in J. The payoff for player 1 is g(k1, i1, j1).

At any stage t ≥ 2: (kt ,ct ,dt) is selected according to q(kt−1, it−1, jt−1),
player 1 learns ct and player 2 learns dt . Simultaneously, player 1 chooses
it in I and player 2 chooses jt in J. The stage payoff for player 1 is
g(kt , it , jt).
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A pair of behavioral strategies (σ ,τ) induces a probability over plays.
The n-stage payoff for player 1 is:

γ
π
n (σ ,τ) = IEIPπ,σ ,τ

(
1
n

n

∑
t=1

g(kt , it , jt)

)
.

The n-stage value exists:

vn(π) = supσ infτ γ
π
n (σ ,τ) = infτ supσ γ

π
n (σ ,τ).

Definition The repeated game Γ(π) has a uniform value if:
• (vn(π))n has a limit v(π) as n goes to infinity,
• Player 1 can uniformly guarantee this limit:
∀ε > 0, ∃σ , ∃n0, ∀n ≥ n0, ∀τ, γπ

n (σ ,τ)≥ v(π)− ε,
• Player 2 can uniformly guarantee this limit:
∀ε > 0, ∃τ, ∃n0, ∀n ≥ n0, ∀σ , γπ

n (σ ,τ)≤ v(π) + ε.
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Hypothesis HX: Player 1 is informed, in the sense that he can always
deduce the state and player 2’s signal from his own signal.

(formally, there exists k̂ : C −→ K and d̂ : C −→ D such that:
π(E ) = 1, and q(k, i , j)(E ) = 1, ∀(k, i , j) ∈ K × I ×J,
where E = {(k,c ,d) ∈ K ×C ×D, k̂(c) = k and d̂(c) = d}. )

HX does not imply that P1 knows the actions played by P2.

Hypothesis HY: Player 1 controls the transition, in the sense that the
marginal of the transition q on K ×D does not depend on player 2’s
action.

HX and HY are satisfied in the models of - Repeated games with lack of
information on one side (Aumann Maschler 1966), - Markov chain games
with lack of information on one side (Renault 2006),- Stochastic games
with a single controller and incomplete information on the side of his
opponent (Rosenberg Solan Vieille 2004).
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Given m ≥ 0 and n ≥ 1, define the payoffs and auxiliary value functions:

γ
π
m,n(σ ,τ) = IEIPπ,σ ,τ

(
1
n

m+n

∑
t=m+1

g(kt , it , jt)

)
,

vm,n(π) = supσ infτ γ
π
m,n(σ ,τ) = infτ supσ γ

π
m,n(σ ,τ).

Thm (R, MOR 2011): Under HX and HY, the repeated game Γ(π) has a
Cesàro-uniform value, which is:

v∗(π) = infn≥1supm≥0vm,n(π) = supm≥0infn≥1vm,n(π).

And (vn)n uniformly converges to v∗ on {π,π(E ) = 1}. Player 1 has
ε-optimal strategies. Player 2 has 0-optimal strategies.
And there is general uniform convergence of the value functions, and
general uniform value (R-Venel 11-2011).

39/40



On the limit values in dynamic optimization
Applications

Given m ≥ 0 and n ≥ 1, define the payoffs and auxiliary value functions:

γ
π
m,n(σ ,τ) = IEIPπ,σ ,τ

(
1
n

m+n

∑
t=m+1

g(kt , it , jt)

)
,

vm,n(π) = supσ infτ γ
π
m,n(σ ,τ) = infτ supσ γ

π
m,n(σ ,τ).

Thm (R, MOR 2011): Under HX and HY, the repeated game Γ(π) has a
Cesàro-uniform value, which is:

v∗(π) = infn≥1supm≥0vm,n(π) = supm≥0infn≥1vm,n(π).

And (vn)n uniformly converges to v∗ on {π,π(E ) = 1}. Player 1 has
ε-optimal strategies. Player 2 has 0-optimal strategies.
And there is general uniform convergence of the value functions, and
general uniform value (R-Venel 11-2011).

39/40



On the limit values in dynamic optimization
Applications

Given m ≥ 0 and n ≥ 1, define the payoffs and auxiliary value functions:

γ
π
m,n(σ ,τ) = IEIPπ,σ ,τ

(
1
n

m+n

∑
t=m+1

g(kt , it , jt)

)
,

vm,n(π) = supσ infτ γ
π
m,n(σ ,τ) = infτ supσ γ

π
m,n(σ ,τ).

Thm (R, MOR 2011): Under HX and HY, the repeated game Γ(π) has a
Cesàro-uniform value, which is:

v∗(π) = infn≥1supm≥0vm,n(π) = supm≥0infn≥1vm,n(π).

And (vn)n uniformly converges to v∗ on {π,π(E ) = 1}. Player 1 has
ε-optimal strategies. Player 2 has 0-optimal strategies.
And there is general uniform convergence of the value functions, and
general uniform value (R-Venel 11-2011).

39/40



On the limit values in dynamic optimization
Applications

Given m ≥ 0 and n ≥ 1, define the payoffs and auxiliary value functions:

γ
π
m,n(σ ,τ) = IEIPπ,σ ,τ

(
1
n

m+n

∑
t=m+1

g(kt , it , jt)

)
,

vm,n(π) = supσ infτ γ
π
m,n(σ ,τ) = infτ supσ γ

π
m,n(σ ,τ).

Thm (R, MOR 2011): Under HX and HY, the repeated game Γ(π) has a
Cesàro-uniform value, which is:

v∗(π) = infn≥1supm≥0vm,n(π) = supm≥0infn≥1vm,n(π).

And (vn)n uniformly converges to v∗ on {π,π(E ) = 1}. Player 1 has
ε-optimal strategies. Player 2 has 0-optimal strategies.
And there is general uniform convergence of the value functions, and
general uniform value (R-Venel 11-2011).

39/40



On the limit values in dynamic optimization
Applications

40/40



On the limit values in dynamic optimization
References

Aumann, R.J. and M. Maschler (1995):
Repeated games with incomplete information. With the collaboration
of R. Stearns.
Cambridge, MA: MIT Press.

A. Araposthathis, V. Borkar, E. Fernández-Gaucherand, M. Ghosh
and S. Marcus.
Discrete-time controlled Markov Processes with average cost
criterion: a survey. SIAM Journal of Control and Optimization, 31,
282–344, 1993.

M. Arisawa and P.L. Lions
On ergodic stochastic control.
Com. in partial differential equations, 23, 2187–2217, 1998.

P. Bettiol
On ergodic problem for Hamilton-Jacobi-Isaacs equations
ESAIM: Cocv, 11, 522–541, 2005.

D. Blackwell.
Discrete dynamic programming,

40/40



On the limit values in dynamic optimization
References

Annals of Mathematical Statistics, 33, 719–726, 1962.

Coulomb, J.M. (2003):
Games with a recursive structure. based on a lecture of J-F.
Mertens.
Chapter 28, Stochastic Games and Applications, A. Neyman and S.
Sorin eds, Kluwer Academic Publishers.

L. Dubins and L. Savage.
How to gamble if you must: inequalities for stochastic porcesses.
McGraw-Hill, 1965. 2nd edition 1976 Dover, New York.

E.B. Dynkin and A.A. Yushkevich.
Controlled Markov Processes,
Springer, 1979.

O. Hernández-Lerma, et J.B. Lasserre.
Long-Run Average-Cost Problems.
Discrete-Time Markov Control Processes, Ch. 5, 75–124, 1996.

E. Lehrer et D. Monderer.
Discounting versus Averaging in Dynamic Programming.

40/40



On the limit values in dynamic optimization
References

Games and Economic Behavior, 6, 97–113, 1994.

E. Lehrer et S. Sorin.
A uniform Tauberian Theorem in Dynamic Programming.
Mathematics of Operations Research, 17, 303–307, 1992.

S. Lippman.
Criterion Equivalence in Discrete Dynamic Programming.
Operations Research, 17, 920–923, 1969.

J.-F. Mertens.
Repeated games.
Proceedings of the International Congress of Mathematicians,
Berkeley 1986, 1528–1577. American Mathematical Society, 1987.

J.-F. Mertens et A. Neyman.
Stochastic games,
International Journal of Game Theory, 1, 39-64, 1981.

D. Monderer et S. Sorin.
Asymptotic properties in Dynamic Programming.
International Journal of Game Theory, 22, 1–11, 1993.

40/40



On the limit values in dynamic optimization
References

M. Quincampoix and J. Renault.
On the existence of a limit value in some non expansive optimal
control problems.SICON 49, pp 2118-2132, October 2011.

M. Quincampoix and F. Watbled
Averaging methods for discontinuous Mayer’s problem of singularly
perturbed control systems.
Nonlinar analysis, 54, 819–837, 2003.

J. Renault.
The value of Markov chain games with lack of information on one
side.
Mathematics of Operations Research, 3, 490–512, 2006.

J. Renault.
Uniform value in Dynamic Programming.
Journal of the European Mathematical Society 2011, vol. 13, p.
309-330.

J. Renault.
The value of Repeated Games with an informed controller.

40/40



On the limit values in dynamic optimization
References

arXiv : 0803.3345. to appear in MOR.

D. Rosenberg, E. Solan et N. Vieille.
Blackwell Optimality in Markov Decision Processes with Partial
Observation.
The Annals of Statistics, 30, 1178–1193, 2002.

Rosenberg, D., Solan, E. and N. Vieille (2004):
Stochastic games with a single controller and incomplete
information.
SIAM Journal on Control and Optimization, 43, 86-110.

Sorin, S. (1984):
Big match with lack of information on one side (Part I),
International Journal of Game Theory, 13, 201-255.

Sorin, S. and S. Zamir (1985):
A 2-person game with lack of information on 1 and 1/2 sides.
Mathematics of Operations Research, 10, 17-23.

S. Sorin.
A First Course on Zero-Sum Repeated Games.

40/40



On the limit values in dynamic optimization
References

Mathématiques et Applications, Springer, 2002.

40/40


	Introduction
	General results
	Applications
	References

