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Abstract. The strong convergence of a broad class of outer approximation methods for mini-
mizing a convex function over the intersection of an arbitrary number of convex sets in a reflexive
Banach space is studied in a unified framework. The generic outer approximation algorithm under
investigation proceeds by successive minimizations over the intersection of convex supersets of the
feasibility set determined in terms of the current iterate and variable blocks of constraints. The
convergence analysis involves flexible constraint approximation and aggregation techniques as well
as relatively mild assumptions on the constituents of the problem. Various well-known schemes are
recovered as special realizations of the generic algorithm and parallel block-iterative extensions of
these schemes are devised within the proposed framework. The case of inconsistent constraints is
also considered.

Key words. block-iterative, convex feasibility problem, convex programming, constrained min-
imization, cutting plane, fixed point, inconsistent constraints, outer approximation, projection onto
an intersection of convex sets, reflexive Banach space, surrogate cut, uniformly convex function

AMS subject classifications. 49M27, 65J05, 65K05, 90C25

PII. S036301299732626X

1. Introduction. Let X be a real reflexive Banach space, let J : X →]−∞,+∞]
be a proper function, and let (Si)i∈I be an arbitrary family of closed convex subsets
of X . We investigate a broad class of block-iterative outer approximation methods
for solving the program

findx ∈ S ,
⋂
i∈I

Si such that J(x) = inf
x∈S

J(x) , J(P)

under the following assumptions:

(A1) J is lower semicontinuous and convex.
(A2) For some closed convex set E ⊃ S, there exists a point u ∈ S ∩ dom J such

that the set C , {x ∈ E | J(x) ≤ J(u)} is bounded and J is uniformly
convex with modulus of convexity c on C, i.e., [53], [54]

(∀(x, y) ∈ C2
)

J

(
x+ y

2

)
≤ J(x) + J(y)

2
− c(‖x− y‖),(1.1)

where c : R+ → R+ is nondecreasing and (∀τ ∈ R+) c(τ) = 0⇔ τ = 0.
(A3) For every i ∈ I, Si = {x ∈ X | gi(x) ≤ 0}, where gi belongs to the class G of
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all functions g : X →]−∞,+∞] such that



(i) {x ∈ X | g(x) ≤ 0} is nonempty and convex.

(ii) For every sequence (yn)n≥0 ⊂ X{
yn

n
⇀ y

lim ng(yn) ≤ 0
⇒ g(y) ≤ 0.

(1.2)

Assumptions (A1)–(A2) are rather standard and ensure in particular that (P) admits
a unique solution x [1]. Assumption (A3) provides an explicit description of the
constraint sets (Si)i∈I as lower level sets of functions (gi)i∈I ⊂ G. As will be seen
in section 2, the class G is quite broad, and (A3) therefore covers a wide range of
constraints encountered in convex optimization problems.

In the past four decades, various outer approximation methods for constrained
minimization problems have been proposed, following their introduction by Cheney
and Goldstein [8] and Kelley [31] in the form of cutting plane algorithms. The un-
derlying principle is to replace (P) by a sequence of minimizations over simple closed
convex supersets (Qn)n≥0 of the feasibility set S. Typically, the approximation at
iteration n can be written as Qn = Dn∩Hn, where Dn and Hn are two closed convex
supersets of S, the latter being termed a cut. Outer approximation methods can
be divided into two main categories, namely, cutoff methods and constraints disin-
tegration methods. In cutoff method [37], Dn+1 = Qn and Qn+1 therefore results
from the accumulation of all previous cuts. Several classical algorithms fit in this
framework that differ in the way the cuts are defined, e.g., [8], [30], [31], [52], [55].
Naturally, a limitation of cutoff methods is that the minimization of J over the sets
(Qn)n≥0 becomes increasingly demanding in terms of both computational load and
storage requirements. This shortcoming prompted the development of filtered cutoff
methods in which some of the old cuts can be discarded under various hypotheses,
thereby keeping the complexity of the outer approximations manageable, e.g., [5], [16],
[19], [49], [50]. These methods are cumulative in the sense that every cut must be
retained until it is definitely dropped. By contrast, in the somewhat less well known
constraints disintegration methods, Dn is a half-space depending solely on xn and a
subgradient of J at xn. Such schemes were first proposed by Haugazeau in the 1960s
for the minimization of quadratic forms in Hilbert spaces [26] and several variants
have since been proposed for this particular problem [14], [27], [41], [44], [45]. The
extension to convex functions was dealt with in [35] in Banach spaces and rediscovered
in Euclidean spaces in [29] and [39].

The goal of the present work is to develop a general framework for outer approx-
imation methods that captures and extends the above algorithms. Our investigation
will not only provide a unified strong convergence analysis of existing outer approxi-
mation methods for solving (P) but also yield flexible generalizations of these methods
in the form of parallel block-iterative algorithms.

The paper is built around the following generic outer approximation scheme. For
brevity, m(A) denotes the minimizer of J over a convex set A and C(A) the family of
all closed convex supersets of A.

Algorithm 1.1. A sequence (xn)n≥0 is constructed as follows, where E is sup-
plied by (A2).

Step 0. Set D0 = E, x0 = m(D0), and n = 0.
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Step 1. Take a nonempty finite index set In ⊂ I and generate Hn such that

Hn ∈ C

(⋂
i∈In

Si

)
.(1.3)

Step 2. Set Qn = E ∩Dn ∩Hn and xn+1 = m(Qn).
Step 3. Generate Dn+1 such that

Dn+1 ∈ C(S) and xn+1 = m(Dn+1).(1.4)

Step 4. Set n = n+ 1 and go to Step 1.
Associated with this algorithm is the following terminology.
Definition 1.1. Let Hn and Dn+1 be two subsets of X . Then Hn (respectively,

Dn+1) will be said to be a cut (respectively, a base) for Algorithm 1.1 at iteration n
if (1.3) (respectively, (1.4)) holds.

At iteration n, xn and an outer approximation Dn to S are given such that
xn minimizes J over Dn. A finite block of sets (Si)i∈In is then selected and Hn is
constructed as an outer approximation to their intersection. The update xn+1 is the
minimizer of J over Qn = E ∩Dn ∩Hn. We observe that, since u ∈ Qn, xn+1 is the
minimizer of J over Qn ∩ C. Consequently, since J is weakly lower semicontinuous
(by (A1)) and since Qn ∩ C is nonempty and weakly compact (bounded, closed, and
convex by (A1)–(A2) in the reflexive space X ), the existence of xn+1 follows from
Weierstrass’ theorem [1, Thm. 2.1.1]; its uniqueness follows from the strict convexity
of J over Qn ∩C, which is secured by (A2). The iteration is completed by generating
a new outer approximation Dn+1 to S over which J achieves its infimum at xn+1.

The remainder of the paper is divided into six sections. In section 2 basic nota-
tion and definitions are introduced and assumptions (A1)–(A3) are illustrated through
specific examples. In section 3 we establish the strong convergence of Algorithm 1.1 to
the solution x of (P) for two types of control sequence (In)n≥0 under certain “tight-
ness” conditions. Four frameworks are then considered individually. In section 4,
two general cut construction techniques are described, namely, exact-constraint cuts
in section 4.1 and surrogate cuts in section 4.2. In the former case, the cuts are
drawn directly from the pool of constraint sets (Si)i∈I , whereas in the latter they are
constructed as surrogate half-spaces based on approximate projections of the current
iterate onto the selected block of sets. Section 5 is devoted to the construction of bases.
In section 5.1 the bases are cumulative, as in cutoff methods, whereas in section 5.2
the bases are instantaneous, as in constraints disintegration methods. By coupling
a cut construction strategy from section 4.1 or 4.2 with a base construction strategy
from section 5.1 or 5.2, we obtain in section 6 four general realizations of the abstract
Algorithm 1.1. In each case, strong convergence theorems are given and existing
methods are exhibited as special cases. As a by-product, a block-iterative algorithm
for projecting onto an intersection of convex sets in a Hilbert space is presented in
detail. Finally, problems with inconsistent constraints and feasibility problems are
discussed in section 7.

2. Preliminaries.

2.1. Notation, definitions, and basic facts. The definitions and results
stated hereafter can be found in [1].

N is the set of nonnegative integers, N∗ the set of positive integers, R+ the set of
nonnegative reals, R∗+ the set of positive reals, and RN the standard N -dimensional
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Euclidean space. X is a real reflexive Banach space, and Id its identity operator. bdA
denotes the boundary of a set A ⊂ X , A◦ its interior, m(A) the minimizer of J over
A (i.e., m(A) ∈ A and (∀x ∈ A) J(m(A)) ≤ J(x)) provided such a point exists and is
unique, and C(A) the family of all closed convex supersets of A. The norm of X and
that of its topological dual X ′ is denoted by ‖ · ‖, the associated distance by d, and

the canonical bilinear form on X × X ′ by 〈·, ·〉. The expressions xn
n
⇀ x and xn

n→ x
denote, respectively, the weak and strong convergence to x of a sequence (xn)n≥0 and
W(xn)n≥0 its set of weak cluster points. The closed ball of center x and radius γ in
X or X ′ is denoted by B(x, γ) and the normalized duality mapping of X by ∆, i.e.,

(∀x ∈ X ) ∆(x) =
{
x′ ∈ X ′ | ‖x‖2 = 〈x, x′〉 = ‖x′‖2}.(2.1)

It follows from the reflexivity of X that ∆ is surjective (∆−1(x′) 6= Ø for every
x′ ∈ X ′). ∆ is single valued if X ′ is strictly convex.

Let F : X →] − ∞,+∞] be a proper function, i.e., domF = {x ∈ X | F (x) <
+∞} 6= Ø. F is subdifferentiable at x ∈ domF if its subdifferential at this point,

∂F (x) =
{
t′ ∈ X ′ | (∀y ∈ X ) 〈y − x, t′〉+ F (x) ≤ F (y)

}
,(2.2)

is not empty. A subgradient of F at x is an element of ∂F (x). The lower level set of F
at height λ ∈ R is lev≤λF = {x ∈ X | F (x) ≤ λ}. F is quasi-convex if its lower level
sets (lev≤λF )λ∈R are convex and it is (respectively, weakly) lower semicontinuous if
they are (respectively, weakly) closed. Now suppose that A ⊂ X is a nonempty convex
set and that F is convex and continuous at a point in A∩domF , and let p ∈ A. Then

F (p) = inf
y∈A

F (y) ⇔ (∃t′ ∈ ∂F (p)
)
(∀y ∈ A) 〈p− y, t′〉 ≤ 0.(2.3)

In particular, fix x ∈ X and let F : y 7→ ‖x− y‖2/2. Then (2.3) yields

‖x− p‖ = d(x,A) ⇔ (∃q′ ∈ ∆(x− p))(∀y ∈ A) 〈y − p, q′〉 ≤ 0(2.4)

and p is called a projection of x onto A. Such a point exists if A is closed and
it is unique if in addition X is strictly convex, as is the case when X is uniformly
convex, i.e.,

(∀ε ∈]0, 2])(∃δ ∈]0, 2])
(∀(x, y) ∈ B(0, 1)2

) ‖x− y‖ ≥ ε⇒ ‖x+ y‖ ≤ 2− δ,(2.5)

and a fortiori when X is a Hilbert space.
If X is a Hilbert space, the identifications X ′ = X and ∆ = Id will be made and

the scalar product of X will also be denoted by 〈·, ·〉. Thus, expressions such as 〈x, y′〉,
where (x, y) ∈ X 2 and y′ ∈ ∆(y), will reduce to 〈x, y〉.

2.2. On assumptions (A1)–(A3). We first describe basic scenarios covered
by assumptions (A1)–(A2). It should be noted at this point that the boundedness of
C in (A2) is mentioned only for the sake of clarity and that it is actually implicit.
Indeed, if F : B →] − ∞,+∞] is lower semicontinuous and uniformly convex on a
closed convex set A ⊂ B, where B is a reflexive Banach space, then A ∩ lev≤F (w)F is
bounded for every w ∈ A ∩ domF [53, Thm. 1(1)].

Proposition 2.1. Assumptions (A1) and (A2) are satisfied in each of the fol-
lowing cases.

(i) J is lower semicontinuous and convex and, for some E ∈ C(S), there exists
u ∈ S ∩ dom J such that C = E ∩ lev≤J(u)J is compact and J is strictly
convex and continuous on C.
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(ii) X = RN , J is finite and strictly convex, and either of the following conditions
is fulfilled:
(a) E = X and, for some λ ∈ R, lev≤λJ is nonempty and bounded.
(b) E ∈ C(S) is bounded.

(iii) X is a Hilbert space, E = X , and J is a coercive quadratic form, i.e., J : x 7→
a(x, x)/2 − 〈x, b〉, where b ∈ X and a is a symmetric bounded bilinear form
on X 2 that satisfies(∃γ ∈ R∗+)(∀x ∈ X ) a(x, x) ≥ γ‖x‖2.(2.6)

(iv) X is uniformly convex, E = X , and J : x 7→ ∫ ‖x−w‖
0

ϕ(t)dt, where w ∈ X and
ϕ : R+ → R+ is increasing.

(v) Let (Ω,F, µ) be a complete finite measure space, let p ∈]1,+∞[, and let X be
a separable, real reflexive Banach space with norm ‖ · ‖X and Borel σ-algebra
B. X = LpX is the Lebesgue space of (equivalence classes of µ — almost
everywhere (a.e.) equal) measurable functions x : (Ω,F) → (X,B) such that∫

Ω
‖x(ω)‖pXµ(dω) < +∞ and J : x 7→ ∫

Ω
ϕ(ω, x(ω))µ(dω), where the integrand

ϕ : Ω× X→]−∞,+∞] fulfills the following conditions:
(a) ϕ is measurable relative to the product σ-algebra F ×B.
(b) (∀x ∈ X )

∫
Ω
|ϕ(ω, x(ω))|µ(dω) < +∞.

(c) The functions (ϕ(ω, ·))ω∈Ω are lower semicontinuous, proper, and uni-
formly convex on X with common modulus of convexity c0, hence

(∀ω ∈ Ω)(∀(x, y) ∈ ( domϕ(ω, ·))2
)

ϕ

(
ω,

x + y

2

)
(2.7)

≤ ϕ(ω, x) + ϕ(ω, y)

2
− c0(‖x− y‖X).

Moreover, c0 is continuous and lim τ→+∞c0(τ)/τp > 0.

Proof. (i) is a consequence of [36, Thm. 4.1.8.(1)]. (ii) ⇒ (i): J is convex and,
by [46, Cor. 10.1.1], continuous. Moreover, for any u ∈ S, E ∩ lev≤J(u)J is compact.
This follows from the compactness of lev≤λJ for any λ ∈ R in (a) [46, Cor. 8.7.1]
and from that of E in (b). (iii): a(·, ·) is a scalar product on X with associated norm
||| · ||| : x 7→ √

a(x, x). The parallelogram identity applied to ||| · ||| and (2.6) then
shows its uniform convexity on X with modulus of convexity α 7→ γα2/4. Hence, |||·|||
satisfies (A1)–(A2) and so does J . (iv): Without loss of generality, let w = 0. The
function ψ : α 7→ ∫ α

0
ϕ(t)dt is well defined, finite, increasing, convex, and continuous

on R+ [46, Thm. 24.2]. Hence, J = ψ ◦ ‖ · ‖ is convex and continuous, and (A1) is
satisfied. Finally, (A2) is satisfied due to the uniform convexity of J on any closed
ball [54, Thm. 4.1(ii)] and therefore on lev≤J(u)J for any u ∈ S. (v): X is a reflexive

Banach space with norm ‖·‖ : x 7→ (
∫

Ω
‖x(ω)‖pXµ(dω))1/p [20, Thm. 8.20.5]. Moreover,

J is finite, continuous, and convex on X [47, Thm. 22(a)], which gives (A1). As
regards (A2), we claim that J is uniformly convex on X . Indeed, take arbitrarily
(x, y) ∈ X 2. Then it follows from (b) that ϕ(·, x(·)) < +∞ and ϕ(·, y(·)) < +∞ µ-a.e.
Consequently, by virtue of (2.7), for µ almost every ω ∈ Ω, it holds that

ϕ

(
ω,
x(ω) + y(ω)

2

)
≤ ϕ(ω, x(ω)) + ϕ(ω, y(ω))

2
− c0 (‖x(ω)− y(ω)‖X) ,(2.8)
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where, under our assumptions, the function ω 7→ c0(‖x(ω) − y(ω)‖X) is measurable.
Upon integrating (2.8), we obtain

J

(
x+ y

2

)
≤ J(x) + J(y)

2
−
∫

Ω

c0 (‖x(ω)− y(ω)‖X)µ(dω).(2.9)

Now fix ε ∈ R∗+ arbitrarily. Then, since µ(Ω) < +∞ and lim τ→+∞c0(τ)/τp > 0, it
follows from [54, Lem. 4.4] that there exists c ∈ R∗+ depending only on ε such that∫

Ω
c0(‖x(ω)− y(ω)‖X)µ(dω) ≥ c whenever ‖x− y‖ ≥ ε. This proves the claim.
Scenario (ii) is an important practical instance of (i) in which (P) takes the form

of a semi-infinite convex program, as commonly found in numerical applications. In
scenario (iii), since there exists w ∈ X such that (∀x ∈ X )〈x, b〉 = a(x,w) [7, Chap. V],
we can write J : x 7→ a(x−w, x−w)/2−a(w,w)/2. (P) can therefore be looked upon
as the problem of finding the projection of w onto the intersection of the closed convex
sets (Si)i∈I relative to the norm ||| · ||| : x 7→√

a(x, x). Alternatively, since for every
y ∈ X 〈y,∇J(x)〉 = a(y, x)−〈y, b〉 [15, Chap. VII], (2.3) shows that (P) is equivalent
to solving the variational inequality

findx ∈ S =
⋂
i∈I

Si such that (∀x ∈ S) a(x− x, x) ≥ 〈x− x, b〉,(2.10)

which arises in numerous areas of mathematical sciences [1], [7], [15]. Next, scenario
(iv) describes the problem of projecting w onto the intersection of the closed convex
sets (Si)i∈I in a uniformly convex Banach space. It is noted that if J : x 7→ ‖x−w‖2/2,
then ∂J : x 7→ ∆(x − w) [1]. Finally, scenario (v) is of interdisciplinary interest and
covers problems in areas such as stochastic programming, economics, and control
theory; see, e.g., [1], [43], [47]. It should be added that t′ ∈ ∂J(x)⇔ t′(·) ∈ ∂ϕ(·, x(·))
µ — a.e. [47, Thm. 22(c)] and that X is a Hilbert space if X is a Hilbert space and
p = 2.

We now turn to assumption (A3). The motivation for introducing the class of
functions G stems from its ability to capture in the convenient form of functional
inequalities a wide range of convex constraints arising in theoretical and practical
optimization problems. As illustrated below, constraint sets in the form of lower level
sets of quasi-convex functions or of fixed point sets of quasi-nonexpansive operators,
as found for instance in [4], [10], [11], [12], [29], [34], [35], and [51], are included. Let
us also call attention to the fact that (1.2)(ii) implies that lev≤0g is weakly closed for
every g ∈ G.

Proposition 2.2. Let g : X →] − ∞,+∞] be a function such that, for some
w ∈ X , g(w) ≤ 0. Then g ∈ G if one of the conditions below is fulfilled.

(i) lev≤0g is convex and g is weakly lower semicontinuous.
(ii) g is lower semicontinuous and quasi-convex.

(iii) lev≤0g is closed and convex and the constraint “g(x) ≤ 0” is correct [37]:(∀(yn)n≥0 ⊂ X
)

lim ng(yn) ≤ 0⇒ lim nd(yn, lev≤0g) = 0.(2.11)

(iv) g : x 7→ ‖Tx − x‖ is the displacement function of an operator T : X → X
whose fixed point set FixT , {x ∈ X | Tx = x} is convex and such that
T − Id is demiclosed at the origin:

(∀(yn)n≥0 ⊂ X
) {

yn
n
⇀ y

Tyn − yn n→ 0
⇒ y ∈ FixT.(2.12)

These conditions are fulfilled in each of the following cases.
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(a) X is uniformly convex and T is nonexpansive: (∀(x, y) ∈ X 2) ‖Tx−Ty‖
≤ ‖x− y‖.

(b) FixT is closed and convex and, for every sequence (yn)n≥0 ⊂ X , Tyn −
yn

n→ 0 ⇒ lim nd(yn,FixT ) = 0.
(c) T − Id is demiclosed at the origin and there exists η ∈ R∗+ such that

(∀x ∈ X )
(∃z′ ∈ ∆(x− Tx)

)
(∀y ∈ FixT ) 〈x− y, z′〉 ≥ η‖Tx− x‖2.

(2.13)

(d) X is a Hilbert space, T − Id is demiclosed at the origin, and T is quasi-
nonexpansive:(∀(x, y) ∈ X × FixT

) ‖Tx− y‖ ≤ ‖x− y‖.(2.14)

(e) X is a Hilbert space and T is firmly nonexpansive:

(∀(x, y) ∈ X 2
) ‖Tx− Ty‖2 ≤ ‖x− y‖2 − ‖(T − Id)x− (T − Id)y‖2.

(2.15)

Proof. (i) Since g is weakly lower semicontinuous, yn
n
⇀ y ⇒ g(y) ≤ lim ng(yn).

Hence (1.2) (ii) holds. (ii)⇒ (i) is immediate. (iii) Since lev≤0g is convex, d(·, lev≤0g)
is convex and Lipschitzian and therefore weakly lower semicontinuous. Accordingly,

yn
n
⇀ y ⇒ d(y, lev≤0g) ≤ lim nd(yn, lev≤0g).(2.16)

Hence, if we further assume lim ng(yn) ≤ 0, (2.11) gives d(y, lev≤0g) = 0; i.e., g(y) ≤ 0
since lev≤0g is closed. (iv) is immediate. (a) is proved in [24, Lem. 3.4 and Thm. 8.4].
(b) follows from (iii). (c): Let

(∀x ∈ X ) Qx =
{
y ∈ X | 〈x− y, z′〉 ≥ η‖Tx− x‖2}(2.17)

(z′ being as in (2.13)) and Q =
⋂
x∈X Qx. Then Q is convex as an intersection of half-

spaces. Let us show FixT = Q. FixT ⊂ Q results at once from (2.13). Conversely,
let x ∈ Q. Then x ∈ Qx and therefore 0 ≥ η‖Tx − x‖2. Thus, Tx = x and, in turn,
Q ⊂ FixT . (d) ⇒ (c): In Hilbert spaces, (2.13) becomes(∀(x, y) ∈ X × FixT

) 〈x− y, x− Tx〉 ≥ η‖Tx− x‖2.(2.18)

The identity 2〈x− y, x− Tx〉 = ‖Tx− x‖2 + ‖x− y‖2 − ‖Tx− y‖2 shows that (2.18)
is equivalent to(∀(x, y) ∈ X × FixT

) ‖Tx− y‖2 ≤ ‖x− y‖2 − (2η − 1)‖Tx− x‖2,(2.19)

which reduces to (2.14) for η = 1/2. (e) ⇒ (c): T is nonexpansive and T − Id is
therefore demiclosed by (a). In addition, (2.15) ⇒ (2.19) with η = 1.

3. Convergence analysis. This section is devoted to establishing the strong
convergence of Algorithm 1.1 under suitable conditions. Our starting point is the
following proposition, which collects some basic properties of the algorithm.

Proposition 3.1. Let (xn)n≥0 be an arbitrary orbit of Algorithm 1.1. Then:
(i) (∀n ∈ N) J(xn) ≤ J(xn+1) ≤ J .

(ii) (xn)n≥0 ⊂ C.
(iii) W(xn)n≥0 6= Ø.
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(iv) (J(xn))n≥0 converges and limn J(xn) ≤ J .
(v) (∃n ∈ N) xn ∈ S ⇒ (∀k ∈ N) xn+k = x.

(vi) W(xn)n≥0 ⊂ S ⇒ xn
n→ x.

(vii) xn+1 − xn n→ 0.

(viii) d(xn, Hn)
n→ 0.

Proof. (i) results from the inclusions (∀n ∈ N)Dn ⊃ Qn ⊃ S. (ii), (iv), and (v)
follow from (i). (ii) ⇒ (iii): It follows from (A1)–(A2) and the reflexivity of X that
C is weakly compact. (vi): Assume W(xn)n≥0 ⊂ S and take x ∈ W(xn)n≥0, say

xnk
k
⇀ x. By virtue of (A1), J is weakly lower semicontinuous and it follows from

(iv) that J(x) ≤ lim kJ(xnk) = limn J(xn) ≤ J . However, x ∈ S and x is the unique
solution to (P). Hence, x = x, W(xn)n≥0 = {x}, and, since C is weakly compact,

(ii) yields xn
n
⇀ x. Repeating the above argument, we obtain J = J(x) ≤ lim nJ(xn)

and, by (iv), J(xn)
n→ J . Since (xn + x)/2

n
⇀ x, the weak lower semicontinuity of J

and (1.1) yield

J ≤ lim nJ

(
xn + x

2

)
≤ lim n

J(xn) + J

2
− lim nc(‖xn − x‖)

= J − lim nc(‖xn − x‖).(3.1)

Hence, c(‖xn−x‖) n→ 0 and, by (A2), xn
n→ x. (vii): For every n ∈ N, (xn, xn+1) ∈ D2

n

and therefore yn = (xn + xn+1)/2 ∈ Dn. Since xn = m(Dn), (1.1) then yields

J(xn) ≤ J(yn) ≤ J(xn) + J(xn+1)

2
− c(‖xn+1 − xn‖).(3.2)

Hence, (iv) implies c(‖xn+1 − xn‖) n→ 0 and, in turn, xn+1 − xn n→ 0. (vii) ⇒ (viii):
(∀n ∈ N)xn+1 ∈ Hn ⇒ ‖xn+1 − xn‖ ≥ d(xn, Hn).

Item (i) above shows that Algorithm 1.1 is an ascent method. On the other hand,
item (vi) guarantees the strong convergence of any orbit to the solution of (P) as long
as each of its weak cluster points satisfies all the constraints. In view of (1.3), for this
condition to hold, the control sequence (In)n≥0 determining the blocks of constraints
activated over the course of the iterations must sweep through the index set I in a
coherent fashion; three suitable control modes will be considered in Definition 3.1.
In addition, the constraint sets (Si)i∈I must be tightly approximated by the cuts
(Hn)n≥0 in a sense that will be made precise in Definition 3.2.

Definition 3.1. Algorithm 1.1 operates under

• admissible control if I is countable and there exist positive integers (Mi)i∈I
such that

(∀(i, n) ∈ I × N) i ∈
n+Mi−1⋃
k=n

Ik;(3.3)

• chaotic control if I is countable and

I = lim nIn ,
⋂
n≥0

⋃
k≥n

Ik;(3.4)
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• coercive control if(
∃(i(n))n≥0 ∈ ×

n≥0
In

)
lim ngi(n)(xn) ≤ 0⇒ lim n sup

i∈I
gi(xn) ≤ 0.(3.5)

In addition, Algorithm 1.1 is serial if (In)n≥0 reduces to a sequence of singletons
({i(n)})n≥0. The above admissibility and coercivity conditions then read

(∀i ∈ I)(∃Mi ∈ N∗)(∀n ∈ N) i ∈ {i(n), . . . , i(n+Mi − 1)}(3.6)

and

lim ngi(n)(xn) ≤ 0⇒ lim n sup
i∈I

gi(xn) ≤ 0,(3.7)

respectively.
The coercive control mode is found in [13] with (∀i ∈ I) gi : x 7→ d(x, Si). The

admissible and chaotic control modes have already been used at various levels of
generality in convex feasibility problems [4], [10], [13], [34], [42].

Definition 3.2. Let (xn)n≥0 be an arbitrary orbit of Algorithm 1.1. Then the
algorithm will be said to be

• tight if, for every i ∈ I and every increasing sequence (nk)k≥0 ⊂ N such that
i ∈ ⋂k≥0 Ink , we have lim kgi(xnk) ≤ 0;

• strongly tight if lim n maxi∈In gi(xn) ≤ 0.
It is clear that strong tightness implies tightness. We show below that, when I is

finite, the distinction between the two notions disappears.
Proposition 3.2. Suppose that I is finite. Then Algorithm 1.1 is tight if and

only if it is strongly tight.
Proof. To show necessity, take an arbitrary orbit (xn)n≥0 and suppose that the

algorithm is not strongly tight, i.e., that ε , lim n maxi∈In gi(xn) > 0. Define a
sequence (i(n))n≥0 ⊂ I by (∀n ∈ N) gi(n)(xn) = maxi∈In gi(xn). Then, since I is finite,
there exists an index i ∈ I and an increasing sequence (nk)k≥0 ⊂ N such that (∀k ∈
N) i(nk) = i and gi(xnk)

k→ ε, in contradiction of the tightness assumption.
We are now ready to state and prove the following strong convergence result.
Theorem 3.1. Let (xn)n≥0 be an arbitrary orbit of Algorithm 1.1 generated

under either of the following conditions:
(i) tightness, I countable, and admissible control;
(ii) strong tightness and coercive control.

Then xn
n→ x.

Proof. By virtue of Proposition 3.1(vi), it suffices to show W(xn)n≥0 ⊂ S. Fix

arbitrarily i ∈ I and x ∈W(xn)n≥0, say xnk
k
⇀ x. Then it is enough to show x ∈ Si,

i.e., that gi(x) ≤ 0. (i): By (3.3), there exist Mi ∈ N∗ and an increasing sequence
(pk)k≥0 ⊂ N such that

(∀k ∈ N) nk ≤ pk ≤ nk +Mi − 1 and i ∈ Ipk .(3.8)

Hence

(∀k ∈ N) ‖xpk − xnk‖ ≤
nk+Mi−2∑
l=nk

‖xl+1 − xl‖(3.9)
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and Proposition 3.1(vii) yields xpk − xnk k→ 0. Consequently, xpk
k
⇀ x. On the other

hand, the tightness condition gives lim kgi(xpk) ≤ 0 and (A3) then yields gi(x) ≤ 0, as
desired. (ii): The strong tightness condition gives lim n maxj∈In gj(xn) ≤ 0. However,
since the control is coercive, we obtain

lim n max
j∈In

gj(xn) ≤ 0⇒ lim ngi(n)(xn) ≤ 0

⇒ lim n sup
j∈I

gj(xn) ≤ 0

⇒ lim kgi(xnk) ≤ 0,(3.10)

where the sequence (i(n))n≥0 is as in (3.5). It then follows from (A3) that gi(x) ≤ 0,
which completes the proof.

We conclude this section by supplying a theoretical condition under which The-
orem 3.1(i) can be extended to the chaotic control mode (3.4).

Proposition 3.3. Suppose that Algorithm 1.1 is tight and that I is countable,
and let (xn)n≥0 be any of its orbits generated under chaotic control. Then, if (xn)n≥0

admits at most one weak cluster point, xn
n→ x.

Proof. It follows from Proposition 3.1(ii) and the weak compactness of C that if

(xn)n≥0 admits at most one weak cluster point, then it converges weakly, say xn
n
⇀ x.

Now, fix i ∈ I arbitrarily. According to Proposition 3.1(vi), it remains to show
gi(x) ≤ 0. By condition (3.4), there exists an increasing sequence (nk)k≥0 ⊂ N such

that i ∈ ⋂k≥0 Ink . In turn, tightness implies lim kgi(xnk) ≤ 0 and, since xnk
k
⇀ x,

(A3) yields gi(x) ≤ 0.
The execution of iteration n of Algorithm 1.1 necessitates the construction of a

cut Hn at Step 1 and of a base Dn+1 at Step 3 (see Definition 1.1). This question is
addressed in the next two sections.

4. Cut construction schemes. In this section, we describe two techniques
to construct cuts for Algorithm 1.1 and provide examples of families of constraint
functions (gi)i∈I that yield tight and strongly tight algorithms in each case.

4.1. Exact-constraint cuts. Here, Algorithm 1.1 is assumed to operate under
serial control, say (∀n ∈ N) In = {i(n)}. In view of Definition 1.1, the following
observation is self-evident.

Proposition 4.1. The set Hn = Si(n) is a cut for Algorithm 1.1 at iteration n.
When it operates under serial control with cuts generated as above, Algorithm 1.1

will be said to be implemented with exact-constraint cuts. We now proceed with some
examples of families (gi)i∈I that yield tight and strongly tight algorithms (see also
Proposition 3.2). In Propositions 4.2 and 4.3, γ is the diameter of C in (A2) and
Q = B(u, 2γ).

Proposition 4.2. Algorithm 1.1 with exact-constraint cuts is tight if, for every
i ∈ I, one of the following conditions holds.

(i) gi is uniformly continuous on Q.
(ii) gi is weakly continuous on Q.

(iii) X = RN and gi is finite and convex.
(iv) gi is the displacement function of an operator Ti : X → X which satisfies

condition (c) (in particular (d) or (e)) in Proposition 2.2(iv) with constant
ηi ∈ R∗+.

Proof. Given an arbitrary orbit (xn)n≥0, Propositions 3.1(viii) and 4.1 give

d(xn, Si(n))
n→ 0. Now take an index i ∈ I and an increasing sequence (nk)k≥0 ⊂ N
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such that, for every k ∈ N, i = i(nk). Then d(xnk , Si)
k→ 0 and, in view of Defini-

tion 3.2, it must be proved that lim kgi(xnk) ≤ 0. (i) is similar to Proposition 4.3(i)
and thus is omitted. (ii)⇒ (i) follows from the weak compactness of Q. (iii)⇒ (i): gi
is Lipschitzian on Q by [46, Thm. 10.4]. (iv): For every k ∈ N, let pi,k be a projection
of xnk onto Si and suppose that (c) in Proposition 2.2(iv) holds with constant ηi ∈ R∗+.

Then, there exists z′k ∈ ∆(xnk−Tixnk) such that ‖Tixnk−xnk‖2 ≤ η−1
i 〈xnk−pi,k, z′k〉.

Consequently, ‖Tixnk−xnk‖2 ≤ η−1
i ‖xnk−pi,k‖·‖z′k‖ = η−1

i d(xnk , Si) ·‖Tixnk−xnk‖
and we conclude gi(xnk) ≤ η−1

i d(xnk , Si).

Proposition 4.3. Algorithm 1.1 with exact-constraint cuts is strongly tight if
one of the following conditions holds.

(i) (gi)i∈I is uniformly equicontinuous on Q.
(ii) (gi)i∈I is weakly equicontinuous on Q: For every (x, ε) ∈ Q×R∗+, there exists

a weak neighborhood V of x such that (∀y ∈ V )(∀i ∈ I) |gi(x)− gi(y)| ≤ ε.
(iii) (gi)i∈I is a family of affine functions associated with a family of pointwise

bounded continuous linear functions.
(iv) X = RN and (gi)i∈I is a family of pointwise bounded convex functions.
(v) (gi)i∈I is a family of displacement functions of operators (Ti)i∈I as in Propo-

sition 4.2(iv) with η , infi∈I ηi > 0 (in particular, each Ti satisfies condition
(d) or (e) in Proposition 2.2(iv)).

Proof. Take an arbitrary orbit (xn)n≥0. Then, as above, d(xn, Si(n))
n→ 0 and,

in view of Definition 3.2, it must be proved that lim ngi(n)(xn) ≤ 0. (i): Fix ε ∈
R∗+, extract a subsequence (xnk)k≥0 such that (gi(nk)(xnk))k≥0 ⊂]0,+∞] (if no such
subsequence exists, the proof is complete), and let pk be a projection of xnk onto
Si(nk). Since u ∈ Si(nk) and (xnk , u) ∈ C2, we have

‖pk − u‖ ≤ ‖xnk − u‖+ ‖xnk − pk‖ ≤ 2‖xnk − u‖ ≤ 2γ(4.1)

and, in turn, pk ∈ B(u, 2γ) = Q. Next, as xnk − pk k→ 0 and ((xnk , pk))k≥0 ⊂ Q2, the
uniform equicontinuity of (gi)i∈I on Q gives, for k sufficiently large, supi∈I |gi(xnk)−
gi(pk)| ≤ ε and, therefore, 0 < gi(nk)(xnk) ≤ ε. Since ε can be arbitrarily small, strong
tightness ensues. (ii)⇒ (i) follows from the weak compactness of Q. (iii)⇒ (i): (∀i ∈
I)gi : x 7→ 〈x, z′i〉+αi, where (z′i, αi) ∈ X ′×R and (∀x ∈ X ) supi∈I |〈x, z′i〉| < +∞. The

uniform boundedness principle [1, Thm. 1.1.4] asserts that ζ , supi∈I ‖z′i‖ < +∞ and,
therefore, that (gi)i∈I is equi-Lipschitzian with constant ζ. (iv)⇒ (i): (gi)i∈I is equi-
Lipschitzian on Q by [46, Th. 10.6]. (v): Following the proof of Proposition 4.2(iv),
we obtain (∀n ∈ N) gi(n)(xn) ≤ η−1d(xn, Si(n)).

It should be remarked that in Hilbert spaces, projectors are nonexpansive [24,
Chap. 12]. Accordingly, the inequalities ‖pk − u‖ ≤ ‖xnk − u‖ ≤ γ can be used in
lieu of (4.1), and one can take Q = B(u, γ) in Propositions 4.2 and 4.3.

Next, we recover the framework proposed by Laurent and Martinet in [35].

Example 4.1. Under the strong tightness condition, Algorithm 1.1 implemented
with coercive control and exact-constraint cuts contains the setting of [35]. There, (P)
is investigated under assumptions (A1)–(A2) with E = X and the special instance
of (A3) when the functions (gi)i∈I are lower semicontinuous, convex, and satisfy the
condition

(∃Ω ∈ R∗+)
(∀(x, i) ∈ C × I) gi(x) ≤ Ωd(x, Si).(4.2)
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Furthermore, the serial control rule

(∀n ∈ N) gi(n)(xn) ≥ θ sup
i∈I

gi(xn)− ρn, where 0 < θ ≤ 1 and 0 ≤ ρn n→ 0(4.3)

is in force. Since d(xn, Si(n))
n→ 0, (4.2) ⇒ lim ngi(n)(xn) ≤ 0, which shows strong

tightness. On the other hand, since (4.3) ⇒ (3.7), the control is coercive. Hence, [35,
Thm. 1] is a corollary of Theorem 3.1(ii).

4.2. Surrogate cuts. In this section, the cut Hn at iteration n is constructed
as a surrogate half-space (this terminology appears in [23]). The basic idea is, for
every i ∈ In, to “linearize” gi by approximating it by a continuous affine function
gi,n (determined here geometrically via a projection onto a simple superset of Si). A
surrogate function g̃n is then formed as a convex combination of the family (gi,n)i∈In ,
and the cut is defined as Hn = lev≤γn g̃n for some γn ∈ R+. We formally define
surrogate cuts as follows.

Proposition 4.4. Fix (δ, ε) ∈]0, 1[2 and let

Hn =

{
x ∈ X |

∑
i∈In

wi,n〈x− pi,n, q′i,n〉 ≤ γn
}
,(4.4)

where the following conditions hold.
(C1) For every i ∈ In, pi,n is a projection of xn onto a set Si,n ∈ C(Si) and

q′i,n ∈ ∆(xn − pi,n) satisfies

(∀x ∈ Si,n) 〈x− pi,n, q′i,n〉 ≤ 0.(4.5)

(C2) (wi,n)i∈In ⊂ [0, 1],
∑
i∈In wi,n = 1, and

(∃j ∈ In)

{
d(xn, Sj,n) = max

i∈In
d(xn, Si,n),

wj,n ≥ δ.

(C3) 0 ≤ γn ≤ (1− ε)∑i∈In wi,nd(xn, Si,n)2.
Then Hn is a cut for Algorithm 1.1 at iteration n.

Proof. Let us show that (1.3) holds. First, it is clear that Hn is closed and convex.
Second, (C1) yields Si ⊂ Si,n ⊂ {x ∈ X | 〈x− pi,n, q′i,n〉 ≤ 0} for every i ∈ In. Hence,
by virtue of (C2) and (C3), Hn ∈ C(

⋂
i∈In Si).

The existence of (q′i,n)i∈In in (C1) is guaranteed by (2.4), while (2.1) yields

(∀i ∈ In) ‖q′i,n‖2 = d(xn, Si,n)2 = 〈xn − pi,n, q′i,n〉.(4.6)

On the other hand, (pi,n)i∈In and (q′i,n)i∈In are uniquely defined if X and X ′ are
strictly convex, respectively [1]. In particular, if X is a Hilbert space, one can identify
q′i,n = xn − pi,n hereafter, and (4.4) becomes

Hn =

{
x ∈ X |

∑
i∈In

wi,n〈x− pi,n, xn − pi,n〉 ≤ γn
}
.(4.7)
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Surrogate half-spaces have already been used—explicitly or implicitly—for solving
convex feasibility problems in Hilbert spaces. Thus, in the methods of [10], [12], [13],
[22], [32], [34], [40], [42], [45], the update xn+1 is obtained by (under/over) projecting
the current iterate xn onto a half-space whose general form is (4.7). This point will
be reexamined in section 7.2.

An important feature of Algorithm 1.1 with surrogate cuts is that it does not
require the ability to enforce exactly a constraint “gi(x) ≤ 0” selected at Step 1 but
merely the ability to move the current iterate xn toward Si by means of a projection
onto a superset Si,n. A wide range of approximating supersets are acceptable, and
the construction of Si,n can be adapted to the nature of the function gi. In the two
examples below, Si,n is constructed as an affine half-space and the expressions for
pi,n, q′i,n, and d(xn, Si,n) are derived from the following facts.

Lemma 4.1 (see [48, Lem. I.1.2]). Given a nonzero functional z′ ∈ X ′ and α ∈ R,
consider the closed affine half-space A = {y ∈ X | 〈y, z′〉 ≤ α}. Take x /∈ A and let
p = x + (α − 〈x, z′〉)z/‖z′‖2, where z ∈ ∆−1(z′). Then d(x,A) = (〈x, z′〉 − α)/‖z′‖
and p is a projection of x onto A.

Example 4.2. The function gi is convex and lower semicontinuous, and subdif-
ferentiable on C. Then, given t′i,n ∈ ∂gi(xn), the function x 7→ 〈x− xn, t′i,n〉+ gi(xn)
minorizes gi by (2.2). Thus

Si,n = {x ∈ X | 〈xn − x, t′i,n〉 ≥ gi(xn)}(4.8)

lies in C(Si). If xn /∈ Si, then pi,n = xn− gi(xn)ti,n/‖t′i,n‖2, q′i,n = gi(xn)t′i,n/‖t′i,n‖2,

and d(xn, Si,n) = gi(xn)/‖t′i,n‖, where ti,n ∈ ∆−1(t′i,n).

Approximations of type (4.8) go back to [31] and have been used extensively; see,
e.g., [4], [12], [29], [32], [34].

Example 4.3. The function gi is the displacement function of an operator Ti as
in Proposition 2.2(iv)(c) with constant ηi ∈ R∗+. Hence Si = FixTi and, for some
z′i,n ∈ ∆(xn − Tixn), we have 〈xn − x, z′i,n〉 ≥ ηi‖Tixn − xn‖2 for every x ∈ Si.
Therefore

Si,n =
{
x ∈ X | 〈x− xn − ηi(Tixn − xn), z′i,n〉 ≤ 0

}
(4.9)

lies in C(Si). Furthermore, pi,n = xn + ηi(Tixn−xn), q′i,n = ηiz
′
i,n, and d(xn, Si,n) =

ηi‖Tixn − xn‖.
Further examples can be derived from Example 4.3 by considering the special

cases (d) or (e) of (c) in Proposition 2.2(iv). For instance, if X is a Hilbert space and
Ti is firmly nonexpansive, (4.9) reads as

Si,n = {x ∈ X | 〈x− Tixn, xn − Tixn〉 ≤ 0}.(4.10)

This particular approximation appears implicitly in [4] and [10], and explicitly in [34].

We preface our study of the tightness of Algorithm 1.1 with surrogate cuts with
two basic facts.
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Proposition 4.5. (∀n ∈ N)
∑
i∈In wi,nq

′
i,n = 0⇔ xn ∈

⋂
i∈In Si,n ⇔ xn ∈ Hn.

Proof. Fix (n, x) ∈ N× S. Then (C2), (4.6), and (4.5) imply

δmax
i∈In

d(xn, Si,n)2 ≤
∑
i∈In

wi,nd(xn, Si,n)2 =
∑
i∈In

wi,n〈xn − pi,n, q′i,n〉

=
∑
i∈In

wi,n〈xn − x, q′i,n〉+
∑
i∈In

wi,n〈x− pi,n, q′i,n〉

≤
〈
xn − x,

∑
i∈In

wi,nq
′
i,n

〉
.(4.11)

Hence,
∑
i∈In wi,nq

′
i,n = 0 ⇒ maxi∈In d(xn, Si,n)2 = 0 ⇒ xn ∈

⋂
i∈In Si,n. The three

other implications are easily obtained.
Proposition 4.6. maxi∈In d(xn, Si,n)

n→ 0.
Proof. Fix n ∈ N and suppose xn /∈ ⋂i∈In Si,n. Then Proposition 4.5, the

convexity of ‖ · ‖, (C2), and (4.6) yield 0 6= ‖∑i∈In wi,nq
′
i,n‖ ≤

∑
i∈In wi,n‖q′i,n‖ ≤

maxi∈In d(xn, Si,n). Consequently, we derive from (4.4), Lemma 4.1, (4.6), and (4.11)
that

d(xn, Hn) =

∑
i∈In wi,n〈xn − pi,n, q′i,n〉 − γn

‖∑i∈In wi,nq
′
i,n‖

≥ ε
∑
i∈In wi,nd(xn, Si,n)2

maxi∈In d(xn, Si,n)

≥ δεmax
i∈In

d(xn, Si,n).(4.12)

On the other hand, if xn ∈
⋂
i∈In Si,n, then (4.12) is immediate. Since d(xn, Hn)

n→ 0
by Proposition 3.1(viii), the assertion is proved.

We observe in passing that when Algorithm 1.1 is implemented with surrogate
cuts and satisfies the tightness condition then, for every index i ∈ I and every suborbit

(xnk)k≥0 such that i ∈ ⋂k≥0 Ink , it follows from Proposition 4.6 that d(xnk , Si,nk)
k→ 0

and from (A3) that xnk
k
⇀ x ⇒ x ∈ Si. This is essentially the focusing property

introduced in [4].
We wind up this section by furnishing convenient criteria for tightness and strong

tightness.
Proposition 4.7. Algorithm 1.1 with surrogate cuts is tight if, for every i ∈ I

and every suborbit (xnk)k≥0 such that i ∈ ⋂k≥0 Ink , one of the following conditions
is fulfilled.

(i) It holds that

d
(
xnk , Si,nk

) k→ 0 ⇒ d
(
xnk , Si

) k→ 0(4.13)

and any of conditions (i)–(iii) in Proposition 4.2 is satisfied.
(ii) gi is as in Example 4.2 with the additional assumption that its subdifferential

is bounded on C, i.e., that(∃ζi ∈ R∗+)(∀x ∈ C) ∂gi(x) ⊂ B(0, ζi),(4.14)

and the sets (Si,nk)k≥0 are as in (4.8).



552 PATRICK L. COMBETTES

(iii) gi is as in Example 4.3 and the sets (Si,nk)k≥0 are as in (4.9).
Proof. Take an arbitrary orbit (xn)n≥0. Proposition 4.6 asserts that maxi∈In

d(xn, Si,n)
n→ 0. Hence, given i ∈ I and an increasing sequence (nk)k≥0 ⊂ N such

that i ∈ ⋂k≥0 Ink , we have d(xnk , Si,nk)
k→ 0 and must show lim kgi(xnk) ≤ 0.

(i): (4.13) yields d(xnk , Si)
k→ 0. However, under condition (i) (and in particular

condition (ii) or (iii)) of Proposition 4.2, d(xnk , Si)
k→ 0 ⇒ lim kgi(xnk) ≤ 0. (ii):

(∀k ∈ N) max{0, gi(xnk)} = ‖t′i,nk‖ · d(xnk , Si,nk) ≤ ζid(xnk , Si,nk) by (4.14). (iii):

(∀k ∈ N) gi(xnk) = ‖Tixnk − xnk‖ = η−1
i d(xnk , Si,nk).

Proposition 4.8. Algorithm 1.1 with surrogate cuts is strongly tight if one of
the following conditions holds.

(i) For any of its orbits (xn)n≥0, we have

max
i∈In

d(xn, Si,n)
n→ 0 ⇒ max

i∈In
d(xn, Si)

n→ 0,(4.15)

and any of conditions (i)–(iv) in Proposition 4.3 is satisfied.
(ii) (gi)i∈I is as in Example 4.2 with the additional assumption that the subdif-

ferentials are equibounded on C, i.e., that(∃ζ ∈ R∗+)(∀i ∈ I)(∀x ∈ C) ∂gi(x) ⊂ B(0, ζ),(4.16)

and the sets ((Si,n)i∈In)n≥0 are as in (4.8).

(iii) (gi)i∈I is as in Example 4.3, with the additional assumption that η , infi∈I ηi
> 0, and the sets ((Si,n)i∈In)n≥0 are as in (4.9).

Proof. Take an arbitrary orbit (xn)n≥0. Then Proposition 4.6 entails maxi∈In
d(xn, Si,n)

n→ 0. Let us show lim n maxi∈In gi(xn) ≤ 0. (i): Define a sequence

(i(n))n≥0 ⊂ I by (∀n ∈ N) gi(n)(xn) = maxi∈In gi(xn). Then (4.15) ⇒ d(xn, Si(n))
n→

0. However, under condition (i) (and in particular any of conditions (ii)–(iv)) of

Proposition 4.3, d(xn, Si(n))
n→ 0 ⇒ lim ngi(n)(xn) ≤ 0, as desired. (ii) and (iii): Fix

n ∈ N. Following the proof of Proposition 4.7(ii) and (iii), we obtain, respectively,
maxi∈In gi(xn) ≤ ζ maxi∈In d(xn, Si,n) and maxi∈In gi(xn) = maxi∈In ‖Tixn − xn‖
≤ η−1 maxi∈In d(xn, Si,n).

It is readily noted that (4.13) and (4.15) are satisfied in particular when exact
projections onto the constraint sets are used instead of projections onto approximating
supersets.

4.3. Comments. When compared with exact-constraint cuts, surrogate cuts
display three advantages. First, they yield versatile block-iterative algorithms that
offer great latitude in the selection of the constraints retained at each iteration. Since
the pairs (pi,n, q

′
i,n)i∈In can be computed simultaneously prior to their aggregation

in (4.4), surrogate cuts therefore allow for flexible parallel implementations that can
fully take advantage of multiprocessor systems. Second, the processing of a constraint
does not require its exact enforcement. Rather, each constraint can be “linearized” by
means of a projection onto an outer approximation to the corresponding constraint
set. This procedure, illustrated in Examples 4.2 and 4.3, significantly lightens the
computational burden of the algorithm when nonaffine constraints are present. Third,
surrogate cuts are capable of producing deep cuts, as reported in various theoretical
and numerical studies, e.g., [11], [12], [32], [44], [45]. In this connection, the problem
of finding optimal weights (wi,n)i∈In in terms of maximizing d(xn, Hn) is addressed
in [32] and [33].
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5. Base construction schemes. Two approaches to the construction of bases
for Algorithm 1.1 are described in this section.

5.1. Cumulative bases. Steps 2 and 3 of Algorithm 1.1 suggest an obvious
candidate for a base at iteration n, namely, Dn+1 = Qn = E ∩Dn ∩Hn. This base
can be rewritten as

Dn+1 = E ∩
n⋂
k=0

Hk.(5.1)

In other words, the current base is the intersection of the initial base E with all the
previous cuts. This principle is the basis for the cutting plane methods originally
proposed in [8] and [31], and reconsidered from a more general viewpoint in [37]. As
noted in section 1, a drawback of (5.1) is that the number of cuts accumulated to
define the bases grows rapidly as the iterations proceed. In the next proposition,
it is pointed out that in the present framework this phenomenon can be mitigated
by discarding all the cuts that are inactive at iteration n in the construction of the
subsequent bases (Dn+k)k≥1.

Proposition 5.1. Let K−1 = Ø and, for every n ∈ N, An = {k ∈ Kn−1 ∪ {n} |
xn+1 ∈ bdHk}. Then the set

Dn+1 = E ∩
⋂
k∈Kn

Hk, where An ⊂ Kn ⊂ Kn−1 ∪ {n}(5.2)

is a base for Algorithm 1.1 at iteration n.

Proof. We need to check that (1.4) holds for Dn+1 as in (5.2). First, as E ∈ C(S)
and, by (1.3), (Hk)k∈Kn ⊂ C(S), (5.2) implies Dn+1 ∈ C(S). Next, to show xn+1 =
m(Dn+1), note that xn+1 = m(Qn) and Qn = E ∩Dn ∩Hn = E ∩⋂k∈Kn−1∪{n}Hk =

Dn+1∩Bn, where Bn =
⋂
k∈(Kn−1∪{n})rKn Hk. However, it follows from the definition

of An and the inclusion An ⊂ Kn that xn+1 ∈ B◦n and therefore that Bn is inactive at
xn+1. Accordingly, xn+1 = m(Dn+1 ∩Bn) = m(Dn+1). The proof is complete.

In particular, if at every iteration Kn = Kn−1∪{n}, then all the cuts are retained
and (5.2) relapses to (5.1). At the other end of the spectrum, the simplest bases are
obtained by discarding all the inactive cuts, i.e., by taking Kn = An at every iteration.

5.2. Instantaneous bases. The construction of Dn+1 described here was first
proposed for quadratic forms in Hilbert spaces by Haugazeau in [26] and extended to
the present setting in [35].

Proposition 5.2. Suppose that:

(A4) There exists a point v ∈ S ∩ dom J at which J is continuous.

Then, given t′n+1 ∈ ∂J(xn+1) such that (∀x ∈ Qn)〈xn+1 − x, t′n+1〉 ≤ 0, the set

Dn+1 =
{
x ∈ X | 〈xn+1 − x, t′n+1〉 ≤ 0

}
(5.3)

is a base for Algorithm 1.1 at iteration n.

Proof. Since S ⊂ Qn, (A4) asserts that J is continuous at v ∈ Qn ∩ dom J ,
whence, as xn+1 = m(Qn), the existence of t′n+1 is guaranteed by (2.3). Moreover,
the inclusion Qn ⊂ Dn+1 shows that Dn+1 ∈ C(S). Finally, for A = Dn+1, (2.3)
yields xn+1 = m(Dn+1). We have thus established (1.4).
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If t′n+1 is the zero functional (which may happen only when xn+1 = m(X )), then
Dn+1 = X . On the other hand, if the Gâteaux-derivative, ∇J(xn+1), of J at xn+1

exists, then

Dn+1 = {x ∈ X | 〈xn+1 − x,∇J(xn+1)〉 ≤ 0}.(5.4)

5.3. Comments. An advantage of cumulative bases is their wide applicability.
However, they lead to increasingly complex outer approximations as the algorithm
progresses. A partial remedy to this situation is to systematically discard all the
inactive cuts. One should, however, beware of its potential side-effect, namely, slower
convergence. By contrast, instantaneous bases are very attractive, for they take the
form of half-spaces under the relatively mild assumption (A4). Their efficacy can,
however, be limited by the search for an acceptable subgradient in (5.3). Of course,
this limitation vanishes altogether when J is Gâteaux-differentiable on C, the base
being then explicitly given by (5.4).

6. Examples. The analysis of the preceding sections gives rise to four general
realizations of Algorithm 1.1 according to whether one selects, on the one hand, exact-
constraint or surrogate cuts and, on the other hand, cumulative or instantaneous
bases. In this section, these four realizations are presented and the theorems stating
their strong convergence to the solution x of (P) under the standing assumptions
(A1)–(A3) are given. A variety of outer approximation methods are exhibited as
special cases and their convergence is deduced from the main theorems. Although we
have restricted ourselves to known methods, it is clear that further convergence results
can be generated by considering alternative schemes subsumed by Algorithms 6.1–6.4
below.

6.1. Exact-constraint cuts and cumulative bases. If the cuts are generated
as in Proposition 4.1 and the bases as in Proposition 5.1, Algorithm 1.1 reads as
follows.

Algorithm 6.1. A sequence (xn)n≥0 is constructed as follows, where E is sup-
plied by (A2).
Step 0. Set D0 = E, x0 = m(D0), K−1 = Ø, and n = 0.
Step 1. Take i(n) ∈ I.
Step 2. Set xn+1 = m(Dn ∩ Si(n)) and An = {k ∈ Kn−1 ∪ {n} | xn+1 ∈ bdSi(k)}.
Step 3. Take An ⊂ Kn ⊂ Kn−1 ∪ {n} and set Dn+1 = E ∩⋂k∈Kn Si(k).
Step 4. Set n = n+ 1 and go to Step 1.

The convergence result below is a direct application of Theorem 3.1.
Theorem 6.1. Let (xn)n≥0 be an arbitrary orbit of Algorithm 6.1 generated

under either of the following conditions: (i) tightness, I countable, and admissible

control; or (ii) strong tightness and coercive control. Then xn
n→ x.

Example 6.1 (see [5, Thm. 2.4]). In Algorithm 6.1, X = RN , E is bounded, J
is finite and strictly convex, I is a compact metric space, (gi)i∈I is a family of finite
convex functions such that (i, x) 7→ gi(x) is continuous on I ×X , Kn = An at Step 3,
and the most violated constraint control mode

(∀n ∈ N) gi(n)(xn) = max
i∈I

gi(xn)(6.1)

is in force. Then xn
n→ x.
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Proof. The conditions of Proposition 2.1(ii)(b) are fulfilled, and (A1)–(A2) are
therefore satisfied. In addition, it follows from Proposition 2.2(ii) that (A3) is sat-
isfied. For every x ∈ X , the continuity of i 7→ gi(x) on the compact space I yields
supi∈I |gi(x)| < +∞. Proposition 4.3(iv) then ensures the strong tightness of the
algorithm, while (6.1) is a special instance of the coercive control mode (3.7). The
claim is therefore a consequence of Theorem 6.1(ii).

Examples 6.2 and 6.3 below are, respectively, infinite-dimensional formulations
of Kelley’s basic cutting plane algorithm [31] and of the Kaplan–Veinott supporting
hyperplane algorithm [30], [52]. These algorithms were already shown in [35] to be
special instances of the framework described in Example 4.1. The problem under
consideration is to find the minimizer x of a function J : X →]−∞,+∞] over a closed
convex set S under assumptions (A1)–(A2). By expressing S as a suitable intersection
of half-spaces (Si)i∈I , this problem will be recast in the form of (P).

Example 6.2. Suppose that S = lev≤0g, where g : X →] −∞,+∞] is a lower
semicontinuous convex function. Let E be a polyhedron and suppose that there exists
ζ ∈ R∗+ such that, for every x ∈ C, ∂g(x) ⊂ B(0, ζ). Let x0 = m(E) and define
(xn)n≥0 by the recursion

(∀n ∈ N) xn+1 = m

(
E ∩

n⋂
k=0

{x ∈ X | 〈xk − x, t′k〉 ≥ g(xk)}
)
, where t′n ∈ ∂g(xn).

(6.2)

Then xn
n→ x.

Proof. Let I = {(y, t′) ∈ X × X ′ | t′ ∈ ∂g(y)} be the graph of ∂g. For every
i = (y, t′) ∈ I, the continuous affine function gi : x 7→ 〈x− y, t′〉+ g(y) minorizes g by
virtue of (2.2) with gi(y) = g(y) and it defines a closed affine half-space Si = lev≤0gi.
We can then write S =

⋂
i∈I Si. Since at iteration n ∈ N the function i 7→ gi(xn)

is maximized for i(n) = (xn, t
′
n) where t′n ∈ ∂g(xn), (6.2) appears as a particular

realization of Algorithm 6.1 with Kn = Kn−1 ∪ {n} at Step 3 and control rule (6.1).
The control is therefore coercive since (6.1)⇒ (3.7). Moreover, if xn /∈ S, gi(n)(xn) =
g(xn) = ‖t′n‖ · d(xn, Si(n)) ≤ ζd(xn, Si(n)). However, Proposition 3.1(viii) states that

d(xn, Si(n))
n→ 0. Thus, lim ngi(n)(xn) ≤ 0 and the algorithm is strongly tight. The

announced result then follows from Theorem 6.1(ii).
Example 6.3. Suppose that X is a Hilbert space, that S is bounded with S◦ 6= Ø,

and that E is a polyhedron. Let x0 = m(E) and w ∈ S◦, and define (xn)n≥0 by the
recursion

(∀n ∈ N) xn+1 = m

(
E ∩

n⋂
k=0

Hk

)
,(6.3)

where Hn ∈ C(S) is either the whole space X or an affine half-space whose boundary
supports S at the point yn ∈ bdS ∩ [xn, w], according to whether xn lies in S or not.

Then xn
n→ x.

Proof. Let I = {i ∈ X | ‖i‖ = 1} be the unit sphere in X and σ : i 7→ supx∈S〈x, i〉
the support function of S. For every i ∈ I, define a closed affine half-space Si =
lev≤0gi, where gi : x 7→ 〈x, i〉 − σ(i). Then S =

⋂
i∈I Si. By assumption, B(w, γ) ⊂ S

for some γ ∈ R∗+. Now suppose xn /∈ S and let pn be the projection of xn onto
bdHn 3 yn. Then bdHn = {y ∈ X | 〈y − yn, pn − xn〉 = 0} and d(w,bdHn) =
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〈w−yn, pn−xn〉/‖pn−xn‖. However, yn ∈ [xn, w] and therefore w−yn = αn(yn−xn),
where αn = ‖w−yn‖/‖xn−yn‖. Hence, d(w,bdHn) = αn〈yn−xn, pn−xn〉/‖pn−xn‖
= αnd(xn, Hn). Consequently,

(∀i ∈ I) d(xn, Hn) =
d(w,bdHn)

‖w − yn‖ · ‖xn − yn‖ ≥ ηd(xn, Si),(6.4)

where η = γ/ supy∈bdS ‖w − y‖ > 0. In addition, for every i ∈ I, xn /∈ Si ⇒
d(xn, Si) = gi(xn). Hence, gi(n)(xn) ≥ η supi∈I gi(xn), where i(n) ∈ I and Si(n) = Hn,
from which it follows that (6.3) is a particular realization of Algorithm 6.1 with
Kn = Kn−1 ∪ {n} at Step 3 and coercive control rule (3.7). Since the affine fam-
ily (gi)i∈I is equi-Lipschitzian on X with constant 1, strong tightness follows from

Proposition 4.3(i) and Theorem 6.1(ii) yields xn
n→ x.

6.2. Exact-constraint cuts and instantaneous bases. Algorithm 6.2 below
is derived from Algorithm 1.1 by coupling the cuts of Proposition 4.1 together with
the bases of Proposition 5.2.

Algorithm 6.2. A sequence (xn)n≥0 is constructed as follows, where E is sup-
plied by (A2).
Step 0. Set D0 = E, x0 = m(D0), and n = 0.
Step 1. Take i(n) ∈ I.
Step 2. Set xn+1 = m(E ∩Dn ∩ Si(n)).
Step 3. Take t′n+1 ∈ ∂J(xn+1) such that (∀x ∈ E ∩Dn ∩ Si(n)) 〈xn+1 − x, t′n+1〉 ≤ 0

and set Dn+1 = {x ∈ X | 〈xn+1 − x, t′n+1〉 ≤ 0}.
Step 4. Set n = n+ 1 and go to Step 1.

Convergence follows at once from Theorem 3.1.
Theorem 6.2. Let (xn)n≥0 be an arbitrary orbit of Algorithm 6.2 generated

under either of the following conditions: (i) tightness, I countable, and admissible

control; or (ii) strong tightness and coercive control. Then xn
n→ x.

Example 6.4 (see [26, Thm. 2]). In Algorithm 6.2, X is a Hilbert space, E = X ,
J is a coercive quadratic form, I = {0, . . . ,M − 1} is finite, (∀i ∈ I) gi : x 7→ d(x, Si),
and the periodic control mode

(∀n ∈ N) i(n) = n (moduloM),(6.5)

is in force. Then xn
n→ x.

Proof. The conditions of Proposition 2.1(iii) are satisfied and, consequently, so
are (A1) and (A2). In addition, (A3) is secured by Proposition 2.2(ii) since (gi)i∈I is
a family of continuous and—by the convexity of the sets (Si)i∈I—convex functions.

In addition, it follows from Proposition 3.1(viii) that gi(n)(xn) = d(xn, Si(n))
n→ 0

and therefore that the algorithm is tight. Finally, since (6.5) ⇒ (3.6), the control is
admissible. Hence, the assertion follows from Theorem 6.2(i).

Example 6.5 (see [41]). In Algorithm 6.2, X is a Hilbert space, E = X , J is
a coercive quadratic form, I is a compact metric space, (gi)i∈I is a family of affine
functions such that (i, x) 7→ gi(x) is continuous on I × X , and the most violated

constraint control mode (6.1) is in force. Then xn
n→ x.

Proof. (A1)–(A2) hold by Proposition 2.1(iii). Now fix i ∈ I. Then gi : x 7→
〈x, zi〉 + αi, where zi ∈ X and αi ∈ R, and (A3) holds. For every x ∈ X , the conti-
nuity of i 7→ 〈x, zi〉 on the compact space I implies supi∈I |〈x, zi〉| < +∞. Therefore,
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the algorithm is strongly tight by Proposition 4.3(iii) and, since (6.1) ⇒ (3.7), it op-
erates under coercive control. The desired conclusion is reached by invoking Theorem
6.2(ii).

Example 6.6 (see [39]). In Algorithm 6.2, X = RN , J is finite and strictly
convex, E is bounded, J is strongly convex (i.e., c : τ 7→ κτ2 with κ ∈ R∗+ in (A2)
[36]) and differentiable on E, I = {0, . . . ,M − 1} is finite, (∀i ∈ I) gi : x 7→ d(x, Si),
and either of the following conditions is fulfilled: (i) the periodic control mode (6.5)
is in force; or (ii) the most violated constraint control mode (6.1) is in force. Then

xn
n→ x.
Proof. The conditions of Proposition 2.1(ii)(b)—and therefore (A1)–(A2)—hold.

As in Example 6.4, (A3) also holds and the algorithm is (strongly) tight. Hence, (i)
and (ii) follow from Theorem 6.2(i) and (ii), respectively.

6.3. Surrogate cuts and cumulative bases. Algorithm 1.1 is implemented
with the cuts of Proposition 4.4 and the bases of Proposition 5.1.

Algorithm 6.3. A sequence (xn)n≥0 is constructed as follows, where E is sup-
plied by (A2).
Step 0. Take (δ, ε) ∈]0, 1[2 and set D0 = E, x0 = m(D0), K−1 = Ø, and n = 0.
Step 1. Take a finite index set Ø 6= In ⊂ I and set Hn = {x ∈ X | ∑i∈In wi,n〈x −

pi,n, q
′
i,n〉 ≤ γn}, where

(C1) For every i ∈ In, pi,n is a projection of xn onto a set Si,n ∈ C(Si) and
q′i,n ∈ ∆(xn − pi,n) is such that (∀x ∈ Si,n) 〈x− pi,n, q′i,n〉 ≤ 0.

(C2) (wi,n)i∈In ⊂ [0, 1],
∑
i∈In wi,n = 1, and

(∃j ∈ In)

{
d(xn, Sj,n) = max

i∈In
d(xn, Si,n),

wj,n ≥ δ.

(C3) 0 ≤ γn ≤ (1− ε)∑i∈In wi,nd(xn, Si,n)2.
Step 2. Set xn+1 = m(Dn ∩Hn) and An = {k ∈ Kn−1 ∪ {n} | xn+1 ∈ bdHk}.
Step 3. Take An ⊂ Kn ⊂ Kn−1 ∪ {n} and set Dn+1 = E ∩⋂k∈Kn Hk.
Step 4. Set n = n+ 1 and go to Step 1.

Theorem 3.1 now reads as follows.
Theorem 6.3. Let (xn)n≥0 be an arbitrary orbit of Algorithm 6.3 generated

under either of the following conditions: (i) tightness, I countable, and admissible

control; or (ii) strong tightness and coercive control. Then xn
n→ x.

It is noteworthy that Kelley’s basic algorithm, presented in Example 6.2 as a
special case of Algorithm 6.1, can also be viewed as a special case of Algorithm 6.3
with a single constraint set and cuts as in (4.8). Along the same lines, we present
below a formulation of Kelley’s algorithm with a finite number of constraints [31]
under assumptions (A1)–(A2).

Example 6.7. In Algorithm 6.3, I is finite, (gi)i∈I is a family of finite continuous
convex functions satisfying (4.16), the approximations (4.8) are used, and the most

violated constraint control mode (6.1) is in force. Then xn
n→ x.

Proof. Proposition 4.8(ii) asserts that this particular realization of Algorithm
6.3 is strongly tight. Thus, since the control is coercive, the result follows from
Theorem 6.3(ii).

6.4. Surrogate cuts and instantaneous bases. The fourth implementation
of Algorithm 1.1 is obtained by generating the cuts as in Proposition 4.4 and the
bases as in Proposition 5.2.
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Algorithm 6.4. A sequence (xn)n≥0 is constructed as follows, where E is sup-
plied by (A2).
Step 0. Take (δ, ε) ∈]0, 1[2 and set D0 = E, x0 = m(D0), and n = 0.
Step 1. Take a finite index set Ø 6= In ⊂ I and set Hn = {x ∈ X | ∑i∈In wi,n〈x −

pi,n, q
′
i,n〉 ≤ γn}, where

(C1) For every i ∈ In, pi,n is a projection of xn onto a set Si,n ∈ C(Si) and
q′i,n ∈ ∆(xn − pi,n) is such that (∀x ∈ Si,n) 〈x− pi,n, q′i,n〉 ≤ 0.

(C2) (wi,n)i∈In ⊂ [0, 1],
∑
i∈In wi,n = 1, and

(∃j ∈ In)

{
d(xn, Sj,n) = max

i∈In
d(xn, Si,n),

wj,n ≥ δ.

(C3) 0 ≤ γn ≤ (1− ε)∑i∈In wi,nd(xn, Si,n)2.
Step 2. Set xn+1 = m(E ∩Dn ∩Hn).
Step 3. Take t′n+1 ∈ ∂J(xn+1) such that (∀x ∈ E ∩ Dn ∩ Hn)〈xn+1 − x, t′n+1〉 ≤ 0

and set Dn+1 = {x ∈ X | 〈xn+1 − x, t′n+1〉 ≤ 0}.
Step 4. Set n = n+ 1 and go to Step 1.

The convergence conditions below are furnished by Theorem 3.1.
Theorem 6.4. Let (xn)n≥0 be an arbitrary orbit of Algorithm 6.4 generated

under either of the following conditions: (i) tightness, I countable, and admissible

control; or (ii) strong tightness and coercive control. Then xn
n→ x.

Example 6.8. In Algorithm 6.4, X is a Hilbert space, I is finite, J : x 7→ ‖x−
w‖2/2 where w ∈ X , E = X , (∀i ∈ I) gi : x 7→ d(x, Si), Si,n = Si in (C1), γn = 0 in
(C3), x0 = w, and one of the following conditions is fulfilled:

(i) [27, Thm. 3-2] The periodic control mode (6.5) is in force.
(ii) [44, Thm. V.1] The static control mode

(∀n ∈ N) In = I(6.6)

is in force and (∀i ∈ I) wi,n = 1/cardI in (C2).
(iii) [14] The control mode

(∀n ∈ N) In =
{
i ∈ I | d(xn, Si) = max

j∈I
d(xn, Sj)

}
(6.7)

is in force and (wi,n)i∈In ⊂]0, 1] in (C2).

Then xn
n→ x.

Proof. First, the above setting fits into that of Proposition 2.1(iii), and therefore
(A1)–(A2) hold. In addition, as in Example 6.4, (A3) holds. Furthermore, Proposi-

tion 4.6 yields maxi∈In gi(xn) = maxi∈In d(xn, Si,n)
n→ 0, which establishes the strong

tightness of this implementation of Algorithm 6.4. Accordingly, since in (i) and (ii)
the control conforms to the admissibility condition (3.3), the first two assertions follow
from Theorem 6.4(i). Finally, since (6.7) is an instance of the coercive control mode
(3.5) here, (iii) follows from Theorem 6.4(ii).

Example 6.9. In Algorithm 6.4, X = RN , J is finite, strictly convex, and
differentiable with bounded lower level sets, E = X , I is finite, (gi)i∈I is a family of
finite convex functions, the approximations (4.8) are used, and one of the following
conditions is fulfilled:

(i) [29, Thm. 1] The most violated constraint control mode (6.1) is in force.
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(ii) [29, Thm. 2] The serial admissible control mode (3.6) is in force.
(iii) [29, Thm. 3] The static control mode (6.6) is in force and (∀(n, i) ∈ N ×

I), xn ∈ Si ⇒ wi,n = 0.

Then xn
n→ x.

Proof. Note that the conditions of Proposition 2.1(ii)(a) are satisfied and that
(A1)–(A3) hold. Moreover, each gi is continuous and subdifferentiable on X and
(4.14) holds [46, Thm. 24.7]. Since I is finite, Propositions 3.2 and 4.7(ii) therefore
imply that the algorithm is strongly tight. Hence, (i) follows from Theorem 6.4(ii),
while (ii) and (iii) follow from Theorem 6.4(i).

It emerges from the discussions of sections 4.3 and 5.3 that Algorithms 6.3 and 6.4,
which employ surrogate cuts, are more advantageous numerically than Algorithms 6.1
and 6.2, which employ exact-constraint cuts. When instantaneous bases are easily
generated, as is the case when J is differentiable on C, Algorithm 6.4 stands out as
the most attractive implementation of Algorithm 1.1. Its chief asset is to generate
at every iteration a simple outer approximation, namely, the intersection of two half-
spaces (with the initial base E when E 6= X ). An application of Algorithm 6.4 to an
important concrete problem is demonstrated next.

6.5. Projection onto an intersection of convex sets. Algorithm 6.4 is ap-
plied to the problem of finding the projection x of a point w onto the intersection of
an arbitrary family of intersecting closed convex sets (Si)i∈I conforming to (A3) in a
real Hilbert space X . As J : x 7→ ‖x− w‖2/2 in (P), assumptions (A1) and (A4) are
clearly satisfied and, in light of Proposition 2.1(iii), so is (A2) with E = X .

Given (x, y, z) ∈ X 3, it will be convenient to define

H(x, y) = {h ∈ X | 〈h− y, x− y〉 ≤ 0}(6.8)

and to denote by q(x, y, z) the projection of x onto H(x, y)∩H(y, z). Thus, H(x, x) =
X and, if x 6= y, H(x, y) is a closed affine half-space onto which y is the projection
of x.

Algorithm 6.5. A sequence (xn)n≥0 is constructed as follows.

Step 0. Take (δ, ε) ∈]0, 1[2 and set x0 = w and n = 0.
Step 1. Take a finite index set Ø 6= In ⊂ I and set zn = xn + λn(

∑
i∈In wi,npi,n− xn), where

(B1) For every i ∈ In, pi,n is the projection of xn onto a set Si,n ∈ C(Si).
(B2) (wi,n)i∈In ⊂ [0, 1],

∑
i∈In wi,n = 1, and

(∃j ∈ In)

{
d(xn, Sj,n) = max

i∈In
d(xn, Si,n),

wj,n ≥ δ.

(B3) εLn ≤ λn ≤ Ln ,



∑
i∈In

wi,n‖pi,n − xn‖2∥∥∥∥∥∑
i∈In

wi,npi,n − xn
∥∥∥∥∥

2 , if xn /∈
⋂
i∈In

Si,n,

1 otherwise.

Step 2. Set πn = 〈x0 − xn, xn − zn〉, µn = ‖x0 − xn‖2, νn = ‖xn − zn‖2, ρn =
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µnνn − π2
n, and

(6.9) xn+1 = q(x0, xn, zn)

=


zn if ρn = 0 and πn ≥ 0,

x0 + (1 + πn/νn)(zn − xn) if ρn > 0 and πnνn ≥ ρn,
xn +

νn
ρn

(πn(x0 − xn) + µn(zn − xn)) if ρn > 0 and πnνn < ρn.

Step 3. Set n = n+ 1 and go to Step 1.
In this algorithm, the update xn+1 is obtained in (6.9) as the projection of x0 = w

onto the intersection of the half-spaces H(x0, xn) and H(xn, zn).
Proposition 6.1. In the present context, Algorithm 6.4 reduces to Algorithm

6.5.
Proof. Since E = X , we obtain x0 = m(X ) = w at Step 0 of Algorithm 6.4. Next,

recall that the cut Hn at Step 1 of Algorithm 6.4 is given by (4.7). We shall now show
Hn = H(xn, zn). Assume xn /∈ ⋂i∈In Si,n and define yn = xn −

∑
i∈In wi,npi,n (6= 0

by Proposition 4.5), σ2
n =

∑
i∈In wi,nd(xn, Si,n)2, and λn = (σ2

n − γn)/‖yn‖2. Then

zn = xn − λnyn, Ln = σ2
n/‖yn‖2, and (B3) ⇔ (C3). Moreover, for every x ∈ X , we

have

x ∈ Hn ⇔ 〈x, yn〉 ≤
∑
i∈In

wi,n〈pi,n, xn − pi,n〉+ γn

⇔ 〈x, yn〉 ≤ 〈xn, yn〉 − λn‖yn‖2
⇔ 〈x− zn, yn〉 ≤ 0

⇔ 〈x− zn, xn − zn〉 ≤ 0.(6.10)

Consequently, Hn = H(xn, zn). Next, observe that (5.4) yields Dn = H(x0, xn).
Hence, as E = X , (6.9) coincides with Step 2 of Algorithm 6.4; the expression for
q(x, y, z) in terms of x, y, and z is drawn from [27, Thm. 3-1]. Note that all the
possible cases are exhausted in (6.9) since ρn ≥ 0 and, as also shown in [27, Thm. 3-
1], H(x0, xn) ∩H(xn, zn) = Ø ⇔ ρn = 0 and πn < 0.

Naturally, Algorithm 6.5 contains those described in Example 6.8 as particular
instances. Unlike them, however, it can handle an infinite number of constraints, ap-
proximate projections, and flexible block-iterative control modes. Strong convergence
conditions are given in Theorem 6.4.

For comparison purposes, let us now review alternative iterative schemes that
generate sequences converging strongly to the sought projection x. From an algorith-
mic standpoint, these schemes are initialized with x0 = w and operate either in the
serial format

(∀n ∈ N) i(n) ∈ I and xn+1 = Ri(n),nxn(6.11)

or in the static parallel format

(∀n ∈ N) xn+1 =
∑
i∈I

wiRi,nxn with (wi)i∈I ⊂]0, 1] and
∑
i∈I

wi = 1,(6.12)

where I is assumed to be countable and (Ri,n)(i,n)∈I×N is a family of operators from X
into X . Henceforth, (Pi)i∈I designates the family of projectors onto the sets (Si)i∈I .
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(1) Periodic projection method. Suppose that (Si)i∈I is a finite family of M closed
vector subspaces and set Ri,n = Pi. Then it was shown in [25] that under
the periodic control mode (6.5) the serial projection method (6.11) converges
strongly to x. This result remains valid in the case of closed affine subspaces
and it coincides with von Neumann’s alternating projection theorem for M =
2 (see [18] for further details).

(2) Dykstra-like methods. In [6], an extension of the preceding periodic projec-
tion method to finite families of closed convex sets was obtained by setting
Ri,nxn = Pi(xn + yi,n), where yi,n is the outward normal vector resulting
from the previous projection onto Si. In [21], this serial algorithm was exam-
ined from a dual perspective and given an elegant and natural interpretation;
moreover, the convergence of its parallel counterpart (6.12) was established.
(See also [3] for further analysis.) New developments were reported in [28],
where a nonperiodic control mode was used in (6.11) and countably infinite
families of sets were considered.

(3) Anchor point methods. Suppose that, for every i ∈ I, Si = FixTi where
Ti : X → X is firmly nonexpansive, i.e., satisfies (2.15). (Note that if, for
some i ∈ I, Ti is merely nonexpansive, it can be replaced by the averaged
mapping T av

i = (Ti + Id)/2 which is firmly nonexpansive [24, Thm. 12.1] and
satisfies FixT av

i = FixTi.) Anchor point methods operate with Ri,nxn =
αnx0 + (1 − αn)Tixn, where (αn)n≥0 ⊂]0, 1] converges “slowly” to 0 (e.g.,
αn = 1/(n+1) in [2] and [10]). Strong convergence was established in [2] and
[38] for the serial version (6.11) under the periodic control rule (6.5) (and I
finite) and in [10] for the parallel version (6.12) with I countably infinite.

(4) Periodic quasi-projection method. This method, proposed in [26], was de-
scribed in Example 6.4 as an offspring of Algorithm 6.2. It is equivalent to
executing (6.11) under the periodic control mode (6.5) and with Ri(n),nxn
as the “quasi-projection” of xn onto Si(n), i.e., the projection of xn onto
Si(n) ∩H(x0, xn).

Overall, Algorithm 6.5 appears to enjoy more flexibility than the above methods in
terms of parallel implementation and more versatility in terms of the types of con-
straints it can handle. Indeed, Dykstra-like and anchor point methods are not well
suited for parallel block-processing due to their serial or static parallel structure. The
scope of Dykstra-like methods is further limited by the fact that they require the
ability to compute projections, which is possible only in special situations. In this
regard, anchor point methods are somewhat less restrictive, as any firmly nonexpan-
sive mapping admitting the set under consideration as fixed point set can be used. In
addition, Dykstra-like methods require that a normal vector be carried along for each
set (except for affine subspaces), which makes their implementation costly in terms
of memory allocation and management. Finally, it is noted that the quasi-projection
method is a rather conceptual one, the computation of quasi-projections being usually
a serious obstacle to its implementability in practice.

7. Further results. In this section, we present convergence results for two vari-
ants of (P) in which the original assumptions are altered. X is assumed to be a Hilbert
space.

7.1. Inconsistent constraints. It has been assumed so far that the constraints
are consistent, i.e., that S 6= Ø in (P). In this section, we place ourselves in the
following context: S may be empty and I is finite. As before, (Pi)i∈I are the projectors
onto the closed convex sets (Si)i∈I .
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As in the convex feasibility problems of [9] and [17], the exact, but possibly

empty, feasibility set S can be replaced by the set S̃ of points which best approximate
the constraints in an averaged squared-distance sense. Fix weights (wi)i∈I ⊂]0, 1]
such that

∑
i∈I wi = 1, define a (continuous and convex) proximity function Φ: x 7→

(1/2)
∑
i∈I wid(x, Si)

2, and let S̃ be the (closed and convex) set of minimizers of Φ
over X . (P) is then replaced by

find x̃ ∈ S̃ such that J(x̃) = inf
x∈S̃

J(x)(P̃)

under assumptions (A1) and

(A0) S̃ 6= Ø,

(Ã2) for some Ẽ ∈ C(S̃), there exists a point ũ ∈ S̃ ∩ dom J such that C̃ ,
Ẽ ∩ lev≤J(ũ)J is bounded and J is uniformly convex on C̃.

Some remarks are in order. First, if S 6= Ø, then S̃ = S. Second, if S = Ø, then
assumption (A0) holds when one of the sets in (Si)i∈I is bounded or when they are

all closed affine half-spaces [17]. Third, it follows from (A0), (A1), and (Ã2) that (P̃)
admits a unique solution x̃.

The next step is to regard (P̃) as a program of the general form (P) with a single

constraint set, namely S̃. Consequently, (P̃) can be solved via Algorithms 6.3 or 6.4

by constructing suitable surrogate cuts for S̃.
Theorem 7.1. Let (xn)n≥0 be an arbitrary orbit of Algorithms 6.3 or 6.4 in

which the cut at Step 1 is taken to be

Hn =

{
x ∈ X |

〈
x−

∑
i∈I

wiPixn, xn −
∑
i∈I

wiPixn

〉
≤ γn

}
,(7.1)

where 0 ≤ γn ≤ (1− ε)‖xn −
∑
i∈I wiPixn‖2. Then xn

n→ x̃.
Proof. The claim follows from Theorems 6.3(i) and 6.4(i). Indeed, the control

is admissible since only one constraint set is present. Next, let us show that (7.1)
is a valid cut at iteration n. To this end, let T =

∑
i∈I wiPi. Then T is firmly

nonexpansive and FixT = S̃ [9]. Hence (A3) holds by Proposition 2.2(iv)(e) and
(7.1) is drawn from (4.10). Finally, tightness follows from Proposition 4.7(iii).

7.2. Convex feasibility problems. If, instead of (A2), it is assumed that J is
constant on S, then (P) turns into the convex feasibility problem

(CFP) find x ∈ S =
⋂
i∈I

Si.

A general strategy for solving (CFP) is to construct a sequence (xn)n≥0 in which xn+1

is a relaxed projection of xn onto a cut Hn. An implementation of this outer approx-
imation scheme with surrogate cuts leads to the following block-iterative algorithm.

Algorithm 7.1. In Algorithm 6.5, pick x0 arbitrarily at Step 0, extend the
relaxation range in (B3) to “ε ≤ λn ≤ (2−ε)Ln,” and reduce Step 2 to “xn+1 = zn.”

Theorem 7.2. Let (xn)n≥0 be an arbitrary orbit of Algorithm 7.1 generated
under either of the following conditions: (i) tightness, I countable, and admissible
control or (ii) strong tightness and coercive control. Then (xn)n≥0 converges weakly
to a point in S.
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Proof. A slight modification of the results of [13, section 2] shows that xn+1 −
xn

n→ 0, maxi∈In d(xn, Si,n)
n→ 0, and (xn)n≥0 converges weakly to a point in S if

W(xn)n≥0 ⊂ S, from which, by arguing along the same lines as in Theorem 3.1(i)
(respectively, Theorem 3.1(ii)), we obtain (i) (respectively, (ii)).

It follows from Propositions 4.7 and 4.8 that Theorem 7.2 covers the weak con-
vergence results of [10], [12], and [13]. A closely related algorithm is proposed in [34,
section 11] with similar weak convergence results.
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vexes, Thèse, Université de Paris, Paris, France, 1968.

[28] H. Hundal and F. Deutsch, Two generalizations of Dykstra’s cyclic projections algorithm,
Math. Programming, 77 (1997), pp. 335–355.

[29] A. N. Iusem and B. F. Svaiter, A row-action method for convex programming, Math. Pro-
gramming, 64 (1994), pp. 149–171.

[30] A. A. Kaplan, Determination of the extremum of a linear function on a convex set, Soviet
Math. Dokl., 9 (1968), pp. 269–271.

[31] J. E. Kelley, The cutting-plane method for solving convex programs, J. SIAM, 8 (1960), pp.
703–712.

[32] K. C. Kiwiel, Block-iterative surrogate projection methods for convex feasibility problems,
Linear Algebra Appl., 215 (1995), pp. 225–259.

[33] K. C. Kiwiel, Monotone Gram matrices and deepest surrogate inequalities in accelerated re-
laxation methods for convex feasibility problems, Linear Algebra Appl., 252 (1997), pp.
27–33.

[34] K. C. Kiwiel and B. ÃLopuch, Surrogate projection methods for finding fixed points of firmly
nonexpansive mappings, SIAM J. Optim., 7 (1997), pp. 1084–1102.
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