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BREGMAN MONOTONE OPTIMIZATION ALGORITHMS∗

HEINZ H. BAUSCHKE† , JONATHAN M. BORWEIN‡ , AND PATRICK L. COMBETTES§

Abstract. A broad class of optimization algorithms based on Bregman distances in Banach
spaces is unified around the notion of Bregman monotonicity. A systematic investigation of this
notion leads to a simplified analysis of numerous algorithms and to the development of a new class
of parallel block-iterative surrogate Bregman projection schemes. Another key contribution is the
introduction of a class of operators that is shown to be intrinsically tied to the notion of Bregman
monotonicity and to include the operators commonly found in Bregman optimization methods. Spe-
cial emphasis is placed on the viability of the algorithms and the importance of Legendre functions
in this regard. Various applications are discussed.

1. Introduction. A sequence (xn)n∈N in a Banach space X is Fejér monotone
with respect to a set S ⊂ X if

(1.1) (∀x ∈ S)(∀n ∈ N) ‖xn+1 − x‖ ≤ ‖xn − x‖.

In Hilbert spaces, this notion has proven to be remarkably useful and successful in
attempts to unify and harmonize the convergence proofs of a large number of opti-
mization algorithms, e.g., [5, 6, 9, 40, 41, 49, 60]. A classical example is the method
of cyclic projections for finding a point in the intersection S 6= Ø of a finite family
of closed convex sets (Si)1≤i≤m. In 1965, Bregman [14, Thm. 1] showed that for
every initial point x0 ∈ X the sequence (xn)n∈N generated by the cyclic projections
algorithm

(1.2) (∀n ∈ N) xn+1 = Pn (mod m)+1xn,

where Pi denotes the metric projector onto Si and where the mod m function takes
values in {0, . . . ,m−1}, is Fejér monotone with respect to S and converges weakly to
a point in that set. Two years later [15], the same author investigated the convergence
of this method in a general topological vector space X . To this end, he introduced
a distance-like function D : E × E → R, where E is a convex subset of X such that
S = E ∩

⋂m
i=1 Si 6= Ø. The conditions defining D require in particular that for

every i ∈ {1, . . . ,m} and every y ∈ E, there exist a point Piy ∈ E ∩ Si such that
D(Piy, y) = minD(E∩Si, y). In this broader context, Bregman showed that for every
initial point x0 ∈ E the cyclic projections algorithm (1.2) produces a sequence that
satisfies the monotonicity property

(1.3) (∀x ∈ S)(∀n ∈ N) D(x, xn+1) ≤ D(x, xn)
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and whose cluster points are in S [15, Eq. (1.2) & Thm. 1]. If X is a Hilbert space,
an example of a D-function satisfying the required conditions relative to the weak
topology is D : X 2 → R : (x, y) 7→ ‖x − y‖2/2. In this case, we recover the previous
convergence result [15, Example 1] and observe that (1.3) reduces to (1.1). If X is
the Euclidean space RN , another example of a suitable D-function is

(1.4) D : E × E → R : (x, y) 7→ f(x)− f(y)− 〈x− y,∇f(y)〉 ,

where f : E ⊂ RN → R is a convex function which is differentiable on E and satisfies a
set of auxiliary properties [15, Example 2]. Due to its importance in applications, this
particular type of D-function was further studied in [30] and has since been known as
a Bregman distance (see [33] for an historical account). In RN , various investigations
have focused on the use of Bregman distances in projection, proximal point, and fixed
point algorithms, see [7, 31, 32, 33, 46, 47, 83] (see also [58, 59] where extensions of
(1.4) to nondifferentiable functions were studied). Extensions to Hilbert [18, 20, 61]
and Banach [1, 8, 21, 23, 24, 25, 26, 27, 55, 56, 75] spaces have also been considered
more recently. In the present paper, we adopt the following definition for Bregman
distances.

Definition 1.1. Let X be a real Banach space and let f : X → ]−∞,+∞] be a
lower semicontinuous convex function which is Gâteaux differentiable on int dom f 6=
Ø. The Bregman distance (for brevity D-distance) associated with f is the function

(1.5)

D : X × X → [0,+∞]

(x, y) 7→

{
f(x)− f(y)− 〈x− y,∇f(y)〉 , if y ∈ int dom f ;
+∞, otherwise.

In addition, the Bregman distance to a set C ⊂ X is the function

(1.6)
DC : X → [0,+∞]

y 7→ inf D(C, y).

In Hilbert spaces, one recoversD : (x, y) 7→ ‖x−y‖2/2 by setting f = ‖·‖2/2. This
observation suggests the following natural variant of the notion of Fejér monotonicity
suits the environment described in Definition 1.1.

Definition 1.2. A sequence (xn)n∈N in X is Bregman monotone (for brevity
D-monotone) with respect to a set S ⊂ X if the following conditions hold:

(i) S ∩ dom f 6= Ø.
(ii) (xn)n∈N lies in int dom f .
(iii) (∀x ∈ S ∩ dom f)(∀n ∈ N) D(x, xn+1) ≤ D(x, xn).
Let us note that item (ii) is stated only for the sake of clarity and that it could be

replaced by x0 ∈ int dom f since, in view of (1.5), (iii) then forces the whole sequence
(xn)n∈N to lie in int dom f .

The importance of the notion of Bregman monotonicity is implicit in [15]. In the
Euclidean space setting of [32] (see also [33, page 55]), Bregman monotone sequences
were called “Df Fejér-monotone” by analogy with (1.1).

The goal of this paper is to provide a broad framework for the design and the anal-
ysis of algorithms based on Bregman distances around the notion of D-monotonicity.
This framework will not only lead to a unified convergence analysis for existing algo-
rithms, but will also serve as a basis for the development of a new class of parallel,
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block-iterative, surrogate Bregman projection methods for solving convex feasibil-
ity problems involving variational inequalities, convex inequalities, equilibrium con-
straints, and fixed point constraints. The tools developed in this paper also provide
the main building blocks for the algorithms proposed in [10] to find best Bregman
approximations from intersections of closed convex sets in reflexive Banach spaces.

Guide to the paper. We proceed towards our goal of constructing a broad
framework for Bregman distance-based algorithms in several steps.

We collect assumptions, notation, and basic results in Section 2. The standing
assumptions on the underlying space X and the function f that generates the Bregman
distance are stated in Section 2.1. In Sections 2.2–2.6, we introduce basic notation and
terminology, including D-viable operators and Legendre functions. Useful identities
for the Bregman distance are provided in Section 2.7.

A general and powerful class of operators based on Bregman distances is intro-
duced and analyzed in Section 3. This so-called “B-class” includes types of operators
fundamental in Bregman optimization such as D-firm operators, D-resolvents, D-prox
operators, and (subgradient) D-projections, which correspond to their classical coun-
terparts when X is a Hilbert space and f = ‖ · ‖2/2. For example, it is shown that if
X is reflexive and f is Legendre, then D-prox operators belong to B (Corollary 3.25).
This result underscores the importance of Legendreness. Moreover, B-class operators
are stable under a certain type of parallel combination, which will be crucial in the
formulation of a new block-iterative algorithmic framework in Section 5.

Section 4 is devoted to D-monotonicity. This is a central notion in the anal-
ysis of Bregman optimization methods because it describes the behavior of a wide
class of algorithms based on Bregman distances. Assumptions are given under which
simple characterizations can be established for the weak and strong convergence of
D-monotone sequences. In conjunction with the results of Section 3, D-monotonicity
provides a global framework for the development and analysis of algorithms. Indeed,
we show that D-monotone sequences can be generated systematically via the iterative
scheme

(1.7) x0 ∈ int dom f and (∀n ∈ N) xn+1 ∈ Tnxn, where Tn ∈ B.

A detailed convergence analysis of this unifying model is carried out which, in turn,
covers and extends known convergence results.

Finally, in Section 5, we are in a position to construct a new block-iterative algo-
rithmic framework. Results obtained in Sections 3 and 4 are combined to construct
and investigate a new classes of parallel, block-iterative methods for solving convex
feasibility problems. The main result, Theorem 5.7, provides conditions sufficient for
the weak and strong convergence of sequences generated by the new algorithm. Sec-
tion 5.4 presents several scenarios in which these sufficient conditions are satisfied,
including the frequently encountered situation when f is a separable Legendre func-
tion on RN such that dom f∗ is open (Example 5.14). The concluding Sections 5.5 and
5.6 discuss how the main result can be applied to specific optimization problems such
as solving convex inequalities, finding common zeros of maximal monotone operators,
finding common minimizers of convex function, and finding common fixed points of
D-firm operators.

2. Notation, assumptions, and basic facts.

2.1. Standing assumptions. We assume throughout the paper that X is a real
Banach space and that f : X → ]−∞,+∞] is a lower semicontinuous convex function
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which is Gâteaux-differentiable on int dom f 6= Ø.

2.2. Basic notation. Throughout, N is the set of nonnegative integers. The
norm of X and that of its topological dual X ∗ is denoted by ‖·‖, the associated metric
distance by d, and the canonical bilinear form on X × X ∗ by 〈·, ·〉 (if X is a Hilbert
space, 〈·, ·〉 denotes also its scalar (or inner) product). The metric distance function
to a set C ⊂ X is dC : X → [0,+∞] : y 7→ infx∈C ‖x − y‖ where, by convention,
inf Ø = +∞. For every y ∈ int dom f , we set fy = f − ∇f(y). The symbols ⇀ ,
∗
⇀ , and → denote respectively weak, weak∗, and strong convergence. S(xn)n∈N and
W(xn)n∈N are, respectively, the sets of strong and weak cluster points of a sequence
(xn)n∈N in X . bdryC denotes the boundary of a set C ⊂ X , intC its interior, and
C its closure. The closed ball of center x and radius ρ is denoted by B(x; ρ). The
normalized duality mapping J of X is defined by

(2.1) (∀x ∈ X ) J(x) =
{
x∗ ∈ X ∗ | ‖x‖2 = 〈x, x∗〉 = ‖x∗‖2

}
.

RN is the standard N -dimensional Euclidean space.

2.3. Set-valued operators. Let Y be a Banach space and 2Y the family of
all subsets of Y. A set-valued operator from X to Y is an operator A : X → 2Y .
It is characterized by its graph grA = {(x, u) ∈ X × Y | u ∈ Ax}, its domain is
domA = {x ∈ X | Ax 6= Ø} (with closure domA), its range is ranA =

⋃
x∈X Ax (with

closure ranA), and, if Y = X , its fixed point set is FixA = {x ∈ X | x ∈ Ax} (with
closure FixA). The graph of the inverse A−1 of A is {(u, x) ∈ Y ×X | (x, u) ∈ grA}.
If B : X → 2Y and α ∈ R, then gr(αA + B) = {(x, αu + v) ∈ X × Y | (x, u) ∈
grA, (x, v) ∈ grB}. As is customary, if x ∈ domA and A is single-valued on domA,
we shall denote the unique element in Ax by Ax. Finally, A is locally bounded at
x ∈ X if there exists ρ ∈ ]0,+∞[ such that A

(
B(x; ρ)

)
is bounded (we adopt the

same definition as in [79, Section 17]; it differs slightly from Phelps’ definition [71,
Chap. 2] which requires x ∈ domA).

2.4. Orbits and suborbits of algorithms. In Section 4 and subsequent sec-
tions, we shall discuss various algorithms. Sequences generated by algorithms are
called orbits, and their subsequences are referred to as suborbits.

2.5. Functions. The domain of a function g : X → ]−∞,+∞] is dom g = {x ∈
X | g(x) < +∞} (with closure dom g) and g is proper if dom g 6= Ø. Moreover, g is
subdifferentiable at x ∈ dom g if its subdifferential at this point,

(2.2) ∂g(x) =
{
x∗ ∈ X ∗ | (∀y ∈ X ) 〈y − x, x∗〉+ g(x) ≤ g(y)

}
,

is not empty; a subgradient of g at x is an element of ∂g(x). The domain of continuity
of g is

(2.3) cont g =
{
x ∈ X | |g(x)| < +∞ and g is continuous at x

}
.

and its lower level set at height η ∈ R is lev≤η g = {x ∈ X | g(x) ≤ η}. Recall that
the value of g∗, the conjugate of g, at point x∗ ∈ X ∗ is defined by

(2.4) g∗(x∗) = sup
x∈X

〈x, x∗〉 − g(x);

g is cofinite if dom g∗ = X ∗. Furthermore, g is coercive if lim‖x‖→+∞ g(x) = +∞;
supercoercive if lim‖x‖→+∞ g(x)/‖x‖ = +∞; (weak) lower semicontinuous if its lower
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level sets
(
lev≤ηg

)
η∈R are (weakly) closed; and (weak) inf-compact if they are (weakly)

compact. If X is reflexive, the notions of weak inf-compactness and coercivity coincide
for weak lower semicontinuous functions. The set of minimizing sequences of g is
denoted by

(2.5) M(g) =
{
(xn)n∈N in dom g | g(xn) → inf g(X )

}
and the set of global minimizers of g by Argmin g (if it is a singleton, its unique element
is denoted by argmin g). The inf-convolution of two functions g1, g2 : X → ]−∞,+∞]
is g1 � g2 : X → [−∞,+∞] : x 7→ infy∈X g1(y) + g2(x− y).

The indicator function of a set C ⊂ X is the function ιC : X → {0,+∞} that
takes value 0 on C and +∞ on its complement, and its normal cone is
(2.6)

NC = ∂ιC : X → 2X
∗
: x 7→

{{
x∗ ∈ X ∗ | (∀y ∈ C) 〈y − x, x∗〉 ≤ 0

}
, if x ∈ C;

Ø, otherwise.

2.6. D-Viability and Legendre functions. Operators based on Bregman dis-
tances are not defined outside of int dom f . Thus, using the terminology of [3], for an
algorithm such as (1.7) to be viable in the sense that its iterates remain in int dom f ,
the operators involved must satisfy the following viability condition.

Definition 2.1. An operator T : X → 2X is D-viable if ranT ⊂ domT =
int dom f .

It was shown in [7] that a sufficient condition for Bregman projection operators
onto closed convex sets in Euclidean spaces to be D-viable is that f be a Legendre
function (in this context, “D-viability” was called “zone consistency” after [30]). The
classical finite-dimensional definition of a Legendre function, as introduced by Rock-
afellar in [77, Section 26], is of limited use in general Banach spaces since the resulting
class of functions loses some of its remarkable finite-dimensional properties. In the
context of Banach spaces, we introduced in [8] the following notion a Legendre func-
tion. It not only generalizes Rockafellar’s classical definition but also preserves its
salient properties in reflexive spaces (for results on Legendre functions in nonreflexive
spaces, see [13]).

Definition 2.2. [8, Def. 5.2] The function f is:
(i) Essentially smooth, if ∂f is both locally bounded and single-valued on its

domain.
(ii) Essentially strictly convex, if (∂f)−1 is locally bounded on its domain and f

is strictly convex on every convex subset of dom ∂f .
(iii) Legendre, if it is both essentially smooth and essentially strictly convex.
Such functions will be of prime importance in our analysis as they will be shown to

provide a simple and convenient sufficient condition for the D-viability of the operators
commonly encountered in Bregman optimization methods in Banach spaces.

2.7. Basic properties of Bregman distances. The following properties follow
directly from (1.5).

Proposition 2.3. Let {x, y} ⊂ X and {u, v} ⊂ int dom f . Then:
(i) D(u, v) +D(v, u) = 〈u− v,∇f(u)−∇f(v)〉.
(ii) D(x, u) = D(x, v) +D(v, u) + 〈x− v,∇f(v)−∇f(u)〉.
(iii) D(x, v) +D(y, u) = D(x, u) +D(y, v) + 〈x− y,∇f(u)−∇f(v)〉.
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Fix T

•
x

H(x, u)
Tx

u

Fig. 3.1. If T ∈ B, x ∈ int dom f , and u ∈ Tx, the half-space H(x, u) contains Fix T .

3. Operators associated with Bregman distances. In Hilbert spaces, vari-
ous nonlinear operators are involved in the design of algorithms, including projection
operators, proximal operators, resolvents, subgradient projection operators, firmly
nonexpansive operators, and combinations of these. Such operators arise in convex
feasibility problems, in equilibrium theory, in systems of convex inequalities, in varia-
tional inequalities, as well as in numerous fixed point problems [5, 6, 9, 17, 35, 40, 41,
60, 72, 78]. Intrinsically tied to the very definition of these operators is the use of the
standard notion of metric distance to measure the proximity between two points. In
the context of Bregman distances, it is therefore natural to attempt to define variants
of these operators. This effort has been undertaken by several authors at various levels
of generality. In this section, we systematically study nonlinear operators associated
with Bregman distances in order to bring together and extend a collection of results
disseminated in the literature. Specifically, we investigate when D-firm operators,
D-resolvents, D-prox operators, D-projectors, and subgradient D-projectors belong to
class B (for relationships among these operators in the classical case, i.e., when X is
a Hilbert space and f = ‖ · ‖2/2, see [9, Prop. 2.3]). Moreover, the class B is shown
to be closed under a certain type of relaxed parallel combination. The discussion is
not limited to convex problems as nonconvex extensions of standard algorithms have
been found to be quite useful in a number of applications, see [12, 28, 43, 52, 62].

3.1. The class B. Ultimately, our goal is to define a class of operators for
which (1.7) systematically generates D-monotone sequences. In this perspective, the
operators employed in (1.7) must be D-viable (see Definition 2.1) and induce a certain
monotonicity property (see Definition 1.2). These requirements lead to the following
class of operators (see Figure 3.1).
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Definition 3.1. For every x and u in int dom f , set

(3.1) H(x, u) =
{
y ∈ X | 〈y − u,∇f(x)−∇f(u)〉 ≤ 0

}
.

Then

B =
{
T : X → 2X | ranT ⊂ domT = int dom f, (∀(x, u) ∈ grT ) FixT ⊂ H(x, u)

}
.

If X is Hilbertian, f = ‖ · ‖2/2, and only single-valued operators are considered,
then B reverts to the class T of operators introduced in [9] and further investigated
in this context in [41, 42]. In these studies, T was shown to play a central role in the
analysis of Fejér-monotone algorithms. Because of Proposition 3.3(i) below, there is
some overlap between the “paracontractions” introduced in [31, 75] (see also [24, 26])
and operators in B. Furthermore, if f satisfies certain conditions and T ∈ B is
single-valued with FixT 6= Ø, then T is “totally nonexpansive” in the sense of [24].

Lemma 3.2. Let C1 and C2 be two convex subsets of X such that C1 is closed
and C1 ∩ intC2 6= Ø. Then C1 ∩ intC2 = C1 ∩ C2.

Proof. Since C2 is convex with nonempty interior, C1 ∩ intC2 ⊂ C1 ∩ intC2 =
C1 ∩ C2. To show the reverse inclusion, fix x0 ∈ C1 ∩ intC2 and x1 ∈ C1 ∩ C2.
By convexity, [x0, x1] ⊂ C1 and [x0, x1[ ⊂ intC2. Therefore, (∀α ∈ [0, 1[) xα =
(1− α)x0 + αx1 ∈ C1 ∩ intC2. Consequently x1 = limα↑1− xα ∈ C1 ∩ intC2, and we
conclude C1 ∩ C2 ⊂ C1 ∩ intC2.

Proposition 3.3. Let T be an operator in B and let F =
⋂

(x,u)∈gr T H(x, u).
Then:

(i) (∀(x, u) ∈ grT )(∀y ∈ FixT ) D(y, u) ≤ D(y, x)−D(u, x).
(ii) (∀(x, u) ∈ grT ) D(u, x) ≤ DFix T (x).
(iii) (∀(x, u) ∈ grT )(∀y ∈ FixT ) D(x, u) +D(u, x) ≤ 〈y − x,∇f(u)−∇f(x)〉.

Now suppose that f |int dom f is strictly convex, then:
(iv) FixT = F ∩ int dom f .
(v) FixT is convex.
(vi) T is single-valued on FixT .

If, in addition, FixT 6= Ø, then:
(vii) FixT = F ∩ dom f .
(viii) (∀(x, u) ∈ grT )(∀y ∈ FixT ) D(y, u) ≤ D(y, x)−D(u, x).

Proof. (i): Take (x, u) ∈ grT and y ∈ FixT . Then Proposition 2.3(ii) and the
inclusion y ∈ H(x, u) yield D(y, u) = D(y, x) −D(u, x) + 〈y − u,∇f(x) −∇f(u)〉 ≤
D(y, x) −D(u, x). (ii): By (i), (∀(x, u) ∈ grT )(∀y ∈ FixT ) D(u, x) ≤ D(y, x). (iii):
Take (x, u) ∈ grT and y ∈ FixT , and suppose yn → y for some sequence (yn)n∈N in
FixT . Then it follows from Proposition 2.3(i) that

(∀n ∈ N) D(x, u) +D(u, x) = 〈x− u,∇f(x)−∇f(u)〉
= 〈x− yn,∇f(x)−∇f(u)〉+ 〈yn − u,∇f(x)−∇f(u)〉
≤ 〈x− yn,∇f(x)−∇f(u)〉 .(3.2)

Since 〈x− yn,∇f(x)−∇f(u)〉 → 〈x− y,∇f(x)−∇f(u)〉, the proof is complete.
(iv): Take y ∈ F ∩ int dom f . Then y ∈

⋂
u∈Ty H(y, u) and, in turn,

(3.3) (∀u ∈ Ty) 〈y − u,∇f(y)−∇f(u)〉 ≤ 0.

However, {y} ∪ Ty ⊂ int dom f and, since f |int dom f is strictly convex, ∇f is strictly
monotone on int dom f . Therefore Ty = {y} and y ∈ FixT . Thus, F ∩ int dom f ⊂
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FixT . Since T ∈ B, the reverse inclusion is clear. (iv) ⇒ (v): Since the sets(
H(x, u)

)
(x,u)∈gr T

and int dom f are convex, so is their intersection FixT . (vi)
was proved in the proof of (iv). (iv) ⇒ (vii): Observe that F is closed and apply
Lemma 3.2. (viii): Take (x, u) ∈ grT , y0 ∈ FixT , and y ∈ FixT . By (iv) and
(vii), FixT = F ∩ int dom f and FixT = F ∩ dom f . Since F and dom f are convex,
[y0, y] ⊂ F and [y0, y[ ⊂ int dom f . Therefore,

(3.4) (∀α ∈ [0, 1[) yα = (1− α)y0 + αy ∈ FixT.

Invoking the lower semicontinuity and convexity of f , we get

(3.5) f(y) ≤ lim
α↑1−

f(yα) ≤ lim
α↑1−

f(yα) ≤ lim
α↑1−

(1− α)f(y0) + αf(y) = f(y).

Hence limα↑1− f(yα) = f(y) and, in turn,

(3.6) (∀z ∈ int dom f) lim
α↑1−

D(yα, z) = D(y, z).

On the other hand, since u ∈ Tx and T ∈ B, (3.4) and (i) yield

(3.7) (∀α ∈ [0, 1[) D(yα, u) ≤ D(yα, x)−D(u, x).

Consequently, D(y, u) ≤ D(y, x)−D(u, x).

3.2. D-firm operators. An operator T : X → X is said to be firmly nonexpan-
sive if for all x and y in domT one has [51]

(3.8) (∀α ∈ ]0,+∞[) ‖Tx− Ty‖ ≤ ‖α(x− y) + (1− α)(Tx− Ty)‖.

For the sake of notational simplicity, let us now suppose that X is smooth. Then
its normalized duality map J is single-valued and, upon invoking the equivalence
(∀α ∈ ]0,+∞[) ‖u‖ ≤ ‖u+αv‖ ⇔ 0 ≤ 〈v, Ju〉 [51], we observe that (3.8) is equivalent
to

(3.9) 〈Tx− Ty, J(Tx− Ty)〉 ≤ 〈x− y, J(Tx− Ty)〉 .

If X is not a Hilbert space, J is not linear and this type of inequality may be difficult
to manipulate. In Hilbert spaces, J = Id = ∇f for f = ‖·‖2/2, and (3.9) can therefore
be written

(3.10) 〈Tx− Ty,∇f(Tx)−∇f(Ty)〉 ≤ 〈Tx− Ty,∇f(x)−∇f(y)〉 .

In the framework of Bregman distances, this inequality suggests the following defini-
tion.

Definition 3.4. An operator T : X → 2X with domT ∪ ranT ⊂ int dom f is
D-firm if
(3.11)
(∀(x, u) ∈ grT )(∀(y, v) ∈ grT ) 〈u− v,∇f(u)−∇f(v)〉 ≤ 〈u− v,∇f(x)−∇f(y)〉 .

Proposition 3.5. Let T : X → 2X be a D-firm operator. Then:
(i) (∀(x, u) ∈ grT ) FixT ⊂ H(x, u).
(ii) T ∈ B if int dom f = domT .
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(iii) T is single-valued on its domain if f |int dom f is strictly convex.
(iv) (∀(x, u) ∈ grT )(∀(y, v) ∈ grT ) D(u, v) + D(v, u) ≤ D(u, y) + D(v, x) −

D(u, x)−D(v, y).
Proof. (i): Suppose y ∈ Ty. Then (3.11) implies that

(3.12) (∀(x, u) ∈ grT ) 〈y − u,∇f(x)−∇f(u)〉 ≤ 0.

(i) ⇒ (ii) is clear. (iii): Fix x ∈ domT and {u, v} ⊂ Tx. Then (3.11) implies that

(3.13) 〈u− v,∇f(u)−∇f(v)〉 ≤ 0.

Since ∇f is strictly monotone on int dom f ⊃ {u, v}, we obtain u = v. (iv) follows
from Proposition 2.3(i), (3.11), and Proposition 2.3(iii).

Remark 3.6. For single-valued operators in Hilbert spaces and f strongly convex
(i.e., f−β‖·‖2/2 is convex for some β ∈ ]0,+∞[), item (iv) above was used to define
D-firmness in [18].

3.3. D-resolvents. The resolvent of an operator A : X → 2X is (Id+A)−1. It
is known that an operator T : X → X is firmly nonexpansive if and only if it is the
resolvent of an accretive operator A : X → 2X [19].

Now let A : X → 2X
∗

be a nontrivial operator, i.e., grA 6= Ø. Then, in the
context of Bregman distances, it is reasonable to introduce the following variant of
the notion of a resolvent to obtain an operator from X to X (this definition appears
to have first been proposed in RN in [46]).

Definition 3.7. The D-resolvent associated with A : X → 2X
∗

is the operator

(3.14) RA = (∇f +A)−1 ◦ ∇f : X → 2X .

An a posteriori motivation for (3.14) is that it preserves the usual fixed point
characterization of the zeros of A, namely,

(3.15) (∀x ∈ X )(∀γ ∈ ]0,+∞[) 0 ∈ Ax ⇔ x ∈ FixRγA,

as 0 ∈ Ax⇔∇f(x) ∈ ∇f(x)+γA(x) = (∇f+γA)(x) ⇔ x ∈ (∇f+γA)−1
(
∇f(x)

)
. It

is also consistent with previous attempts to define resolvents for monotone operators:
• Let X be smooth and set f = ‖·‖2/2. Then ∇f = J and RA = (J+A)−1 ◦J .

This type of resolvent was used in [57].
• If X is Hilbertian and f : x 7→ ‖Πx‖2/2, where Π is the metric projector onto

a closed vector subspace of X , then ∇f = Π and RA = (Π + A)−1 ◦ Π. This
generalized resolvent was used in [54].

Proposition 3.8. RA satisfies the following properties.
(i) domRA ⊂ int dom f .
(ii) ranRA ⊂ int dom f .
(iii) FixRA = (int dom f) ∩A−10.
(iv) Suppose A is monotone. Then

(a) RA is D-firm.
(b) RA is single-valued on its domain if f |int dom f is strictly convex.
(c) Suppose ran∇f ⊂ ran(∇f + A). Then RA ∈ B. If, in addition,

f |int dom f is strictly convex, then FixRA is convex.
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Proof. (i) is clear. (ii): We have

(3.16)
ranRA ⊂ ran(∇f +A)−1 = dom(∇f +A) = dom∇f ∩ domA ⊂ dom∇f

= int dom f.

(iii): FixRA ⊂ int dom f by (i) and (∀x ∈ int dom f) 0 ∈ Ax ⇔ x ∈ RAx by (3.15).
Hence, A−10 ∩ int dom f = FixRA ∩ int dom f = FixRA. (iv): Suppose that A
is monotone. (a): In view of (i) and (ii), let us show that (3.11) is satisfied. Fix
(x, u) and (y, v) in grRA. Then ∇f(x) − ∇f(u) ∈ Au and ∇f(y) − ∇f(v) ∈ Av.
Consequently, since A is monotone, we get 〈u−v,∇f(x)−∇f(u)−(∇f(y)−∇f(v))〉 ≥
0. (b) follows from (a) and Proposition 3.5(iii). (c): ran∇f ⊂ ran(∇f + A) ⇔
ran∇f ⊂ dom(∇f + A)−1 ⇔ domRA = dom∇f = int dom f . In view of (a) and
Proposition 3.5(ii), RA ∈ B. Proposition 3.3(v) implies the convexity of FixRA.

Definition 3.9. [86, Sections 32.14 & 32.21] A is
(i) Weakly coercive if lim

‖x‖→+∞
inf ‖Ax‖ = +∞;

(ii) Strongly coercive if (∀x ∈ domA) lim
‖y‖→+∞

inf
〈y − x,Ax〉

‖y‖
= +∞;

(iii) 3-monotone if(
∀
(
(x, x∗), (y, y∗), (z, z∗)

)
∈ (grA)3

)
〈x−y, x∗〉+ 〈y−z, y∗〉+ 〈z−x, z∗〉 ≥ 0;

(iv) 3∗-monotone if it is monotone and

(∀(x, x∗) ∈ domA× ranA) sup
{
〈x− y, y∗ − x∗〉 | (y, y∗) ∈ grA

}
< +∞.

Lemma 3.10. [86, Section 32.21], [16] Suppose that X is reflexive, and that A is
monotone and satisfies one of the following properties:

(i) A is 3-monotone.
(ii) A is strongly coercive.
(iii) ranA is bounded.
(iv) A = ∂ϕ, where ϕ : X → ]−∞,+∞] is a proper function.

Then A is 3∗-monotone.
The following lemma is Reich’s extension to a reflexive Banach space setting of

the Brézis-Haraux theorem [16] on the range of the sum of two monotone operators.
Lemma 3.11. [74, Thm. 2.2] Suppose that X is reflexive and let A1, A2 : X → 2X

∗

be two monotone operators such that A1 + A2 is maximal monotone and A1 is 3∗-
monotone. In addition, suppose that domA2 ⊂ domA1 or A2 is 3∗-monotone. Then
int ran(A1 +A2) = int(ranA1 + ranA2) and ran (A1 +A2) = ranA1 + ranA2.

Proposition 3.12. Let γ ∈ ]0,+∞[. Suppose that X is reflexive and that A is
maximal monotone with (int dom f)∩domA = dom ∂f ∩domA 6= Ø. Then ∇f + γA
is maximal monotone. Moreover, the inclusions

(3.17)

{
int(ran∇f + γ ranA) ⊂ ran(∇f + γA)
ran∇f + γ ranA ⊂ ran (∇f + γA)

are satisfied if one of the following conditions holds:
(i) domA ⊂ int dom f .
(ii) A is 3∗-monotone.
Proof. Since f is proper, lower semicontinuous, and convex, ∂f is maximal mono-

tone [79, Thm. 30.3] and int dom f = cont f ⊂ dom ∂f ⊂ dom f [48, Chap. I]. Since
10



(int dom f) ∩ domA = dom ∂f ∩ domA 6= Ø, we have (int dom ∂f) ∩ dom γA =
(int dom f) ∩ domA 6= Ø and it follows from Rockafellar’s sum theorem [79, Sec-
tion 23] that ∂f + γA is maximal monotone. However, the above assumption implies
that dom(∇f + γA) = dom(∂f + γA) and, in turn, that ∇f + γA = ∂f + γA
since {∇f} = ∂f |int dom f . Thus, ∇f + γA is maximal monotone. The second as-
sertion is an application of Lemma 3.11 with A1 = ∇f and A2 = γA. Indeed,
dom∇f = int dom f and, by Lemma 3.10(iv), ∂f is 3∗-monotone and so is therefore
∇f since gr∇f ⊂ gr ∂f .

Theorem 3.13. Let γ ∈ ]0,+∞[. Suppose that X is reflexive, that A is maximal
monotone with (int dom f) ∩ domA = dom ∂f ∩ domA 6= Ø, and that one of the
following conditions holds:

(i) X is smooth and f = ‖ · ‖2/2.
(ii) (∇f + γA)−1 is locally bounded at every point in X ∗.
(iii) ∇f + γA is weakly coercive.
(iv) domA ⊂ int dom f or A is 3∗-monotone, and one of the following conditions

holds:
(a) ran∇f + γ ranA = X ∗.
(b) f is Legendre and cofinite.
(c) ran(∇f + γA) is closed and 0 ∈ ranA.
(d) ran∇f is open and 0 ∈ ranA.

Then RγA ∈ B.
Proof. In view of Proposition 3.8(iv)(c), it suffices to show that ran∇f ⊂

ran(∇f + γA). (i): Since X is smooth, ∇f = J [34, Corollary I.4.5] and Rock-
afellar’s surjectivity theorem [79, Thm. 10.7] yields ran(∇f + γA) = X ∗. (ii): Propo-
sition 3.12 asserts that ∇f + γA is maximal monotone. It therefore follows from
the Brézis-Browder surjectivity theorem ([34, Thm. V.3.8] or [86, Thm. 32.G]) that
ran(∇f + γA) = X ∗. (iii) ⇒ (ii) follows from [86, Coro. 32.35] since ∇f + γA
is maximal monotone. (iv): By Proposition 3.12, (3.17) holds. (a): By (3.17),
X ∗ = int(ran∇f + γ ranA) ⊂ ran(∇f + γA). (b) ⇒ (a): By [8, Thm. 5.10], Leg-
endreness guarantees ran∇f = int dom f∗ while cofiniteness gives int dom f∗ = X ∗.
Consequently, ran∇f + γ ranA = X ∗. (c): By (3.17), ran∇f = ran∇f + {0} ⊂
ran∇f + γ ranA ⊂ ran (∇f + γA) = ran(∇f + γA). (d): By (3.17), ran∇f =
int(ran∇f + {0}) ⊂ int(ran∇f + γ ranA) ⊂ ran(∇f + γA).

In connection with the problem of finding zeros of maximal monotone operators,
the following corollary is particularly useful.

Corollary 3.14. Let γ ∈ ]0,+∞[. Suppose that X is reflexive, that A is
maximal monotone with 0 ∈ ranA, and that one of the following conditions holds:

(i) ran∇f is open and domA ⊂ int dom f .
(ii) f is Legendre and domA ⊂ int dom f .
(iii) f is Legendre, A is 3∗-monotone, and domA ∩ int dom f 6= Ø.

Then RγA ∈ B.
Proof. The assertions follow from Theorem 3.13(iv)(d). Indeed, in (i), domA ⊂

int dom f = cont f ⊂ dom ∂f ⇒ (int dom f) ∩ domA = dom ∂f ∩ domA = domA 6=
Ø. On the other hand, in (ii) and (iii), ran∇f is open since Legendreness yields
ran∇f = int dom f∗ [8, Thm. 5.10]. Consequently, if domA ⊂ int dom f , then (ii) is a
consequence of (i). Otherwise, if A is 3∗-monotone and (int dom f)∩domA 6= Ø, then
it suffices to note that essential smoothness yields dom ∂f = int dom f [8, Thm. 5.6],
whence (int dom f) ∩ domA = dom ∂f ∩ domA 6= Ø.

Remark 3.15. In RN , Corollary 3.14(i) corresponds to [46, Thm. 4].
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3.4. D-prox operators. The classical notion of a proximal operator was intro-
duced by Moreau [64, 65, 67] in Hilbert spaces. The proximal operator associated
with a function ϕ : X → ]−∞,+∞] is proxϕ : y 7→ argminϕ+ ‖ · −y‖2/2. Outside of
Hilbert spaces, this notion is of less interest since Fermat’s rule for the minimization
of ϕ+ ‖ · −y‖2/2 becomes a nonseparable inclusion, namely, 0 ∈ ∂ϕ(x) + J(x− y).

In RN , the idea of defining proximal operators based on D-distance – rather than
quadratic – penalizations was introduced in [32]. In our setting, they will be defined
as follows.

Definition 3.16. Let ϕ : X → ]−∞,+∞]. The D-prox operator of index γ ∈
]0,+∞[ associated with ϕ is the operator

proxϕ
γ : X → 2X

y 7→
{
x∈dom f ∩ domϕ | ϕ(x)+

1
γ
D(x, y) = min

(
ϕ+

1
γ
D(·, y)

)
(X ) < +∞

}
.

It follows from this definition that

(3.18) dom proxϕ
γ ⊂ int dom f and ran proxϕ

γ ⊂ dom f ∩ domϕ.

Recall (see Section 2.5) that a function is weak inf-compact if all its lower level
sets are weakly compact.

Lemma 3.17. Suppose that g1 : X → ]−∞,+∞] is weak lower semicontinuous
and bounded from below, and that g2 : X → ]−∞,+∞] is weak inf-compact. Then
g1 + g2 is weak inf-compact.

Proof. Set β = inf g1(X ) and let η ∈ R. Since g1 and g2 are weak lower semicon-
tinuous, so is their sum and therefore lev≤η (g1 + g2) is weakly closed. On the other
hand, lev≤η (g1 + g2) is contained in the weakly compact set lev≤η−β g2. We conclude
that lev≤η (g1 + g2) is weakly compact.

The following result concerns the domain requirement for the D-viability of D-
prox operators. Recall (see Sections 2.5 and 2.2) thatM denotes the set of minimizing
sequences of a function, and that W is the set of weak cluster points of a sequence.

Theorem 3.18. Let γ ∈ ]0,+∞[, let ϕ : X → ]−∞,+∞] be such that dom f ∩
domϕ 6= Ø, and assume that one of the following conditions holds:

(i) (∀y ∈ int dom f)(∃ (xn)n∈N ∈M(fy + γϕ))(∃x ∈ W(xn)n∈N) f + γϕ is weak
lower semicontinuous at x.

(ii) (∀y ∈ int dom f) fy + γϕ is weak inf-compact.
(iii) ϕ is weak lower semicontinuous and bounded from below and, for every y ∈

int dom f , fy is weak inf-compact.
(iv) ϕ is weak inf-compact.

Then domproxϕ
γ = int dom f .

Proof. Fix y ∈ int dom f and set g = fy + γϕ. (i) Pick (xn)n∈N ∈ M(g) such
that xkn

⇀ x and g is weak lower semicontinuous at x. It follows that g(x) ≤
lim g(xkn

) = inf g(X ) and hence g(x) = inf g(X ). Therefore, g achieves its infimum
and the result holds since proxϕ

γ y = Argmin(fy + γϕ) = Argmin(g). (ii) ⇒ (i): Take
(xn)n∈N ∈M(g). Then it follows from weak inf-compactness of g that (xn)n∈N lies in
a weakly compact set and therefore that W(xn)n∈N 6= Ø. On the other hand, as g is
weak inf-compact, it is weak lower semicontinuous and so is f+γϕ = fy+γϕ+∇f(y) =
g + ∇f(y). (iii) ⇒ (ii) follows from Lemma 3.17. (iv) ⇒ (ii): It is clear that fy is
weak lower semicontinuous. On the other hand, it follows from the convexity of f
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that, for every x ∈ X , 〈x − y,∇f(y)〉 + f(y) ≤ f(x) and, therefore, fy(x) ≥ fy(y).
Hence inf fy(X ) ≥ fy(y) > −∞ and, by Lemma 3.17, g is weak inf-compact.

The following fundamental result is due to Moreau [66] and Rockafellar [76].
Lemma 3.19. Let y∗ ∈ X ∗. Then f−y∗ is coercive if and only if y∗ ∈ int dom f∗.

Lemma 3.20. Let g1, g2 : X → ]−∞,+∞] be two convex functions. Then
(i) [2] If g1 and g2 are lower semicontinuous and 0 ∈ int

(
dom g1−dom g2

)
, then

(g1 + g2)∗ = g∗1 � g∗2 .
(ii) [79, Thm. 28.2] If cont g1 ∩ dom g2 6= Ø, then ∂(g1 + g2) = ∂g1 + ∂g2.
Proposition 3.21. Let ϕ : X → ]−∞,+∞] be a lower semicontinuous convex

function such that dom f∩domϕ 6= Ø and let γ ∈ ]0,+∞[. Suppose that X is reflexive
and that one of the following conditions holds:

(i) (∀y ∈ int dom f)(∃ (xn)n∈N ∈M(fy + γϕ)) supn∈N ‖xn‖ < +∞.
(ii) (∀y ∈ int dom f) fy + γϕ is coercive.
(iii) ran∇f ⊂ int dom (f + γϕ)∗.
(iv) f + γϕ is cofinite.
(v) 0 ∈ int(dom f − domϕ) and dom f∗ + γ domϕ∗ = X ∗.
(vi) ϕ is bounded from below and f is essentially strictly convex.
(vii) f + γϕ is supercoercive.
(viii) ϕ is bounded from below and f is supercoercive.
(ix) ϕ is coercive.

Then domproxϕ
γ = int dom f .

Proof. Let y be an arbitrary point in int dom f . Note that, since ϕ is weak lower
semicontinuous, so are f + γϕ and fy + γϕ and that, since X is reflexive, coercive
weak lower semicontinuous functions are weak inf-compact. (i) is a consequence of
Theorem 3.18(i). Indeed, take a bounded sequence (xn)n∈N ∈ M(fy + γϕ). Then
it follows from the reflexivity of X that W(xn)n∈N 6= Ø. (ii) follows at once from
Theorem 3.18(ii). (iii) ⇔ (ii): ∇f(y) ∈ int dom (f + γϕ)∗ ⇔ f + γϕ − ∇f(y) is
coercive by Lemma 3.19. (iv) ⇒ (iii) is clear. (v) ⇒ (iv): Lemma 3.20(i) yields

(3.19)
dom f∗ + γ domϕ∗ = dom f∗ + dom γϕ∗(·/γ) = dom f∗ + dom(γϕ)∗

= dom
(
f∗ � (γϕ)∗

)
and

(3.20) 0 ∈ int(dom f − domϕ) ⇒ f∗ � (γϕ)∗ = (f + γϕ)∗.

Hence dom f∗ + γ domϕ∗ = X ∗ ⇒ dom(f + γϕ)∗ = X ∗. (vi) is a consequence of
Theorem 3.18(iii): indeed, by [8, Thm. 5.9(ii)], ∇f(y) ∈ int dom f∗ and fy is therefore
coercive by Lemma 3.19. (vii) ⇒ (iv): [8, Thm. 3.4]. (viii) ⇒ (vii) is clear. (ix) is a
consequence of Theorem 3.18(iv).

The next result gathers some facts concerning D-prox operators for convex func-
tions.

Proposition 3.22. Let ϕ : X → ]−∞,+∞] be convex and let γ ∈ ]0,+∞[.
Then:

(i) proxϕ
γ =

(
∂(f + γϕ)

)−1 ◦ ∇f .
(ii) If, in addition, ran proxϕ

γ ⊂ int dom f then:
(a) proxϕ

γ = Rγ∂ϕ.
(b) Fix proxϕ

γ = (int dom f) ∩Argmin ϕ.
(c) proxϕ

γ is D-firm.
13



(d) proxϕ
γ is single-valued on its domain if f |int dom f is strictly convex.

Proof. Fix y ∈ int dom f . (i): By (3.18), ran proxϕ
γ ⊂ dom f ∩ domϕ. If dom f ∩

domϕ = Ø, both sides of the desired identity reduce to the trivial operator z 7→
Ø. If not, take x ∈ dom f ∩ domϕ. Since cont∇f(y) = X , Lemma 3.20(ii) yields
∂(fy + γϕ)(x) = ∂(f + γϕ)(x)−∇f(y). Consequently,

x ∈ proxϕ
γ y ⇔ 0 ∈ ∂(fy + γϕ)(x)

⇔ ∇f(y) ∈ ∂(f + γϕ)(x)

⇔ x ∈
(
∂(f + γϕ)

)−1(∇f(y)
)
.(3.21)

(ii): Suppose ran proxϕ
γ ⊂ int dom f . (a): On the one hand it follows from (3.18) that

ran proxϕ
γ ⊂ (int dom f) ∩ domϕ. On the other hand, ranRγ∂ϕ ⊂ dom(∇f + γ∂ϕ) ⊂

(int dom f) ∩ domϕ. Therefore, if (int dom f) ∩ domϕ = Ø, both sides of the desired
identity reduce to the trivial operator z 7→ Ø. If not, take x ∈ (int dom f) ∩ domϕ =
cont f ∩domϕ. Lemma 3.20(ii) now yields ∂(f+γϕ)(x) = ∇f(x)+γ∂ϕ(x) and (3.21)
becomes

(3.22) x ∈ proxϕ
γ y ⇔ ∇f(y) ∈ ∇f(x) + γ∂ϕ(x) ⇔ x ∈ Rγ∂ϕy.

(a) ⇒ (b) follows from Proposition 3.8(iii). (a) ⇒ (c): Since ∂ϕ is monotone, Rγ∂ϕ

is D-firm by Proposition 3.8(iv)(a). (a) ⇒ (d) follows from Proposition 3.8(iv)(b).
We now turn our attention to range requirement for the D-viability of D-prox

operators.
Proposition 3.23. Let ϕ : X → ]−∞,+∞] be convex and such that dom f ∩

domϕ 6= Ø, and let γ ∈ ]0,+∞[. Assume that one of the following conditions holds:
(i) dom ∂(f + γϕ) ⊂ int dom f .
(ii) dom f ∩ domϕ ⊂ int dom f .
(iii) dom f is open.
(iv) domϕ ⊂ int dom f .
(v) (int dom f) ∩ domϕ 6= Ø and one of the following conditions holds:

(a) dom ∂f ∩ dom ∂ϕ ⊂ int dom f .
(b) f is essentially smooth.
(c) dom ∂ϕ ⊂ int dom f .

Then ran proxϕ
γ ⊂ int dom f .

Proof. (i): By Proposition 3.22(i),

(3.23) ran proxϕ
γ ⊂ ran

(
∂(f + γϕ)

)−1 = dom ∂(f + γϕ) ⊂ int dom f.

(ii) ⇒ (i): dom ∂(f + γϕ) ⊂ dom(f + γϕ) = dom f ∩ domϕ ⊂ int dom f . (iii)
⇒ (ii) and (iv) ⇒ (ii) are clear. (v) ⇒ (i): It results from Lemma 3.20(ii) that
∂(f + γϕ) = ∂f + γ∂ϕ. Whence, (a) ⇒ (i). (b) ⇒ (a): Essential smoothness ⇒
dom ∂f = int dom f [8, Thm. 5.6(iii)]. (c) ⇒ (a) is clear.

Upon combining Propositions 3.23, 3.22(ii)(c), 3.21, and 3.5(ii), we obtain
Theorem 3.24. Let ϕ : X → ]−∞,+∞] be a lower semicontinuous convex func-

tion such that dom f∩domϕ 6= Ø and let γ ∈ ]0,+∞[. Suppose that X is reflexive and
that one of conditions (i)-(ix) in Proposition 3.21 holds together with one of conditions
(i)-(v) in Proposition 3.23. Then proxϕ

γ ∈ B.
The following special case underscores the importance of the notion of Legen-

dreness.
Corollary 3.25. Let ϕ : X → ]−∞,+∞] be a lower semicontinuous convex

function such that (int dom f) ∩ domϕ 6= Ø and let γ ∈ ]0,+∞[. Suppose that X is
reflexive, that f is Legendre, and that ϕ is bounded below. Then
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(i) proxϕ
γ is single-valued on its domain and proxϕ

γ ∈ B.
(ii) For every x and y in int dom f ,

x = proxϕ
γ y ⇔ (∀z ∈ domϕ) 〈z − x,∇f(y)−∇f(x)〉 /γ + ϕ(x) ≤ ϕ(z).

Proof. (i): Combine Propositions 3.23(v)(b), 3.22(ii)(c)&(d), 3.21(vi), and 3.5(ii).
(ii): By (3.22), x = proxϕ

γ y ⇔ ∇f(y)−∇f(x) ∈ γ∂ϕ(x).
Remark 3.26. A special case of Theorem 3.18(iii) in RN can be found in [32,

Prop. 3.1]. In RN , assertions (iv) and (v)(b) of Proposition 3.23 appear in [58,
Lemma 3.3]. In the case when X is Hilbertian and f = ‖ · ‖2/2, the characterization
supplied by Corollary 3.25(ii) is well-known, e.g., [48, Section II.2].

3.5. D-projections. The following concept goes back to Bregman’s original pa-
per [15].

Definition 3.27. The D-projector onto a set C ⊂ X is the operator

(3.24)
PC : X → 2X

y 7→
{
x ∈ C ∩ dom f | D(x, y) = DC(y) < +∞

}
.

It is clear that, for any γ ∈ ]0,+∞[, PC = proxιC
γ . Hence, the results of Section 3.4

will automatically yield results on D-projections when specialized to ϕ = ιC . Before
we proceed in this direction, let us introduce a couple of definitions, which are natural
adaptations of standard ones in metric approximation theory [81].

Definition 3.28. A set C ⊂ X is D-proximinal if domPC = int dom f and
D-semi-Chebyshev if PC is single-valued on its domain. C is D-Chebyshev if it is
D-proximinal and D-semi-Chebyshev.

Definition 3.29. A set C ⊂ X is D-approximately weakly compact if

(∀y ∈ int dom f)(∀(xn)n∈N in C ∩dom f) D(xn, y) → DC(y) ⇒ W(xn)n∈N ∩C 6= Ø.

Theorem 3.30. Let C be a subset of X such that C ∩ dom f 6= Ø and assume
that one of the following conditions holds:

(i) C is D-approximately weakly compact.
(ii) (∀y ∈ int dom f)(∃ η ∈ R) C ∩ lev≤η fy is nonempty and weakly compact.
(iii) C is weakly closed and, for every y ∈ int dom f , fy is weak inf-compact.
(iv) C is weakly compact.

Then C is D-proximinal.
Proof. (i): Since f is weak lower semicontinuous, f + ιC is weak lower semi-

continuous at every point in C. Now fix y ∈ int dom f and (xn)n∈N ∈ M(fy + ιC).
Then D(xn, y) → DC(y) and Definition 3.29 yields W(xn)n∈N ∩ C 6= Ø. Now take
x ∈ W(xn)n∈N∩C. Since f+ ιC is weak lower semicontinuous at x, the claims follows
from Theorem 3.18(i) with ϕ = ιC . (ii): Fix y ∈ int dom f . As minimizing D(·, y)
over C is equivalent to minimizing the weak lower semicontinuous function fy over
the weakly compact set C∩ lev≤η fy, the result follows. Assertions (iii) and (iv) follow
respectively from assertions (iii) and (iv) in Theorem 3.18 with ϕ = ιC .

Upon setting ϕ = ιC , Proposition 3.21 becomes
Proposition 3.31. Let C be a closed and convex subset of X such that C ∩

dom f 6= Ø. Suppose that X is reflexive and that one of the following conditions
holds:

(i) (∀y ∈ int dom f)(∀(xn)n∈N ∈M(fy + ιC)) supn∈N ‖xn‖ < +∞.
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(ii) (∀y ∈ int dom f) fy + ιC is coercive.
(iii) ran∇f ⊂ int dom (f + ιC)∗.
(iv) f + ιC is cofinite.
(v) 0 ∈ int(dom f − C) and dom f∗ + dom ι∗C = X ∗.
(vi) f is essentially strictly convex.
(vii) f + ιC is supercoercive.
(viii) f is supercoercive.
(ix) C is bounded.

Then C is D-proximinal.
Likewise, Proposition 3.22 with ϕ = ιC yields
Proposition 3.32. Let C be a convex subset of X . Then:
(i) PC =

(
∂(f + ιC)

)−1 ◦ ∇f .
(ii) If, in addition, ranPC ⊂ int dom f then:

(a) PC = RNC
.

(b) FixPC = C ∩ int dom f .
(c) PC is D-firm.
(d) C is D-semi-Chebyshev if f |int dom f is strictly convex.

The D-viability requirements for the range of PC are obtained by setting ϕ = ιC
in Proposition 3.23.

Proposition 3.33. Let C ⊂ X be convex and such that C∩dom f 6= Ø. Assume
that one of the following conditions holds:

(i) dom ∂(f + ιC) ⊂ int dom f .
(ii) C ∩ dom f ⊂ int dom f .
(iii) dom f is open.
(iv) C ⊂ int dom f .
(v) C ∩ int dom f 6= Ø and one of the following conditions holds:

(a) C ∩ dom ∂f ⊂ int dom f .
(b) f is essentially smooth.

Then ranPC ⊂ int dom f .
Theorem 3.34. Let C ⊂ X be a closed convex set such that C ∩ dom f 6= Ø.

Suppose that X is reflexive and that one of conditions (i)-(ix) in Proposition 3.31
holds together with one of conditions (i)-(v) in Proposition 3.33. Then PC ∈ B.

Proof. Since Proposition 3.31 parallels Proposition 3.21 and Proposition 3.33
parallels Proposition 3.23, it suffices to set ϕ = ιC in Theorem 3.24.

We conclude this section with the following result.
Corollary 3.35. Suppose that X is reflexive, that f is Legendre, and that C is

a closed convex subset of X such that C ∩ int dom f 6= Ø. Then
(i) C is D-Chebyshev and PC ∈ B.
(ii) For every x and y in int dom f ,

(3.25) x = PCy ⇔

{
x ∈ C
C ⊂ H(y, x).

Proof. Take ϕ = ιC in Corollary 3.25.
Remark 3.36. Proposition 3.31(vii)-(ix) can be found in [1, Prop 2.1]. Corol-

lary 3.35(i) covers [8, Coro. 7.9] (see also [7, Section 3] in the special case of Eu-
clidean spaces), which was obtained via different arguments. If X is Hilbertian and
f = ‖ · ‖2/2, Corollary 3.35(ii) reduces to the classical characterization of metric
projections onto closed convex sets.
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3.6. Subgradient D-projections. The D-projection onto a closed convex set
may be hard to compute. If the set is specified as a lower level set, it can be ap-
proximated by the D-projection onto a separating hyperplane, which is much easier
to compute. In the traditional case when X is Hilbertian and f = ‖ · ‖2/2, this is
a standard approach which goes back to [73] (see also [6, 37, 60]). In the context
of Bregman distances, we shall define subgradient D-projections as follows (see also
[27, 59] for special instances).

Definition 3.37. Suppose that

(3.26)


X is reflexive and f is Legendre
g : X → ]−∞,+∞] is lower semicontinuous and convex
lev≤0 g ∩ int dom f 6= Ø and dom f ⊂ dom g.

For every x ∈ int dom f and x∗ ∈ ∂g(x), set

(3.27) G(x, x∗) =
{
y ∈ X | 〈x− y, x∗〉 ≥ g(x)

}
.

The operator

(3.28) Qg : int dom f → X : x 7→
{
PG(x,x∗)x | x∗ ∈ ∂g(x)

}
is the subgradient D-projector onto lev≤0 g.

Note that G(x, x∗) is a proper closed half-space if x∗ 6= 0 and the whole space X
otherwise; the latter may occur only when x ∈ Argmin g.

Proposition 3.38. Suppose that (3.26) is in force and let Qg be the subgradient
D-projector onto lev≤0 g. Then

(i) FixQg = lev≤0 g ∩ int dom f .
(ii) Qg ∈ B.
Proof. Fix x ∈ int dom f and x∗ ∈ ∂g(x). Since int dom f ⊂ int dom g ⊂ dom ∂g,

∂g(x) 6= Ø and the closed convex set G(x, x∗) is well-defined. Moreover, (2.2) yields

(3.29) (∀y ∈ lev≤0 g) 〈y − x, x∗〉 ≤ g(y)− g(x) ≤ −g(x).

Therefore, lev≤0 g ⊂ G(x, x∗) and, in turn, G(x, x∗) ∩ int dom f 6= Ø. Hence, Corol-
lary 3.35(i) asserts that PG(x,x∗) is single-valued with ranPG(x,x∗) ⊂ int dom f =
domPG(x,x∗), whence ranQg ⊂ int dom f = domQg. (i): Take y ∈ X . Then it follows
from Proposition 3.32(ii)(b) that

y ∈ FixQg ⇔ (∃ y∗ ∈ ∂g(y)) y = PG(y,y∗)y

⇔ (∃ y∗ ∈ ∂g(y)) y ∈ G(y, y∗) ∩ int dom f

⇔ (∃ y∗ ∈ ∂g(y)) 0 = 〈y − y, y∗〉 ≥ g(y) and y ∈ int dom f

⇔ y ∈ lev≤0 g ∩ int dom f.

Thus, FixQg = lev≤0 g ∩ int dom f . (ii): To show that Qg ∈ B observe that
Corollary 3.35(ii) implies that G(x, x∗) ⊂ H(x, PG(x,x∗)x). Consequently, FixQg ⊂
lev≤0 g ⊂ G(x, x∗) ⊂ H(x, PG(x,x∗)x), where (x, PG(x,x∗)x) is an arbitrary point in
grQg. Altogether, Qg ∈ B.

3.7. Relaxed parallel combination of B-class operators. The following
proposition describes a scheme to aggregate B-class operators in order to create a
new B-class operator.
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Proposition 3.39. Suppose that X is reflexive and that f is Legendre. Let
(Ti)i∈I be a finite family of operators in B such that

⋂
i∈I FixTi 6= Ø, let (ωi)i∈I be

weights in ]0, 1] such that
∑

i∈I ωi = 1, and let λ be a relaxation parameter in ]0, 1].
For every x ∈ int dom f , select (ui)i∈I ∈×i∈ITix, put

(3.30) H(x) =
{
y ∈ X | 〈y, x∗〉 ≤ η(x)

}
,

where

(3.31)

{
x∗ = ∇f(x)−

∑
i∈I ωi∇f(ui)

η(x) =
∑

i∈I ωi 〈x+ λ(ui − x),∇f(x)−∇f(ui)〉 ,

and define T : int dom f → X : x 7→ PH(x)x. Then
(i) T is single-valued on domT = int dom f ⊃ ranT .
(ii) For every x ∈ int dom f , the following statements are equivalent:

(a) x ∈
⋂

i∈I FixTi.
(b) x∗ = 0.
(c) H(x) = X .
(d) x ∈ H(x).
(e) x ∈ FixT .

(iii) FixT =
⋂

i∈I FixTi.
(iv) FixT =

⋂
i∈I FixTi.

(v) (∀x ∈ int dom f) H(x) = H(x, Tx).
(vi) T ∈ B.
Proof. Fix x ∈ int dom f . (i): We first observe that the operator T is well-defined.

Indeed, since (Ti)i∈I lies in B, x∗ and η(x) are well-defined and we have

Ø 6=
⋂
i∈I

FixTi

⊂ (int dom f) ∩
⋂
i∈I

H(x, ui)

⊂ (int dom f) ∩
⋂
i∈I

{
y ∈ X | 〈y − ui,∇f(x)−∇f(ui)〉 ≤

(1− λ) 〈x− ui,∇f(x)−∇f(ui)〉
}

(3.32)

⊂ (int dom f) ∩
{
y ∈ X |

∑
i∈I

ωi 〈y − ui,∇f(x)−∇f(ui)〉 ≤

(1− λ)
∑
i∈I

ωi 〈x− ui,∇f(x)−∇f(ui)〉
}

= (int dom f) ∩H(x),

where the second inclusion follows from the inequality λ ≤ 1 and the monotonicity
of ∇f . Whence, (int dom f) ∩ H(x) 6= Ø and it follows from Corollary 3.35(i) that
PH(x)x is a well-defined point in int dom f . (ii): Since f is essentially strictly convex,
it is strictly convex on int dom f and it follows from Proposition 3.3(vi) that (a) ⇒
(∀i ∈ I) ui = x ⇒ (b). (b) ⇒ (c): Suppose x∗ = 0 and fix y ∈

⋂
i∈I FixTi. Then,
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since (Ti)i∈I lies in B,

0 ≤
∑
i∈I

ωi 〈ui − y,∇f(x)−∇f(ui)〉

= η(x)− 〈y, x∗〉 − (1− λ)
∑
i∈I

ωi 〈x− ui,∇f(x)−∇f(ui)〉

≤ η(x).(3.33)

Accordingly, H(x) = X . The implications (c) ⇒ (d) ⇒ x = PH(x)x ⇒ (e) are clear
in view of Proposition 3.32(ii)(b). (e) ⇒ (a): We have

x ∈ FixT ⇔ x = PH(x)x

⇔ x ∈ H(x)
⇔ 〈x, x∗〉 ≤ η(x)

⇔ λ
∑
i∈I

ωi 〈x− ui,∇f(x)−∇f(ui)〉 ≤ 0

⇔ (∀i ∈ I) x = ui ∈ Tix

⇔ x ∈
⋂
i∈I

FixTi,

where the next to last equivalence follows from the strict monotonicity of ∇f on
int dom f (f is strictly convex on int dom f) and the inequalities λ > 0 and mini∈I ωi >
0. (iii): (i) and (ii) yield FixT = (int dom f) ∩ FixT =

⋂
i∈I(FixTi ∩ int dom f) =⋂

i∈I FixTi. (iv): Set (∀i ∈ I) Fi =
⋂

(x,u)∈gr Ti
H(x, u). Then (iii) and Propo-

sition 3.3(iv) yield FixT = (int dom f) ∩
⋂

i∈I Fi. Therefore, by Lemma 3.2 and
Proposition 3.3(vii),

(3.34) FixT = dom f ∩
⋂
i∈I

Fi =
⋂
i∈I

(Fi ∩ dom f) =
⋂
i∈I

FixTi.

(v): By Corollary 3.35(ii), we always have H(x) ⊂ H(x, PH(x)x) = H(x, Tx). Now
suppose x ∈ H(x). Then (ii) yields H(x) = X = H(x, x) = H(x, PH(x)x) = H(x, Tx).
Next, suppose x /∈ H(x). Then (ii) yields x∗ 6= 0 and H(x) is therefore a proper
closed half-space in X . On the other hand, x 6= PH(x)x = Tx and, since ∇f is
injective [8, Thm. 5.10], ∇f(x) 6= ∇f(Tx). Consequently, H(x, Tx) is also a proper
closed half-space in X . Since Tx ∈ H(x) ∩ bdryH(x, Tx) and H(x) ⊂ H(x, Tx), we
conclude H(x) = H(x, Tx). (vi): It follows successively from (iii), (3.32), and (v)
that FixT =

⋂
i∈I FixTi ⊂ H(x) = H(x, Tx). In view of (i), the proof is complete.

4. Bregman monotonicity.

4.1. Properties. D-monotonicity was introduced in Definition 1.2. We first
collect some elementary properties.

Proposition 4.1. Let (xn)n∈N be a sequence in X which is D-monotone with
respect to a set S ⊂ X . Then:

(i) (∀x ∈ S ∩ dom f)
(
D(x, xn)

)
n∈N converges.

(ii) (∀n ∈ N) DS(xn+1) ≤ DS(xn).
(iii)

(
DS(xn)

)
n∈N converges.

(iv) (∀(x, x′) ∈ (S ∩ dom f)2)
(
〈x− x′,∇f(xn)〉

)
n∈N converges.
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(v) (xn)n∈N is bounded if, for some z ∈ S ∩ dom f , the set lev≤D(z,x0) D(z, ·) is
bounded. This is true in particular if S ∩ int dom f 6= Ø, X is reflexive, and
one of the following properties is satisfied:
(a) f is supercoercive.
(b) dimX < +∞ and dom f∗ is open.

Proof. (i) and (ii) are immediate consequences of Definition 1.2, and (iii) fol-
lows from (ii). (iv): Take x and x′ in S ∩ dom f . By (i), the sequences

(
f(xn) +

〈x− xn,∇f(xn)〉
)
n∈N and

(
f(xn)+〈x′ − xn,∇f(xn)〉

)
n∈N converge and so does their

difference
(
〈x− x′,∇f(xn)〉

)
n∈N. (v): By definition, for every x ∈ S∩dom f , (xn)n∈N

lies in lev≤D(z,x0)D(z, ·). The second assertion follows from [8, Lemma 7.3(viii)&(ix)],
which asserts that D(z, ·) is coercive under the stated assumptions if z ∈ int dom f .

The following example shows that the conclusion of Proposition 4.1(v) may hold
even though the properties (a) and (b) are not satisfied.

Example 4.2. Let X = `2(N) and define
(4.1)

f : X → ]−∞,+∞] : x = (ξk)k∈N 7→

{∑
k∈N ξk − ln(1 + ξk), if (∀k ∈ N) ξk > −1;

+∞, otherwise.

Then f is Legendre and dom f is open. Moreover, lev≤η D(0, ·) is bounded for η > 0
sufficiently small.

Proof. We only sketch the arguments, as the example is not utilized elsewhere.
Observe that f is separable: (∀x ∈ X ) f(x) =

∑
k∈N h(ξk), where

(4.2) (∀ξ ∈ R) h(ξ) =

{
ξ − ln(1 + ξ), if ξ > −1;
+∞, otherwise.

Using calculus, one verifies that dom f =
{
x ∈ X | (∀k ∈ N) ξk > −1

}
, which is

open. Also, f is Gâteaux differentiable on its domain with ∇f(x) =
(
ξk/(1+ ξk)

)
k∈N.

Hence f is essentially smooth. Now (∀x ∈ X ) f∗(x) = f(−x). Thus f∗ is essentially
smooth as well. By [8, Thm. 5.4], f is essentially strictly convex. Altogether, f
is Legendre. Let α = ln(2) − 1/2. A careful analysis of the Bregman distance Dh

associated with h reveals that Dh(0, ξ) < α ⇒ |ξ| < 1 ⇒ Dh(0, ξ) ≥ α|ξ|2 (in
passing, we point out that Dh(0, ·) is convex precisely on ]−1,+1[). Fix η ∈ [0, α[ and
x ∈ X such that D(0, x) ≤ η. Then (∀k ∈ N) Dh(0, ξk) ≥ α|ξk|2. Summing yields
η ≥ D(0, x) ≥ α‖x‖2, whence x ∈ B(0;

√
η/α).

The next two assumptions will be quite helpful in the analysis of the convergence
of D-monotone sequences.

Condition 4.3. Given S ⊂ X , for every bounded sequence (xn)n∈N in int dom f ,
one has

(4.3)


x ∈ W(xn)n∈N ∩ S
x′ ∈ W(xn)n∈N ∩ S
(xn)n∈N is D-monotone with respect to S

⇒ x = x′.

Condition 4.4. For all bounded sequences (xn)n∈N and (yn)n∈N in int dom f ,
one has

(4.4) D(xn, yn) → 0 ⇒ xn − yn → 0.
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These two assumptions cover familiar situations, as the following examples show.

Example 4.5. Suppose that S is a subset of X such that S∩dom f is a singleton.
Then Condition 4.3 is satisfied.

Proof. Take (xn)n∈N in int dom f . Then W(xn)n∈N ⊂ dom f and, therefore,
W(xn)n∈N ∩ S is at most a singleton.

Example 4.6. Suppose that S ⊂ int dom f is convex, f |S is strictly convex, and
∇f is sequentially weak-to-weak∗ continuous at every point in S. Then Condition 4.3
is satisfied.

Proof. Let (xn)n∈N be a bounded sequence which is D-monotone with respect to
S. Then xkn ⇀ x ∈ S and xln ⇀ x′ ∈ S imply ∇f(xkn) ∗

⇀ ∇f(x) and ∇f(xln) ∗
⇀

∇f(x′). Proposition 4.1(iv) therefore forces 〈x− x′,∇f(x)〉 = 〈x− x′,∇f(x′)〉, hence
〈x− x′,∇f(x)−∇f(x′)〉 = 0. Since ∇f is strictly monotone on S, we get x = x′.

Our next example requires

Lemma 4.7. Suppose that ε ∈ ]0,+∞[, x ∈ dom f , and y ∈ int dom f . Then
there exists z ∈ int dom f such that ‖x− z‖ ≤ ε and |D(x, y)−D(z, y)| ≤ ε.

Proof. Put (∀α ∈ [0, 1[) xα = (1 − α)y + αx. Then (xα)α∈[0,1[ lies in int dom f ,
limα↑1− xα = x and, by (3.6), limα↑1− D(xα, y) = D(x, y). Thus, for α sufficiently
close to 1, we can take z = xα.

We now recall the notion of a Bregman/Legendre function in RN , which covers
numerous functions of importance in convex optimization [7]. This notion will allow
us to describe a finite-dimensional setting in which Condition 4.3 holds.

Definition 4.8. Suppose that X = RN and f is Legendre. Then f is Breg-
man/Legendre, if each of the following conditions is satisfied:

(i) dom f∗ is open.
(ii) (∀x ∈ dom f r int dom f) D(x, ·) is coercive.

(iii)


x ∈ dom f r int dom f

(yn)n∈N in int dom f

yn → y ∈ bdry dom f(
D(x, yn)

)
n∈N bounded

⇒ D(y, yn) → 0.

(iv)



(xn)n∈N in int dom f

(yn)n∈N in int dom f

xn → x ∈ dom f r int dom f

yn → y ∈ dom f r int dom f

D(xn, yn) → 0

⇒ x = y.

Example 4.9. Suppose that X = RN , f is Bregman/Legendre, and S is a subset
of X such that S ∩ dom f 6= Ø. Then Condition 4.3 is satisfied.

Proof. Let us start with two useful facts, namely

(4.5)


x ∈ dom f

(yn)n∈N in int dom f

yn → y(
D(x, yn)

)
n∈N bounded

⇒

{
D(y, yn) → 0
y ∈ dom f
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and

(4.6)


x ∈ dom f

(yn)n∈N in int dom f

yn → y ∈ dom f

D(x, yn) → 0

⇒ x = y.

If x ∈ int dom f , (4.5) follows from [7, Thm. 3.8(ii)]. On the other hand, if x ∈
dom f r int dom f , (4.5) follows from [7, Prop. 3.3] if y ∈ int dom f , and from [7,
Def. 5.2.BL2] if y ∈ bdry dom f . We now turn to (4.6). If x or y belongs to int dom f ,
it suffices to apply [7, Thm. 3.9(iii)]. Otherwise, {x, y} ⊂ dom f r int dom f and
Lemma 4.7 ensures that, for every n ≥ 1, we can find a point xn ∈ int dom f such
that ‖x− xn‖ ≤ 1/n and |D(x, yn)−D(xn, yn)| ≤ 1/n. Therefore, xn → x and, since
D(x, yn) → 0 by assumption, D(xn, yn) → 0. It then follows from [7, Def. 5.2.BL3]
that x = y. Now let (xn)n∈N be a bounded sequence which is D-monotone with
respect to S and let z ∈ S∩dom f . Suppose xkn → x ∈ S and xln → x′ ∈ S. Since by
D-monotonicity the sequences

(
D(z, xkn)

)
n∈N and

(
D(z, xln)

)
n∈N are bounded, (4.5)

yields D(x, xkn) → 0, D(x′, xln) → 0, and {x, x′} ⊂ S ∩ dom f . However, it follows
from Proposition 4.1(i) that D(x, xkn) → 0 ⇒ D(x, xn) → 0 ⇒ D(x, xln) → 0. In
view of (4.6), we conclude x = x′, as required.

Following [25], we say that f is uniformly convex on bounded sets if, for every
bounded set B ⊂ X , one has

(4.7) (∀t ∈ ]0,+∞[) inf µ
(
B ∩ dom f, t

)
> 0,

where

(4.8) µ : dom f × [0,+∞[ → [0,+∞] : (x, t) 7→ inf
‖x−y‖=t
y∈dom f

f(x) + f(y)
2

− f

(
x+ y

2

)
.

Examples of such functions are given in [84].
The next result gives sufficient conditions for Condition 4.4 to hold (see also [22]

and [82] for item (ii)).
Example 4.10. Condition 4.4 is satisfied whenever one of the following is true.
(i) f is uniformly convex on bounded sets.
(ii) X = RN , dom f is closed, and f |dom f is strictly convex and continuous.
(iii) X = R and f |dom f is strictly convex.
Proof. (i): A direct consequence of [25, Prop. 4.2]. (ii)&(iii): Special cases of (i)

by [85, Prop. 3.6.6(i)].
In passing, we note that it follows from [85, Thm 3.5.13] that item (i) of Exam-

ple 4.10 forces the underlying space X to be reflexive.
The above assumptions lead to remarkably simple weak and strong convergence

criteria for D-monotone sequences. In the case when X is Hilbertian and f = ‖ · ‖2/2,
Conditions 4.3 and 4.4 are satisfied and these criteria can essentially be found in [53]
(see also [6] and [40]). Recall (see Section 2) that S denotes the set of strong cluster
points of a sequence.

Theorem 4.11. Let (xn)n∈N be a bounded sequence in X which is D-monotone
with respect to a set S ⊂ X . Suppose that X is reflexive and Condition 4.3 is satisfied.
Then

(i) (xn)n∈N converges weakly to a point in S∩dom f if and only if W(xn)n∈N ⊂ S.
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(ii) Suppose that xn ⇀ x ∈ S ∩ int dom f and Condition 4.4 is satisfied. Then
xn → x if and only if S(xn)n∈N 6= Ø.

Proof. (i): Necessity is clear. To prove sufficiency, suppose that W(xn)n∈N ⊂ S
and take x and x′ in W(xn)n∈N, say xkn

⇀ x and xln ⇀ x′. Then x and x′ lie in
S and (4.3) forces x = x′. Since X is reflexive and (xn)n∈N is bounded, we conclude
xn ⇀ x. Furthermore, since dom f 3 xn ⇀ x and dom f is weakly closed, x ∈ dom f .
(ii): Necessity is clear. To prove sufficiency, suppose that Condition 4.4 is satisfied,
x ∈ S ∩ int dom f , and S(xn)n∈N 6= Ø, i.e., some subsequence (xkn)n∈N converges
strongly. Since xn ⇀ x, we must have xkn → x. In turn, [8, Lemma 7.3(x)] yields
D(x, xkn

) → 0 and it follows from Proposition 4.1(i) that D(x, xn) → 0. In view of
(4.4), we conclude xn → x.

4.2. Construction.
Algorithm 4.12. Starting with x0 ∈ int dom f , at every iteration n ∈ N, select

first Tn ∈ B and then xn+1 ∈ Tnxn.
Proposition 4.13. Let (xn)n∈N be an arbitrary orbit of Algorithm 4.12. Suppose

that

(4.9)
⋂
n∈N

FixTn 6= Ø, S ⊂
⋂
n∈N

FixTn, and S ∩ dom f 6= Ø.

Then:
(i) If f |int dom f is strictly convex, (xn)n∈N is D-monotone with respect to S.
(ii)

∑
n∈N D(xn+1, xn) < +∞.

Proof. (i): Proposition 3.3(viii) yields (∀n ∈ N)(∀y ∈ FixTn) D(y, xn+1) ≤
D(y, xn). (ii): Fix y ∈

⋂
n∈N FixTn. Then Proposition 3.3(i) yields the stronger

statement

(4.10) (∀n ∈ N) D(y, xn+1) ≤ D(y, xn)−D(xn+1, xn).

Therefore
∑

n∈N D(xn+1, xn) ≤ D(y, x0).
Theorem 4.14. Let (xn)n∈N be an arbitrary bounded orbit of Algorithm 4.12.

Suppose that X is reflexive, that f |int dom f is strictly convex, and that (4.9) is satisfied.
Suppose in addition that Condition 4.3 is satisfied and that

(4.11)
∑
n∈N

D(xn+1, xn) < +∞ ⇒ W(xn)n∈N ⊂ S.

Then
(i) (xn)n∈N converges weakly to a point x ∈ S.
(ii) The convergence is strong in (i) if x ∈ int dom f , Condition 4.4 is satisfied,

and

(4.12)
∑
n∈N

D(xn+1, xn) < +∞ ⇒ S(xn)n∈N 6= Ø.

Proof. Combine Theorem 4.11 and Proposition 4.13.

5. Parallel block-iterative D-monotone algorithm.
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5.1. Objective. For the remainder of this paper, we assume that

(5.1)


X is reflexive and f is Legendre,
(Si)i∈I is a countable family of closed convex subsets of X ,
(int dom f) ∩

⋂
i∈I Si 6= Ø,

S = dom f ∩
⋂

i∈I Si.

The purpose of this section is to develop a relaxed, parallel, block-iterative algorithm
to solve the convex feasibility problem

(5.2) Find x ∈ S.

5.2. Algorithm.
Algorithm 5.1. Starting with x0 ∈ int dom f , take at every iteration n:
➀ A nonempty finite index set In ⊂ I
➁ Operators (Ti,n)i∈In

in B such that (∀i ∈ In) Si ∩ int dom f ⊂ FixTi,n

➂ Points (ui,n)i∈In
∈ ×

i∈In

Ti,nxn

➃ Weights (ωi,n)i∈In in [0, 1] such that
∑

i∈In
ωi,n = 1

➄ A relaxation parameter λn ∈ ]0, 1]
and put:

➅ x∗n = ∇f(xn)−
∑

i∈In
ωi,n∇f(ui,n)

➆ ηn =
〈
xn,∇f(xn)−

∑
i∈In

ωi,n∇f(ui,n)
〉
−

λn

∑
i∈In

ωi,n 〈ui,n − xn,∇f(ui,n)−∇f(xn)〉
➇ Hn =

{
y ∈ X | 〈y, x∗n〉 ≤ ηn

}
Then set xn+1 = PHnxn.

We now motivate this algorithm geometrically. At iteration n, xn is given and
a finite block of indices In is retained. Set I+

n =
{
i ∈ In | ωi,n > 0

}
. Then, using

Lemma 3.2 for the first and last equality, Step ➁ for the third inclusion, and (3.32)
for the fourth inclusion,

(5.3)

S = (int dom f) ∩
⋂
i∈I

Si ⊂ (int dom f) ∩
⋂

i∈In

Si ⊂ (int dom f) ∩
⋂

i∈I+
n

Si

⊂
⋂

i∈I+
n

FixTi,n ⊂ (int dom f) ∩Hn = dom f ∩Hn ⊂ Hn.

Thus, Hn acts as an outer approximation to the intersection of the block of constraint
sets (dom f ∩ Si)i∈In

and, therefore, to S. More precisely, the block constraint y ∈
dom f ∩

⋂
i∈In

Si is replaced by the surrogate affine constraint 〈y, x∗n〉 ≤ ηn. The
update xn+1 is then the D-projection of xn onto Hn, i.e., the D-closest point to xn

which satisfies the surrogate constraint (xn+1 is well-defined by virtue of (5.1) and
Corollary 3.35(i)). Naturally, such a point is considerably simpler to find than a point
in dom f ∩

⋂
i∈In

Si. In spirit, this type of surrogate constraint construction can be
found – explicitly or implicitly – in several places in the literature, although not in the
context of Bregman distances (see for instance [39, 60] and the references therein).

The parallel nature of the algorithm stems from the fact that the points (ui,n)i∈In

at Step ➂ can be computed independently on concurrent processors. In addition, the
algorithm has the ability to process variable blocks of constraints, which makes it
is possible to closely match the computational load of each iteration to the parallel
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processing architecture at hand. A discussion on the importance of block-processing
for task scheduling on parallel architectures can be found in [33].

To shed more light on Algorithm 5.1, we first consider the case when X is Hilber-
tian and f = ‖ · ‖2/2. Then, Steps ➅ and ➆ become

(5.4)

{
x∗n = xn −

∑
i∈In

ωi,nui,n

ηn =
〈
xn, xn −

∑
i∈In

ωi,nui,n

〉
− λn

∑
i∈In

ωi,n‖ui,n − xn‖2.

Furthermore, the updating step is explicitly given as

(5.5) xn+1 = PHn
xn = xn +

ηn − 〈xn, x
∗
n〉

‖x∗n‖2
x∗n = xn + λnLn

(∑
i∈In

ωi,n(ui,n − xn)

)
,

where

(5.6) Ln =


∑

i∈In
ωi,n‖ui,n − xn‖2

‖
∑

i∈In
ωi,n(ui,n − xn)‖2

, if xn /∈
⋂

i∈In
Si;

1, otherwise.

This is essentially the algorithm proposed in [41, Section 6] (in this setting, the range
of λn can be extended to ]0, 2[), which itself contains those of [5, 6, 35, 37, 38, 60, 69]
as special cases. In particular, if I is finite, In ≡ I, ωi,n = ωi, and ui,n = Pixn,
where Pi is the metric projector onto Si, then (5.5)–(5.6) reduces to Pierra’s classical
extrapolated parallel projection method [72], which in turn can be traced back to
Merzlyakov’s method [63] for solving systems of linear inequalities in RN . Since
Ln ≥ 1 in (5.6), large extrapolations are possible in this algorithm by selecting λn ≈ 1.
It is known that these extrapolations yield significantly accelerated convergence in
numerical experiments [36, 37, 50, 72] in comparison with purely averaged iterations,
i.e.,

(5.7) xn+1 =
∑
i∈In

ωi,nui,n,

which can be derived from (5.5) by setting λn = 1/Ln.
Returning to the standing assumptions, let us now consider the parallel block-

iterative update rule

(5.8) ∇f(xn+1) =
∑
i∈In

ωi,n∇f(ui,n).

This alternative method for solving (5.2) was recently proposed by Censor and Herman
in [29] (see also [31]) for the special case when X = RN , I is finite, and ui,n is the
D-projection of xn onto Si. If we assume that X is a Hilbert space and f = ‖ · ‖2/2,
then (5.8) reduces to (5.7) which, as noted above, is itself a special case of (5.5)–(5.6),
hence of Algorithm 5.1. In general, however, we do not know whether (5.8) is always
a particularization of Algorithm 5.1.

We now turn to Butnariu and Iusem’s algorithmic framework [24] for solving
(5.2). (In fact, they study the so-called stochastic convex feasibility problem, which is
similar to (5.2) but allows for an uncountable index set I. Their framework requires
measure theory for a precise formulation and their assumptions on the underlying
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function f are different from the ones made here. The reader is referred to [24] for
further details.) Let (Ri)i∈I be a family of totally nonexpansive operators in the sense
of [24] (see also the paragraph following Definition 3.1). Specialized to the case when
I is finite, the update step in this algorithm is

(5.9) xn+1 =
∑
i∈I

ωiRixn.

This resembles (5.8), except for notably absent gradients on both sides of the equa-
tion and for weights that do not depend on n. (If the Ri’s are D-projectors, then
(5.9) can also be interpreted as a sequential algorithm in the product space XI ; see
[11].) Note that if X is a Hilbert space and f = ‖ · ‖2/2, then (5.9) once again cor-
responds to a parallel Cimmino-type algorithm, which is genuinely more restrictive
than Algorithm 5.1 for this set-up.

While a detailed numerical and theoretical comparison of these algorithms lies
beyond the scope of this paper, we remark that preliminary experiments suggest
that Algorithm 5.1 is more flexible and faster than the one given by (5.8), and that
Algorithm 5.1 is genuinely different from the method given by (5.9).

5.3. Convergence. The following notions were introduced in [6, Def. 3.7] and
[41, Def. 6.5], respectively, to study the asymptotic behavior of Fejér-monotone al-
gorithms in Hilbert spaces. The former can be interpreted as an extension of the
notion of demiclosedness at 0 [68] and the latter as an extension of the notion of
demicompactness at 0 [70].

Definition 5.2. Algorithm 5.1 is:
• Focusing if for every bounded suborbit (xkn

)n∈N it generates and every index
i ∈ I,

(5.10)


i ∈
⋂

n∈N Ikn

xkn
⇀ x

ui,kn
− xkn

→ 0
⇒ x ∈ Si.

• Demicompactly regular if there exists i ∈ I, called an index of demicompact
regularity, such that for every bounded suborbit (xkn

)n∈N it generates,

(5.11)

{
i ∈
⋂

n∈N Ikn

ui,kn
− xkn

→ 0
⇒ S(xkn)n∈N 6= Ø.

We now describe the context in which the convergence of Algorithm 5.1 will be
investigated.

Condition 5.3.
(i) For some z ∈ dom f ∩

⋂
i∈I Si, C = lev≤D(z,x0) D(z, ·) is bounded.

(ii) For all sequences (un)n∈N and (vn)n∈N in C such that (∀n ∈ N) un 6= vn, one
has

(5.12)
〈un − vn,∇f(un)−∇f(vn)〉

‖∇f(un)−∇f(vn)‖
→ 0 ⇒ ∇f(un)−∇f(vn) → 0.

Condition 5.4.
(i) (∃ δ1 ∈ ]0, 1[)(∀n ∈ N)(∃ j ∈ In)

‖∇f(uj,n)−∇f(xn)‖ = max
i∈In

‖∇f(ui,n)−∇f(xn)‖ and ωj,n ≥ δ1.
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(ii) (∃ δ2 ∈ ]0, 1[)(∀n ∈ N) λn ≥ δ2.
(iii) (∀i ∈ I)(∃Mi ∈ N r {0})(∀n ∈ N) i ∈

⋃n+Mi−1
k=n Ik.

As will be seen subsequently, the above set of assumptions defines a broad frame-
work which covers numerous practical situations. Note that, by virtue of (5.1), the
quotient in (5.12) is well-defined since ∇f is injective on int dom f [8, Thm. 5.10].
Situations in which Condition 5.3(ii) is satisfied are detailed below. Note also that
Condition 5.4(iii) imposes that every index i be activated at least once within any
Mi consecutive iterations. This control rule, which has already been used in metric
projection algorithms in Hilbert spaces [35, 37, 38, 60], provides great flexibility in
the management of the constraints and the implementation of the algorithm. Con-
dition 5.4(i) provides added flexibility by offering the possibility of setting ωi,n = 0
if the corresponding step size ‖∇f(ui,n) − ∇f(xn)‖ is not maximal. It is thereby
possible to meet the control condition Condition 5.4(iii) without actually using the
ith constraint in the construction of xn+1.

Recall that an operator T from a Banach space Y to its dual Y∗ is said to be
uniformly monotone on U ⊂ domT with modulus c if [86, Section 25.3]

(5.13) (∀x ∈ U)(∀y ∈ U) 〈x− y, Tx− Ty〉 ≥ ‖x− y‖ · c(‖x− y‖),

where c : [0,+∞[ → [0,+∞[ is a strictly increasing function such that c(0) = 0. In
particular, T is said to be strongly monotone on U with constant α ∈ ]0,+∞[ if it is
uniformly monotone on U with modulus c : t 7→ αt.

Proposition 5.5. Let z and C be as in Condition 5.3(i). Then Condition 5.3(ii)
is satisfied in each of the following cases.

(i) ∇f∗ is uniformly monotone on ∇f(C).
(ii) ∇f is Lipschitz-continuous on dom f = X .
(iii) X = RN and C ⊂ int dom f .
(iv) X = RN and z ∈ int dom f .
Proof. Let (un)n∈N and (vn)n∈N be two sequences in C such that (∀n ∈ N)

un 6= vn. (i): Let c be the modulus of uniform monotonicity of ∇f∗ on ∇f(C).
Since ∇f is a bijection from int dom f to int dom f∗ with inverse ∇f∗ [8, Thm. 5.10]
and since C ⊂ int dom f , we have (∀u ∈ C)(∀v ∈ C) 〈u− v,∇f(u)−∇f(v)〉 ≥
‖∇f(u) − ∇f(v)‖ · c (‖∇f(u) − ∇f(v)‖). Hence, since c is strictly increasing and
c(0) = 0,

(5.14)
〈un − vn,∇f(un)−∇f(vn)〉

‖∇f(un)−∇f(vn)‖
→ 0 ⇒ c

(
‖∇f(un)−∇f(vn)‖

)
→ 0

⇒ ∇f(un)−∇f(vn) → 0.

(ii) ⇒ (i): If ∇f is κ-Lipschitz continuous on X , then it follows from the Baillon-
Haddad theorem [4, Corollaire 10] that (∀x ∈ X )(∀y ∈ X ) 〈x− y,∇f(x)−∇f(y)〉 ≥
‖∇f(x)−∇f(y)‖2/κ, i.e., ∇f∗ is strongly monotone with constant 1/κ. Consequently,
∇f∗ is uniformly monotone on ∇f(C). (iii): Suppose

(5.15)
〈un − vn,∇f(un)−∇f(vn)〉

‖∇f(un)−∇f(vn)‖
→ 0 and ∇f(un)−∇f(vn) 6→ 0.

Then there exists a strictly increasing sequence (kn)n∈N in N and ε ∈ ]0,+∞[ such
that infn∈N ‖∇f(ukn

) − ∇f(vkn
)‖ ≥ ε. Since (ukn

)n∈N lies in C, it is bounded and
therefore possesses a convergent subsequence, say ukln

→ u. As (vkln
)n∈N is also

bounded, we can assume (passing to a subsequence if necessary) that it converges,
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say vkln
→ v. Since {u, v} ⊂ C ⊂ int dom f and ∇f is continuous at every point in

int dom f by [77, Thm. 25.5], taking the limit yields ‖∇f(u) − ∇f(v)‖ ≥ ε and, by
injectivity of ∇f on int dom f [8, Thm. 5.10], u 6= v. On the other hand, (5.15) yields

(5.16)

〈
ukln

− vkln
,∇f(ukln

)−∇f(vkln
)
〉

‖∇f(ukln
)−∇f(vkln

)‖
→ 0

and, since ‖∇f(u) − ∇f(v)‖ 6= 0, taking the limit yields 〈u− v,∇f(u)−∇f(v)〉 =
0. However, f |int dom f is strictly convex and therefore ∇f is strictly monotone on
int dom f ⊃ {u, v}. This forces u = v and we reach a contradiction. (iv): In view of
(iii), it is enough to show that C ⊂ int dom f . If the inclusion does not hold, then we
can find y ∈ bdry dom f and (yn)n∈N in C such that yn → y. Thus supn∈N D(z, yn) ≤
D(z, x0) < +∞ and, at the same time, since f is essentially smooth, [7, Thm. 3.8(i)]
yields D(z, yn) → +∞, which is absurd.

Remark 5.6. A careful analysis of [85, Corollary 3.4.4“(iii)⇔(iv)”], [85, Propo-
sition 3.5.1], and [85, Proposition 3.6.2] shows that Proposition 5.5(i) holds as soon
as ∇f is Lipschitz on bounded sets. In turn, this condition is satisfied in Lp spaces
for f = ‖ · ‖s

p, where {p, s} ⊂ [2,+∞[. (The proof relies on the case when s = 2, see
also Example 5.11 below.)

Examples of Legendre functions f which satisfy Conditions 4.3, 4.4, and 5.3(i)-
(ii) will be supplied in Section 5.4. Our main convergence result can now be stated
and proved.

Theorem 5.7. Suppose that Conditions 4.3, 4.4, 5.3, and 5.4 are satisfied and
let (xn)n∈N be an arbitrary orbit of Algorithm 5.1. Then, for every n ∈ N, xn and
(ui,n)i∈In

lie in the bounded set C. If, in addition, Algorithm 5.1 is focusing, then the
following statements hold true.

(i) (xn)n∈N converges weakly to a point x ∈ S.
(ii) If the weak limit x from (i) belongs to int dom f and the algorithm is demi-

compactly regular, then (xn)n∈N converges strongly.
Proof. For every n ∈ N, set Tn = PHn

and I+
n =

{
i ∈ In | ωi,n > 0

}
. Since

x0 ∈ int dom f and, by Proposition 3.39(vi), Tn ∈ B, we recognize that

(5.17) Algorithm 5.1 is a special case of Algorithm 4.12.

Our goal is to apply Theorem 4.14 and we must start by verifying (4.9). First, (5.1),
Algorithm 5.1➁, and Proposition 3.39(iii), we obtain
(5.18)

(∀n ∈ N) Ø 6= (int dom f) ∩
⋂
i∈I

Si ⊂
⋂

i∈I+
n

(Si ∩ int dom f) ⊂
⋂

i∈I+
n

FixTi,n = FixTn.

Hence
⋂

n∈N FixTn 6= Ø. In addition, (5.1), Lemma 3.2, and (5.18) yield

(5.19) (∀n ∈ N) S = dom f ∩
⋂
i∈I

Si ⊂ FixTn.

Consequently, S ⊂
⋂

n∈N FixTn. Next, we derive from (5.1) that

(5.20) Ø 6= (int dom f) ∩
⋂
i∈I

Si ⊂ dom f ∩ dom f ∩
⋂
i∈I

Si = dom f ∩ S.

Thus, (4.9) holds. Now, let z and C be as in Condition 5.3(i). It follows from (5.17)
and Proposition 4.13(i) that the sequences (xn)n∈N and (Tnxn)n∈N are contained in C,

28



which is bounded. In order to verify (4.11), some key facts must be established. Let us
fix temporarily n ∈ N. The first fact is supplied by the inclusion xn+1 = PHn

xn ∈ Hn,
which yields

(5.21) ‖xn+1 − xn‖ ≥ dHn
(xn).

Next, it follows from Condition 5.3(i), (5.1), Lemma 3.2, and Algorithm 5.1➁ that

(5.22) (∀i ∈ In) z ∈ Si ∩ dom f = Si ∩ int dom f ⊂ FixTi,n.

Hence, for every i ∈ In, Algorithm 5.1➂ and Proposition 3.3(viii) yield D(z, ui,n) ≤
D(z, xn)−D(ui,n, xn) ≤ D(z, xn). Therefore,

(5.23) (∀i ∈ In) ui,n ∈ C.

Now, per Condition 5.4(ii), pick jn ∈ In such that

(5.24) ‖∇f(ujn,n)−∇f(xn)‖ = max
i∈In

‖∇f(ui,n)−∇f(xn)‖ and ωjn,n ≥ δ1.

We claim that
(5.25)

xn ∈
⋂

i∈I+
n

FixTi,n ⇔ ujn,n = xn ⇔ ‖∇f(ujn,n)−∇f(xn)‖ = 0,

xn /∈
⋂

i∈I+
n

FixTi,n ⇒ dHn
(xn) ≥ δ1δ2

〈ujn,n − xn,∇f(ujn,n)−∇f(xn)〉
‖∇f(ujn,n)−∇f(xn)‖

.

On the one hand, using Proposition 3.3(vi) and the injectivity of ∇f on int dom f [8,
Thm. 5.10], since (5.24) forces jn ∈ I+

n , we get: xn ∈
⋂

i∈I+
n

FixTi,n ⇔ (∀i ∈ I+
n )

ui,n = xn ⇒ ujn,n = xn ⇒ ‖∇f(ujn,n) − ∇f(xn)‖ = 0 ⇒ (∀i ∈ In) ‖∇f(ui,n) −
∇f(xn)‖ = 0 ⇔ (∀i ∈ In) ui,n = xn ⇒ (∀i ∈ I+

n ) ui,n = xn. On the other hand, if
xn /∈

⋂
i∈I+

n
FixTi,n, then Proposition 3.39(ii) asserts that xn /∈ Hn and x∗n 6= 0, so

that

dHn
(xn) =

〈xn, x
∗
n〉 − ηn

‖x∗n‖
(5.26)

= λn

∑
i∈In

ωi,n 〈ui,n − xn,∇f(ui,n)−∇f(xn)〉
‖
∑

i∈In
ωi,n

(
∇f(ui,n)−∇f(xn)

)
‖

≥ δ2

∑
i∈In

ωi,n 〈ui,n − xn,∇f(ui,n)−∇f(xn)〉∑
i∈In

ωi,n‖∇f(ui,n)−∇f(xn)‖
(5.27)

≥ δ1δ2
〈ujn,n − xn,∇f(ujn,n)−∇f(xn)〉

‖∇f(ujn,n)−∇f(xn)‖
,(5.28)

where (5.26) follows from [80, Lemma I.1.2] and (5.27) from Condition 5.4(ii). Al-
together, (5.25) is verified. The third key fact is derived from (5.23) and Proposi-
tion 2.3(i) as follows:

(∀i ∈ In) diam(C)‖∇f(ui,n)−∇f(xn)‖ ≥ 〈ui,n − xn,∇f(ui,n)−∇f(xn)〉
= D(ui,n, xn) +D(xn, ui,n)
≥ D(ui,n, xn).(5.29)
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Let us now verify (4.11). To this end, let us fix i ∈ I and x ∈ W(xn)n∈N, say xkn
⇀ x.

Because x ∈ dom f , it is sufficient to show

(5.30) D(xn+1, xn) → 0 ⇒ x ∈ Si.

Let Mi be as in Condition 5.4(iii). After passing to a subsequence of (xkn)n∈N if
necessary, we assume that, for every n ∈ N, kn+1 ≥ kn + Mi. This guarantees the
existence of a sequence (pn)n∈N in N such that

(5.31) (∀n ∈ N) kn ≤ pn ≤ kn +Mi − 1 < kn+1 ≤ pn+1 and i ∈ Ipn
.

Now consider the subsequence (xpn)n∈N of (xn)n∈N. The triangle inequality yields
(5.32)

(∀n ∈ N) ‖xpn
− xkn

‖ ≤
kn+Mi−2∑

l=kn

‖xl+1 − xl‖ ≤ (Mi − 1) max
kn≤l≤kn+Mi−2

‖xl+1 − xl‖.

Now suppose D(xn+1, xn) → 0. Then (4.4) yields

(5.33) xn+1 − xn → 0

and it follows from (5.21) that dHn(xn) → 0. Consequently, we derive from (5.25),
(5.23), and Condition 5.3(ii) that maxj∈In

‖∇f(uj,n)−∇f(xn)‖ → 0. In turn, (5.29)
implies that D(ui,pn

, xpn
) → 0 and, invoking (4.4) again, we obtain

(5.34) ui,pn
− xpn

→ 0.

We also derive from (5.32) and (5.33) that xpn − xkn → 0, whence xpn ⇀ x. How-
ever, since the algorithm is focusing, (5.10) yields x ∈ Si. Thus (5.30) holds and,
consequently, the following conclusions can be drawn.

(i) Theorem 4.14(i) asserts that (xn)n∈N converges weakly to x ∈ S.
(ii) Suppose that x ∈ int dom f , i ∈ I is an index of demicompact regularity, and

D(xn+1, xn) → 0. Then it results from (5.34) and (5.11) that (4.12) holds.
In view of Condition 4.4, the strong convergence claim therefore follows from
Theorem 4.14(ii).

5.4. When all the assumptions hold. In this subsection, we describe scenar-
ios in which all the assumptions required in Theorem 5.7 on f and on the constraint
sets (Si)i∈I are satisfied.

As a preamble to our first example, recall that if X is a Hilbert space, the Moreau-
Yosida regularization of a proper lower semicontinuous convex function ϕ : X →
]−∞,+∞] with parameter γ ∈ ]0,+∞[ is the finite continuous convex function
γϕ = ϕ�

(
‖ · ‖2/(2γ)

)
. Moreover, Moreau’s classical proximal operator associated

with ϕ and γ is given by Definition 3.16 for f = ‖·‖2/2 and will be denoted by Proxϕ
γ .

It follows from Proposition 3.21(v) that Proxϕ
γ is defined everywhere and, from Propo-

sition 3.22(ii)(d)&(c), that it is single-valued and firmly nonexpansive. Moreover [67,
Prop. 7.d],

(5.35) ∇ γϕ =
Id−Proxϕ

γ

γ
.

Example 5.8 (Moreau-Yosida regularization). Let X be a Hilbert space, set
w = ‖ · ‖2/2, and define f : X → R by

(5.36) f = (1 + γ)w − 1ϕ,
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where ϕ : X → ]−∞,+∞] is a proper lower semicontinuous convex function and
γ ∈ ]0,+∞[. Then

(5.37)
D : (x, y) 7→ γw(x− y) + w(x− Proxϕ

1 y) + ϕ(Proxϕ
1 y)

−
(
w(x− Proxϕ

1 x) + ϕ(Proxϕ
1 x)

)
and Conditions 4.4 and 5.3 are satisfied. If Proxϕ

γ
1+γ

is affine or S is a singleton, then
Condition 4.3 is also satisfied.

Proof. The expression (5.37) is derived from (1.5) by simple algebra. Now set
ψ = w − 1ϕ. Then

(5.38) ψ = w − inf
x∈dom ϕ

ϕ(x) + w(· − x) = sup
x∈dom ϕ

〈x, ·〉 − ϕ(x)− w(x) = (ϕ+ w)∗.

Hence, ψ is a proper lower semicontinuous convex function as the conjugate of one
such function. Since ψ is convex, f = ψ+γw is strongly (hence uniformly) convex and,
in view of Example 4.10(i), Condition 4.4 is therefore satisfied. On the other hand,
(5.35) yields dom∇f = X and ∇f = Proxϕ

1 +γ Id. Hence f is essentially smooth
by [8, Thm. 5.6]. Furthermore, since Proxϕ

1 is firmly nonexpansive, it is 1-Lipschitz
and therefore ∇f is (1 + γ)-Lipschitz. Accordingly, Proposition 5.5(ii) asserts that
Condition 5.3(ii) is satisfied. Next, using standard Hilbertian convex calculus, we
obtain

f∗ =
(
ψ + γw

)∗ = ψ∗ � (w/γ) = (ϕ+ w)� (w/γ) = γ

(
ϕ+ w

)
=
(

γ/(1+γ)ϕ
)(
· /(1 + γ)

)
+ w/(1 + γ).

(5.39)

It therefore follows from (5.35) that

(5.40) dom∇f∗ = X and ∇f∗ =
Id−Proxϕ

γ/(1+γ)

(
· /(1 + γ)

)
γ

.

Consequently, f∗ is also essentially smooth and it follows from [8, Thm. 5.4] that f
is Legendre. Moreover, since X is a Hilbert space, it is reflexive. We also derive from
(5.40) that, since Id−Proxϕ

γ/(1+γ) is (firmly) nonexpansive, ∇f∗ is 1/γ-Lipschitz and,
thereby, maps bounded sets to bounded sets. It then follows from [8, Thm. 3.3] that
f is supercoercive, and Proposition 4.1(v)(a) asserts that Condition 5.3(i) is satisfied.
Finally, since ∇f is continuous, it will be weakly continuous when it is affine, i.e.,
when Proxϕ

γ/(1+γ) is. In turn, Example 4.6 implies that Condition 4.3 is satisfied. On
the other hand, if S is a singleton, the claim follows from Example 4.5.

If we let ϕ be the indicator function of a nonempty closed convex set in (5.36),
then we obtain the Legendre function studied in [8, Example 7.2]. Specializing even
further, we obtain

Example 5.9 (Distance). In the previous example, set ϕ = ιM , where M is
a closed affine subspace of X , and let PM be the metric projector onto M . Then
Conditions 4.3, 4.4, and 5.3 are satisfied, f = (1 + γ)w − d2

M

/
2, and D : (x, y) 7→

γw(x− y) + w(x− PMy)− w(x− PMx).
Example 5.10 (Energy). In the previous example, set M = {0} and γ = 1.

Then f = ‖ · ‖2/2, ∇f = Id, D : (x, y) 7→ ‖x− y‖2/2, and we recover the usual Fejér
monotonicity framework.

The next example shows that the function f = ‖ · ‖2/2 can also be used outside
Hilbert spaces.
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Example 5.11 (Lp spaces). Let (Ω,F , µ) be a positive measure space and let p ∈
[2,+∞[. Let X = Lp(Ω,F , µ), equipped with its canonical norm, and set f = ‖ · ‖2/2.
Then Conditions 4.4 and 5.3 are satisfied. If S is a singleton, then Condition 4.3 is
also satisfied.

Proof. By [8, Example 6.5], f is Legendre and uniformly convex on closed balls.
Hence Condition 4.4 holds by Example 4.10(i). Since f is supercoercive, Condi-
tion 5.3(i) follows from [8, Lemma 7.3(viii)]. We now establish Condition 5.3(ii). As
p ∈ [2,+∞[, [45, Corollary V.1.2] implies that ρ‖·‖, the modulus of smoothness of X ,
is of power type 2. We thus obtain κ ∈ ]0,+∞[ so that (see [45, Section IV.4])

(5.41) (∀t ∈ [0,+∞[) ρ‖·‖(t) ≤ κt2.

Recall that ∇f = J and define j(x) = J(x)/‖x‖ = ∇‖x‖, for all nonzero x ∈ X . Now
(5.41) and [45, Lemma IV.5.1] yield

(5.42) (∀u ∈ SX )(∀v ∈ SX ) ‖j(u)− j(v)‖ ≤ κ‖u− v‖.

Fix two nonzero points x and y in X and assume, without loss of generality, that
‖x‖ ≥ ‖y‖. Then, using the triangle inequality,

(5.43)
∥∥∥∥ x

‖x‖
− y

‖y‖

∥∥∥∥ =
∥∥∥∥( x

‖x‖
− y

‖x‖

)
+
‖y‖ · y − ‖x‖ · y

‖x‖ · ‖y‖

∥∥∥∥ ≤ 2
‖x‖

‖x− y‖.

Thus

(5.44) ‖j(x)− j(y)‖ =
∥∥∥∥j ( x

‖x‖

)
− j

(
y

‖y‖

)∥∥∥∥ ≤ κ ·
∥∥∥∥ x

‖x‖
− y

‖y‖

∥∥∥∥ ≤ 2κ
‖x‖

‖x− y‖,

where we have used the definition of j for the equality, (5.42) for the first inequality,
and (5.43) for the second. Furthermore,

‖J(x)− J(y)‖ =
∥∥‖x‖ · j(x)− ‖y‖ · j(y)∥∥

=
∥∥(‖x‖ · j(x)− ‖x‖ · j(y))+

(
‖x‖ · j(y)− ‖y‖ · j(y)

)∥∥
≤ ‖x‖ · ‖j(x)− j(y)‖+ ‖j(y)‖ ·

∣∣‖x‖ − ‖y‖∣∣
≤ (2κ+ 1) · ‖x− y‖,

(5.45)

where the last inequality follows from (5.44) and the fact that ‖j(y)‖ = 1. Now (5.45)
implies that J = ∇f is Lipschitz-continuous on dom f = X , with constant 2κ + 1
(for x = 0 or y = 0, argue directly). We apply Proposition 5.5(ii) and conclude that
Condition 5.3(ii) is satisfied. Finally, if S is a singleton, we employ Example 4.5.

Guaranteeing Condition 4.3 requires some care:
Remark 5.12. As already discussed in Remark 5.6, Proposition 5.5(i) holds

as soon as ∇f is Lipschitz on bounded sets. Thus, the assertions of Example 5.11
remain true for f = ‖ · ‖s/s, where s ∈ [2,+∞[. The case when s = p is particularly
interesting because then ∇f becomes Jϕ, the duality mapping corresponding to the
weight ϕ : t 7→ tp−1 (see [34]). If we specialize this further to the space `p(N), then
Jϕ is known to be sequentially weakly continuous, see [34, Prop. II.4.14], and thus
Example 4.6 is applicable. To sum up:

Let X = `p(N) and f = ‖ · ‖p/p, for p ∈ [2,+∞[.
Then Conditions 4.3, 4.4, and 5.3 are satisfied.
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Additional examples can be generated in suitable product spaces such as `p1(N) ×
`p2(N), equipped with the Euclidean product norm and with {p1, p2} ⊂ [2,+∞[, or in
certain spaces of power type 2 (see [45] for further information about such spaces).

Example 5.13 (Closed domain Bregman/Legendre functions). Let X = RN and
let f be a Bregman/Legendre function with closed domain. Then Conditions 4.3, 4.4,
and 5.3 are satisfied.

Proof. Example 4.9 implies that Condition 4.3 holds. Condition 4.4 follows from
[7, Def. 5.2.BL3 & Thm. 3.9(iii)]. It remains to check items (i) and (ii) in Condi-
tion 5.3: since D(z, ·) is coercive for every z ∈ dom f [7, Remark 5.3], (i) holds,
whereas (ii) follows from Proposition 5.5(iv).

The class of Bregman/Legendre functions (see Definition 4.8) is large enough to
contain many functions important in convex optimization and it is related to the
Bregman functions of [30, 33], which require closed domains. We refer the reader to
[7] for further information. The following example gives conditions that are easy to
verify in practice.

Example 5.14 (Separable Bregman/Legendre functions). Let (ϕk)1≤k≤N : R →
]−∞,+∞] be a family of Legendre functions such that (domϕ∗k)1≤k≤N are open. Let
X = RN and let f : (ξk)1≤k≤N 7→

∑N
k=1 ϕk(ξk). Then Conditions 4.3, 4.4, and 5.3

are satisfied.
Proof. By [7, Corollary 5.13], f is Bregman/Legendre. Mimicking the proof of

the previous example, we note that it remains to check Condition 4.4. For every
k ∈ {1, . . . ,m}, since ϕk|int dom ϕk

is strictly convex by Legendreness and ϕk|dom ϕk

is continuous by (3.5), ϕk|dom ϕk
is strictly convex. Hence, it follows from Exam-

ple 4.10(iii) that the Bregman distance Dk induced by ϕk on R satisfies Condition 4.4
and, in turn, so does D :

(
(ξk)1≤k≤N , (χk)1≤k≤N

)
7→
∑N

k=1Dk(ξk, χk).
Unlike the previous examples, the following example does not require that X be

finite-dimensional or that f have full domain.
Example 5.15. Let X be the Hilbert space `2(N)× R and define

(5.46) f : X → ]−∞,+∞] : (x, ξ) 7→


1
2‖x‖

2 + ξ ln(ξ)− ξ, if ξ > 0;
1
2‖x‖

2, if ξ = 0;
+∞, if ξ < 0.

Let (∀i ∈ I) Si = S = `2(N) × [1,+∞[. Fix (z, ζ) ∈ S, η > 0, and set C =
lev≤η D

(
(z, ζ), ·

)
. Then Conditions 4.3, 4.4, and 5.3 are satisfied.

Proof. Let g = f(·, 0) and h = f(0, ·). Hence, (∀(x, ξ) ∈ X ) f(x, ξ) = g(x) +h(ξ).
Note that g and h are Legendre, and so is f , with dom f = `2(N) × [0,+∞[. Now,
let Dg and Dh be the Bregman distances induced by g on `2(N) and h on R, respec-
tively. Take (y, χ) ∈ X with D

(
(z, ζ), (y, χ)

)
= Dg(z, y)+Dh(ζ, χ) ≤ η. In particular,

Dg(z, y) ≤ η and Dh(ζ, χ) ≤ η. Since Dg(z, ·) and Dh(ζ, ·) are coercive by Propo-
sition 4.1(v)(a)&(b), C is bounded. Condition 4.3 is a consequence of Example 4.6.
Since D : (x, ξ) 7→ Dg(x) + Dh(ξ), Condition 4.4 is immediate by Examples 5.10
and 5.13. Applying [7, Thm. 3.8.(i)] to h and ζ ∈ int dom h, we obtain ε ∈ ]0,+∞[
such that (∀(y, χ) ∈ C) χ ≥ ε. A straightforward computation shows that ∇f∗
is strongly monotone with constant min{1, ε}. Therefore, using Proposition 5.5(iv),
Condition 5.3(ii) holds as well and the proof is complete.
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5.5. Applications. A broad class of problems in convex optimization and non-
linear analysis are captured by the mixed convex feasibility problem

(5.47) Find x ∈ dom f such that


(∀i ∈ I(1)) gi(x) ≤ 0
(∀i ∈ I(2)) 0 ∈ Aix

(∀i ∈ I(3)) ϕi(x) = inf ϕi(X )
(∀i ∈ I(4)) Tix = x,

where (gi)i∈I(1) and (ϕi)i∈I(3) are families of proper lower semicontinuous convex
functions from X into ]−∞,+∞], (Ai)i∈I(2) a family of maximal monotone operators
from X into 2X

∗
, and (Ti)i∈I(4) a family of D-firm operators from X into X . Here,

I(1), I(2), I(3), and I(4) are pairwise disjoint, possibly empty, countable index sets
such that I =

⋃4
k=1 I

(k) 6= Ø. Now let us define

(5.48) (∀i ∈ I) Si =


lev≤0 gi, if i ∈ I(1);
A−1

i 0, if i ∈ I(2);
Argminϕi, if i ∈ I(3);
FixTi, if i ∈ I(4).

Throughout this section, the following set of assumptions will be made.
Condition 5.16.
(i) Conditions 4.3, 4.4, 5.3, and 5.4 are satisfied.
(ii) For every i ∈ I(1), ∂gi(C) is bounded and dom f ⊂ dom gi.
(iii) For every i ∈ I(2), one of the following conditions holds:

(a) domAi ⊂ int dom f .
(b) Ai is 3∗-monotone.

(iv) For every i ∈ I(4), domTi = int dom f and Ti − Id is demiclosed at 0 in the
sense that for every sequence (yn)n∈N in domTi

(5.49)


yn ⇀ y

(∀n ∈ N) un ∈ Tiyn

un − yn → 0
⇒ y ∈ FixTi.

Let us observe that the sets (Si)i∈I are closed and convex. For i ∈ I(1)∪I(2)∪I(3),
this follows from well-known facts; for i ∈ I(4), this follows from Condition 5.16(iv),
Propositions 3.5(ii), the essential strict convexity of f , and Proposition 3.3(v). Ac-
cordingly, (5.47) is a special case of the convex feasibility problem (5.2) and it can
therefore be solved by Algorithm 5.1.

Algorithm 5.17 (Specific implementation of Algorithm 5.1). Fix (εi)i∈I(2) and
(εi)i∈I(3) in ]0,+∞[. Implement Algorithm 5.1➁ by choosing for every i ∈ In

(5.50) Ti,n =


Qgi

, if i ∈ I(1) (see Definition 3.37);
Rγi,nAi

, where γi,n ∈ [εi,+∞[ , if i ∈ I(2) (see Definition 3.7);
proxϕi

γi,n
, where γi,n ∈ [εi,+∞[ , if i ∈ I(3) (see Definition 3.16);

Ti, if i ∈ I(4) (see Definition 3.4).

Thanks to Condition 5.16, (5.50) meets the requirements of Algorithm 5.1➁ since
in each case we have
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• Ti,n ∈ B. This follows from Proposition 3.38(ii) if i ∈ I(1), from Corol-
lary 3.14(ii)&(iii) if i ∈ I(2) (since A−1

i 0∩int dom f 6= Ø, domAi∩int dom f 6=
Ø), from Corollary 3.25(i) if i ∈ I(3) (since ϕi is proper and Argminϕi ∩
int dom f 6= Ø, ϕi is bounded below and domϕi ∩ int dom f 6= Ø), and from
Proposition 3.5(ii) if i ∈ I(4).

• Si ∩ int dom f ⊂ FixTi,n (see Proposition 3.38(i), Proposition 3.8(iii), Propo-
sition 3.22(ii)(b), and Proposition 3.3(iv)&(vii), respectively).

Theorem 5.18. Suppose that Condition 5.16 is in force and let (xn)n∈N be an
arbitrary orbit of Algorithm 5.17. Then (xn)n∈N converges weakly to a point x ∈ S.
The convergence is strong if x ∈ int dom f and any of the following assumptions is
added:

(i) For some i ∈ I(1) and some η ∈ ]0,+∞[, C ∩ lev≤η gi is relatively compact.
(ii) For some i ∈ I(2), C ∩ dom Ai is relatively compact.
(iii) For some i ∈ I(3), C ∩ dom ∂ϕi is relatively compact.
(iv) For some i ∈ I(4), Ti is demicompact at 0 in the sense that for every sequence

(yn)n∈N in domTi

(5.51)


(yn)n∈N bounded
(∀n ∈ N) un ∈ Tiyn

un − yn → 0
⇒ S(yn)n∈N 6= Ø.

Proof. As seen above, (5.47) is a special case of (5.2), whereas Algorithm 5.17
is a special case of Algorithm 5.1. Invoking Theorem 5.7, we shall prove that Algo-
rithm 5.17 is focusing to establish the weak convergence claim, and then that it is
demicompactly regular to establish the strong convergence claim. It is recalled that
Theorem 5.7 asserts that (xn)n∈N and

(
(ui,n)i∈In

)
n∈N lie in the bounded set C.

To show that Algorithm 5.17 is focusing, let us fix i ∈ I and a suborbit (xkn
)n∈N

such that i ∈
⋂

n∈N Ikn
, xkn

⇀ x, and ui,kn
−xkn

→ 0. According to (5.10), we must
show x ∈ Si. Four cases will be considered.

(1) i ∈ I(1): we must show gi(x) ≤ 0. In view of (5.50), for every n ∈ N, ui,kn
is

the D-projection of xn onto Gi(xkn
, x∗n) =

{
y ∈ X | 〈xkn

− y, x∗n〉 ≥ gi(xkn
)
}

for some x∗n ∈ ∂gi(xkn). Since ui,kn ∈ Gi(xkn , x
∗
n), we have

(5.52) ‖ui,kn − xkn‖ ≥ dGi(xkn ,x∗n)(xkn) =

{
g+

i (xkn
)/‖x∗n‖, if x∗n 6= 0;

0, otherwise,

where g+
i = max{0, gi} and the last equality follows from [80, Lemma I.1.2].

Since (xkn
)n∈N lies in C, (x∗n)n∈N is bounded by Condition 5.16(ii). There-

fore, ui,kn − xkn → 0 implies g+
i (xkn) → 0. However, as g+

i is convex and
lower semicontinuous, it is weak lower semicontinuous and thus g+

i (x) ≤
lim g+

i (xkn) = 0. We conclude gi(x) ≤ 0.
(2) i ∈ I(2): we must show (x, 0) ∈ grAi. For every n ∈ N, (5.50) yields ui,kn

∈
(∇f + γi,kn

Ai)−1
(
∇f(xkn

)
)

and we define

(5.53) u∗n =
∇f(xkn

)−∇f(ui,kn
)

γi,kn

.

Therefore
(
(ui,kn

, u∗n)
)
n∈N lies in grAi and ui,kn

− xkn
→ 0 ⇒ ui,kn

⇀ x. If
for all n sufficiently large we have xkn = ui,kn , then by Proposition 3.8(iii) the
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tail of (xkn
)n∈N is in the weakly closed set A−1

i 0 and therefore (x, 0) ∈ grAi.
Otherwise, we can extract a subsequence (xkln

)n∈N such that, for all n ∈ N,
xkln

6= ui,kln
. Since, on the one hand, (xkln

)n∈N and (ui,kln
)n∈N lie in C and,

on the other hand,

(5.54) (∀n ∈ N) ‖ui,kln
− xkln

‖ ≥
〈
ui,kln

− xkln
,∇f(ui,kln

)−∇f(xkln
)
〉

‖∇f(ui,kln
)−∇f(xkln

)‖
,

it follows from Condition 5.3(ii), (5.53), and the inequality infn∈N γi,kln
≥ εi,

that ui,kln
− xkln

→ 0 ⇒ ∇f(ui,kln
) − ∇f(xkln

) → 0 ⇒ u∗ln → 0. Finally,
since Ai is maximal monotone, grAi is sequentially closed in the weak ×
strong topology of X × X ∗ and we conclude that (x, 0) ∈ grAi, as required.

(3) i ∈ I(3): we must show ϕi(x) = inf ϕi(X ), i.e., (x, 0) ∈ gr ∂ϕi. Since ϕ is
a proper lower semicontinuous convex function, Ai = ∂ϕi is maximal mono-
tone [79, Section 29] and 3∗-monotone by Lemma 3.10(iv) and, in view of
Propositions 3.22(ii)(a) and 3.23(v)(b), the claim follows from Case (2).

(4) i ∈ I(4): we must show x ∈ FixTi. This follows at once from (5.49).
It remains to show that in each instance (i)–(iv), i is an index of demicompact regular-
ity. Henceforth, (xkn

)n∈N is a suborbit such that i ∈
⋂

n∈N Ikn
and ui,kn

− xkn
→ 0.

By (5.11), we must show S(xkn
)n∈N 6= Ø. (i): Arguing as in Case (1), we obtain

lim gi(xkn) ≤ 0. Therefore the tail of (xkn)n∈N lies in the compact set C ∩ lev≤η gi,
whence S(xkn)n∈N 6= Ø. (ii): It follows from (3.16) that for every n ∈ N{

ui,kn ∈ C ⊂ int dom f

ui,kn ∈ ran(∇f + γi,knAi)−1 ◦ ∇f ⊂ dom∇f ∩ domAi = int dom f ∩ dom Ai.

Therefore, (ui,kn
)n∈N lies in the compact set C ∩ dom Ai, whence S(ui,kn

)n∈N 6= Ø.
Since ui,kn

− xkn
→ 0, we conclude S(xkn

)n∈N 6= Ø. (iii): As in Case (3), this is
special case of (ii). (iv): Clear from (5.51).

Theorem 5.18 produces convergence results for various new block-iterative paral-
lel schemes for solving problems, including solving convex inequalities (I(2) = I(3) =
I(4) = Ø), finding common zeros (I(1) = I(3) = I(4) = Ø), solving systems of vari-
ational inequalities (I(1) = I(2) = I(4) = Ø), finding common fixed points (I(1) =
I(2) = I(3) = Ø), and combinations of these. Note that D-projection methods are
also captured by Theorem 5.18 since, in view of Proposition 3.32(ii)(c), one can take,
for instance, Ti to be the D-projector onto Si if i ∈ I(4) in (5.50).

Naturally, our framework also encompasses relaxed sequential algorithms, which
are obtained by taking (In)n∈N to be a sequence of singletons, as in the following
example.

Example 5.19. Suppose X = RN , (Si)1≤i≤m is a (finite) family of half-spaces
with D-projectors (Pi)1≤i≤m, and, for every n ∈ N, In = {n (mod m) + 1} and
Ti,n = Pi. Then Algorithm 5.1 reduces to the relaxed D-projection method of [44].

In the case of unrelaxed sequential algorithms, our working assumptions can be
loosened. This is discussed next.

5.6. Unrelaxed sequential algorithms. Algorithm 5.1 can be specialized to
an unrelaxed sequential algorithm for solving the convex feasibility problem (5.2).
Indeed, suppose that at each iteration n only one index, say i(n), is retained and
λn = 1. Then Algorithm 5.1➇ becomes

(5.55) Hn =
{
y ∈ X | 〈y − un,∇f(xn)−∇f(un)〉 ≤ 0

}
,
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where un ∈ Tnxn for some Tn ∈ B such that Si(n)∩int dom f ⊂ FixTn. Consequently,
since by Corollary 3.35(ii) PHn

xn = un, Algorithm 5.1 can be rewritten as follows.
Algorithm 5.20. Starting with x0 ∈ int dom f , take at every iteration n:
➀ An index i(n) ∈ I.
➁ An operator Tn in B such that Si(n) ∩ int dom f ⊂ FixTn.

Then select xn+1 ∈ Tnxn.
In this context, Definition 5.2 takes the following form.
Definition 5.21. Algorithm 5.20 is:
• Focusing if for every bounded suborbit (xkn)n∈N it generates and every index
i ∈ I,

(5.56)


(∀n ∈ N) i = i(kn)
xkn ⇀ x

xkn+1 − xkn → 0
⇒ x ∈ Si.

• Demicompactly regular if there exists i ∈ I, called an index of demicompact
regularity, such that for every bounded suborbit (xkn)n∈N it generates,

(5.57)

{
(∀n ∈ N) i = i(kn)
xkn+1 − xkn

→ 0
⇒ S(xkn

)n∈N 6= Ø.

Removing item (ii) from Condition 5.3 yields the following set of assumptions for
the unrelaxed sequential case.

Condition 5.22. For some z ∈ dom f ∩
⋂

i∈I Si, C = lev≤D(z,x0) D(z, ·) is
bounded.

Condition 5.23. (∀i ∈ I)(∃Mi ∈ Nr{0})(∀n ∈ N) i ∈
{
i(n), . . . , i(n+Mi−1)

}
.

We now show that Algorithm 5.20 converges under this reduced set of assump-
tions.

Theorem 5.24. Suppose that Conditions 4.3, 4.4, 5.22, and 5.23 are satisfied
and that Algorithm 5.20 is focusing. Then the following statements hold true for every
orbit (xn)n∈N generated by Algorithm 5.20.

(i) (xn)n∈N converges weakly to a point x ∈ S.
(ii) If the weak limit x from (i) belongs to int dom f and the algorithm is demi-

compactly regular, then (xn)n∈N converges strongly.
Proof. In the proof of Theorem 5.7, note that Condition 5.3(ii) is used only to

obtain (5.34), i.e., in the present context, xpn+1 − xpn → 0. However, this property
follows directly from (5.33).

As an example, we revisit Bregman’s original cyclic projection method (1.2) (see
[1, Thm. 3.1] for a special case).

Corollary 5.25. Suppose that Conditions 4.3 and 4.4 are satisfied, that I =
{1, . . . ,m}, and that C = lev≤D(z,x0) D(z, ·) is bounded for some z ∈ dom f ∩⋂

1≤i≤m Si. Let (Pi)1≤i≤m be the D-projectors of (Si)1≤i≤m. Then the following
statements hold true for every orbit (xn)n∈N generated by (1.2).

(i) (xn)n∈N converges weakly to a point x ∈ dom f ∩
⋂

1≤i≤m Si.
(ii) If the weak limit x from (i) belongs to int dom f and C ∩ Si is relatively

compact (e.g., Si is boundedly compact) for some i ∈ {1, . . . ,m}, then (xn)n∈N
converges strongly.
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Proof. In view of Corollary 3.35(i), (1.2) is a special realization of Algorithm 5.20
with (∀n ∈ N) Tn = Pn (mod m)+1 (single-valued) and λn = 1. In addition, the index
control rule i : n 7→ n (modm) + 1 complies with Condition 5.23. On the other hand,
Algorithm (1.2) is focusing, as a direct consequence of the weak closedness of the sets
(Sj)1≤j≤m. Finally, i is an index of demicompact regularity since (xnm+i)n∈N lies in
C ∩ Si. The announced results therefore follow from Theorem 5.24.

Remark 5.26. Throughout Section 5, Legendreness has been imposed on f .
This property has been shown to provide a rich and convenient framework in which
our results could be derived in a unified manner. Further results can nonetheless be
obtained from the analysis of Sections 3 and 4 for functions which are not Legendre
at the expense of more technical assumptions.

Acknowledgements. We wish to thank Dan Butnariu and Yair Censor for
sending us [22, 25, 26, 29], Constantin Zălinescu for sending us [85], and especially
Jon Vanderwerff for his help in the derivation of Example 5.11. Two anonymous
referees made several helpful comments and suggestions, which led to improvements
over the originally submitted version.

REFERENCES

[1] Y. Alber and D. Butnariu, Convergence of Bregman projection methods for solving consistent
convex feasibility problems in reflexive Banach spaces, J. Optim. Theory Appl., 92 (1997),
pp. 33–61.
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[34] I. Ciorănescu, Geometry of Banach Spaces, Duality Mappings, and Nonlinear Problems,
Kluwer, Boston, MA, 1990.

[35] P. L. Combettes, Construction d’un point fixe commun à une famille de contractions fermes,
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