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1. Introduction. Let H be a real Hilbert space with scalar product 〈· , ·〉, norm
‖ · ‖, and distance d. A basic problem in applied mathematics and optimization is
to find a zero of a maximal monotone operator A : H ⇒ H, that is, a point x ∈ H
such that 0 ∈ Ax [22, 23, 29]. Assuming 0 ∈ ranA, since the resolvent (Id +A)−1 of
A is a firmly nonexpansive operator with fixed point set A−1(0), a zero of A can be
constructed iteratively through the recursion

(1.1) (∀n ∈ N) xn+1 = (Id+A)−1xn.

Indeed, since an operator T is nonexpansive if and only if its average (T + Id)/2
is firmly nonexpansive [28, Lemma 1.1], it follows from [19, Theorem 3] that, for
any x0 ∈ H, the sequence (xn)n∈N generated by the successive approximations (1.1)
converges weakly to a zero of A (see also [17] for a special case). More generally,
let (γn)n∈N be a sequence in ]0,+∞[ such that infn∈N γn > 0 and let (en)n∈N be an
absolutely summable sequence in H. Then, for every x0 ∈ H, the so-called proximal
point iterations xn+1 = (Id+γnA)−1xn + en converge weakly to a zero of A [22,
Theorem 1] (see also [4] for further analysis). This result was shown in [11, Theorem 3]
to remain true for the relaxed proximal iterations

(1.2) (∀n ∈ N) xn+1 = xn + λn

(
(Id+γnA)−1xn + en − xn

)
,

where (λn)n∈N lies in [ε, 2− ε] for some arbitrary ε ∈ ]0, 1[. A further extension was
proposed in [2, Corollary 6.1(i)] (for en ≡ 0) and then in [7, Theorem 6.9(i)], where
weak convergence to a common zero of a countable family of maximal monotone
operators (Ai)i∈I was established for the iterations

(1.3) (∀n ∈ N) xn+1 = xn + λn

(
(Id+γnAi(n))−1xn + en − xn

)
,

where i : N → I sweeps through the indices with some regularity. It will be convenient
to cast this algorithm in the following more general framework.
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Algorithm 1.1. Let (Ai)i∈I be a countable family of set-valued operators from
H to H, let (γn)n∈N and (λn)n∈N be sequences in ]0,+∞[, let (un)n∈N and (vn)n∈N
be sequences in H, let i be a mapping from N to I, and let x0 be a point in H. A
sequence (xn)n∈N is constructed according to the updating rule

(1.4) (∀n ∈ N) xn+1 = xn + λn(xn+ 1
2

+ un − xn),

where xn+ 1
2

is a solution to the inclusion

(1.5) vn ∈ xn+ 1
2
− xn + γnAi(n)xn+ 1

2
.

In the case of maximal monotone operators, the weak convergence properties of
Algorithm 1.1 are summarized in the next theorem, which is derived from a result
of [7]. This theorem captures the weak convergence results of [2, 11, 17, 22] for
the proximal point algorithm, as well as standard results on the weak convergence
of sequential projection methods for convex feasibility problems, such as those of
[5, 6, 13], when the operators are taken to be normal cones to closed convex sets.

Theorem 1.2. Suppose that in Algorithm 1.1 the following conditions are satis-
fied.

(i) (a) For every i ∈ I, Ai is maximal monotone;
(b) S =

⋂
i∈I A−1

i (0) 6= Ø.
(ii) (∀i ∈ I)(∃Mi ∈ N r {0})(∀n ∈ N) i ∈ {i(n), . . . , i(n + Mi − 1)}.
(iii) infn∈N γn > 0.
(iv) (∃ ε ∈ ]0, 1[)(∀n ∈ N) ε ≤ λn ≤ 2− ε.
(v)

∑
n∈N ‖un‖ < +∞ and

∑
n∈N ‖vn‖ < +∞.

Then every orbit generated by Algorithm 1.1 converges weakly to a point in S.
Proof. For every n ∈ N, set

(1.6) en = un + (Id+γnAi(n))−1(xn + vn)− (Id+γnAi(n))−1xn.

Then (1.4)–(1.5) coincides with (1.3), which is itself a special case of [7, Algorithm 6.7]
(obtained by taking I(1) = I(2) = Ø and (In)n∈N = ({i(n)})n∈N there). On the
other hand, since the resolvents

(
(Id+γnAi(n))−1

)
n∈N are nonexpansive [1, Proposi-

tion 3.5.3], we obtain

(1.7) (∀n ∈ N) ‖en‖ ≤ ‖un‖+ ‖vn‖.

Hence, (v) implies that
∑

n∈N ‖en‖ < +∞ and the claim therefore follows at once
from [7, Theorem 6.9(i)].

Remark 1.3. The sequences (vn)n∈N and (un)n∈N model errors at various steps
of the execution of the iterations, thereby allowing for some tolerance in the numer-
ical implementation of the algorithm. It is clear from the above proof that, in the
presence of monotone operators, the errors (vn)n∈N can easily be absorbed in the
errors (un)n∈N and are, in this sense, redundant. However, since our ultimate goal
is to investigate the behavior of Algorithm 1.1 with nonmonotone operators, the use
of two error sequences is required to obtain a more flexible algorithmic model. An
illustration of how Condition (v) can be checked in practice is provided in section 4
(see Remark 4.2).

Extensions of the basic proximal iterations (1.1) have also been investigated in
another direction, namely, by relaxing the monotonicity requirements on A. The
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motivation for this line of work stems from the fact that proximal iterations have
been observed to converge to zeros of nonmonotone operators in certain numerical
experiments, e.g., [12]. Attempts to explain this behavior in the case of general
variational inclusions can be traced back to [26], where a convergence proof is given
which does not assume monotonicity. However, the assumptions made in that early
work are rather stringent as they impose, essentially, that the inverse of the operator
be differentiable at the origin with a monotone derivative.

Relaxing the monotonicity property of an operator is equivalent to relaxing the
monotonicity property of its inverse. In some applications, however, it is more natural
to work directly with the inverse. For instance, since multiplier methods are based
on applying the proximal algorithm to a dual formulation of the original problem,
it is more pertinent to impose relaxed monotonicity conditions on the inverse of the
operator. This observation was the starting point of the investigation proposed in
[20], where local convergence is analyzed under the condition that the mapping be
cohypomonotone, i.e., that its inverse be hypomonotone (see Definition 2.2). The
analysis of [20] is incomplete, however, at least in the sense that it assumes that
the proximal steps can be computed exactly. This is an unrealistic assumption in
most practical applications. In [14], an effort was made to remove this assumption by
investigating the convergence in the case of inexact computations under a so-called
relative error criterion. The analysis of [14] requires that the values of the operator
outside a certain neighborhood be discarded. However, since this neighborhood is
usually unknown in concrete applications, the applicability of this conceptual analysis
is limited.

The goal of this paper is to unify and extend various convergence results on
proximal iterations, by investigating the asymptotic behavior of Algorithm 1.1 when
applied to a family of cohypomonotone operators. Such operators are discussed in
section 2. Our main result is presented in section 3, where local viability and weak
convergence conditions are established for Algorithm 1.1. An application to nonlinear
programming is presented in section 4, where local convergence of a relaxed inexact
proximal method of multipliers is proven for a nonconvex problem.

Throughout, B(x; η) denotes the closed ball of center x ∈ H and extended radius
η ∈ ]0,+∞]; dC the distance function to a nonempty set C ⊂ H; PC the projection
operator onto a nonempty closed convex set C ⊂ H and NC its normal cone map;
FixT the set of fixed points of an operator T , dom T its domain, ranT its range, and
gphT its graph. The complement of a set C is denoted by {C.

2. Cohypomonotone operators. Our goal is to prove the local convergence
of Algorithm 1.1 under a relaxed monotonicity assumption on the operators (Ai)i∈I

that we now define.
Definition 2.1. Let U be a subset of H2. The U -localization of an operator

A : H ⇒ H is the operator denoted by A|U : H ⇒ H whose graph is gph(A|U ) =
U ∩ gphA.

Definition 2.2. Let A : H ⇒ H, ρ ∈ [0,+∞[, and U ⊂ H2. Then A is [maximal]
ρ-hypomonotone on U if there exists an operator Ā : H ⇒ H such that Ā + ρ Id is
[maximal] monotone and Ā|U = A|U . The operator A is [maximal] ρ-cohypomonotone
on U if A−1 is [maximal] ρ-hypomonotone on U .

The above definition of ρ-hypomonotonicity on a set is related to the pointwise
notion of hypomonotonicity of [25, Example 12.28] and [8] as follows: If W is a
neighborhood of x ∈ H and there exists ρ ∈ [0,+∞[ such that A is ρ-hypomonotone
on W ×H, then A is hypomonotone at x in the sense of [8, 25].

3



Maximal hypomonotonicity has been studied extensively in the variational anal-
ysis literature. Thus, classes of functions with hypomonotone subdifferentials have
been investigated in various settings [8, 24, 25, 27]. Interesting connections between
hypomonotonicity and Aubin continuity, Lipschitz continuity, and strict graphical
derivatives have also been found [15, 16]. On the other hand, maximal hypomono-
tonicity is a less stringent requirement than imposing the existence of Lipschitz lo-
calizations. The latter has been studied in the context of variational inequality and
nonlinear programming problems, e.g., [9, 10, 15, 16]. For completeness, we provide
a simple proof of this important fact.

Lemma 2.3. Suppose that A : H ⇒ H has a Lipschitz localization at a point
(x, y) ∈ gphA; that is, there exist open sets X 3 x and Y 3 y such that the mapping
z 7→ A(z) ∩ Y is single-valued and ρ-Lipschitz continuous on X. Then A is maximal
ρ-hypomonotone on X × Y .

Proof. Set Ã = A|X×Y + ρ Id and take (u, v) ∈ X2. Then, by Cauchy-Schwarz,

(2.1)
〈
u− v , Ãu− Ãv

〉
≥ ‖u− v‖

(
ρ‖u− v‖ −

∥∥A|X×Y (u)−A|X×Y (v)
∥∥)

≥ 0.

Hence, Ã is monotone. Let A′ be a maximal monotone extension of Ã and set Ā = A′−
ρ Id. Then Ā+ρ Id is maximal monotone and, to complete the proof, it suffices to show
that Ā|X×Y = A|X×Y . By construction, gph(A|X×Y ) ⊂ gph(Ā|X×Y ). Conversely,
take (x̄, ȳ) ∈ gph Ā|X×Y and let z = ȳ − A|X×Y (x̄). Then (x̄, ȳ + ρx̄) ∈ gph A′ and,
since X is open, we have x̄ + εz ∈ X for ε > 0 sufficiently small. Since gph(A|X×Y +
ρ Id) ⊂ gphA′ and A′ is monotone, we have

0 ≤
〈
x̄ + εz − x̄ , A|X×Y (x̄ + εz) + ρ(x̄ + εz)− (ȳ + ρx̄)

〉
=

〈
εz ,A|X×Y (x̄ + εz) + ρεz − ȳ

〉
.(2.2)

Dividing by ε and letting ε ↓ 0+, the continuity of A|X×Y gives 0 ≤ −
∥∥A|X×Y (x̄) −

ȳ
∥∥2, whence (x̄, ȳ) ∈ gph A|X×Y .

The relevance of cohypomonotonicity in proximal methods hinges on the following
identity.

Lemma 2.4. Let A : H ⇒ H and let (γ, ρ) ∈ R2, where γ 6= 0. Then

(2.3) Id +
(

1− ρ

γ

) ((
Id+γA

)−1 − Id
)

=
(
Id+(γ − ρ)

(
A−1 + ρ Id

)−1
)−1

.

Proof. If γ = ρ, the identity is clear. Otherwise, take (x, u) ∈ H2. Then

u ∈
(
Id+(γ − ρ)

(
A−1 + ρ Id

)−1
)−1

x
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⇔ x− u

γ − ρ
∈

(
A−1 + ρ Id

)−1
u

⇔ u ∈ A−1

(
x− u

γ − ρ

)
+

ρ

γ − ρ
(x− u)

⇔ x− u

γ − ρ
∈ A

(
γu− ρx

γ − ρ

)
⇔ x ∈

(
Id+γA

) (
γu− ρx

γ − ρ

)
⇔ u ∈

(
Id+

(
1− ρ

γ

) ((
Id+γA

)−1 − Id
))

x.(2.4)

The above lemma states that relaxing a proximal step for the original operator
A amounts to computing a proximal step for the operator (A−1 + ρ Id)−1. Clearly,
when A is cohypomonotone, the latter behaves locally like a monotone operator. This
observation will play a central role in our convergence analysis.

3. Proximal iterations with cohypomonotone operators. In this section,
we establish our main convergence result for the inexact relaxed proximal point Al-
gorithm 1.1 with cohypomonotone operators.

Theorem 3.1. Suppose that in Algorithm 1.1 the following conditions are satis-
fied.

(i) There exist a number δ ∈ ]0,+∞[, a sequence (ρi)i∈I in [0,+∞[, and open
sets V and (Xi)i∈I in H for which the following hold:
(a) 0 ∈ V ;
(b) for every i ∈ I, Si = Xi ∩A−1

i (0) is closed and Si + B(0; δ) ⊂ Xi;
(c) for every i ∈ I, Ai is maximal ρi-cohypomonotone on V ×Xi;
(d) S =

⋂
i∈I Si 6= Ø.

(ii) (∀i ∈ I)(∃Mi ∈ N r {0})(∀n ∈ N) i ∈ {i(n), . . . , i(n + Mi − 1)}.
(iii) infn∈N(γn − ρi(n)) > 0.

(iv) (∃ ε ∈ ]0, 1[)(∀n ∈ N) ε ≤ λn

1− ρi(n)/γn
≤ 2− ε.

Then there exists a closed ball B of radius η ∈ ]0,+∞] centered at a point in S such
that if the following conditions hold:

(v) x0 is sufficiently close to S, say,

(3.1) dS(x0) < ν =
4− 2ε

5− 2ε
η;

(vi)
∑

n∈N(‖un‖+ 2‖vn‖) <
ν − dS(x0)

2− ε
;

(vii) for every n ∈ N, one selects xn+ 1
2
∈ B in (1.5),

then there is one and only one orbit (xn)n∈N of Algorithm 1.1 contained in B and,
furthermore, (xn)n∈N converges weakly to a point in B ∩ S.

Proof. Take i ∈ I. By (i)(c), there exists an operator Āi : H ⇒ H such that

(3.2) (Xi × V ) ∩ gph Āi = (Xi × V ) ∩ gph Ai

and Ā−1
i + ρi Id is maximal monotone. Consequently, it follows from (i)(a), (i)(b),

and (i)(d) that

(3.3) Xi ∩ Ā−1
i (0) = Xi ∩A−1

i (0) 6= Ø
5



is closed. Therefore, by maximal monotonicity, Ā−1
i (0) = (Ā−1

i + ρi Id)(0) is closed
and convex [1, Proposition 3.5.6]. Thus, the convex set Ā−1

i (0) is the union of the two
disjoint closed sets Xi∩ Ā−1

i (0) 6= Ø and ({Xi)∩ Ā−1
i (0), which forces the latter to be

empty. Indeed, otherwise, by convexity of Ā−1
i (0), we could find a ∈ Xi ∩ Ā−1

i (0) and
b ∈ ({Xi)∩ Ā−1

i (0) such that the closed segment [a, b] is the union of the two disjoint
closed sets [a, b] ∩Xi ∩ Ā−1

i (0) and [a, b] ∩ ({Xi) ∩ Ā−1
i (0), which is impossible since

[a, b] is connected by [3, Théorème IV.2.5.4]. To sum up,

(3.4) Si = Xi ∩A−1
i (0) = Xi ∩ Ā−1

i (0) = Ā−1
i (0)

is closed and convex. It therefore follows from (i)(d) that the projection PSx0 of
x0 onto S is well defined. On the other hand, (i)(a) and (i)(b) yield 0 ∈ intV and
PSx0 ∈ int

⋂
i∈I Xi, respectively. As a result, we can find η ∈ ]0,+∞] such that

(3.5) B(PSx0; η) ⊂
⋂
i∈I

Xi and B

(
0; 2η/ inf

n∈N
γn

)
⊂ V.

We now set

(3.6) B = B(PSx0; η) and D = B(PSx0; ν),

and observe that (3.1) forces

(3.7) x0 ∈ intD.

Next, take (x, u) ∈ B2 and n ∈ N. Then it follows from (3.5) that
(
u, (x−u)/γn

)
∈

Xi(n) × V . Consequently, by (3.2),

u ∈
(
Id+γnAi(n)

)−1
x ⇔

(
u,

x− u

γn

)
∈ gphAi(n)

⇔
(

u,
x− u

γn

)
∈ gph Āi(n)

⇔ u ∈
(
Id+γnĀi(n)

)−1
x.(3.8)

Thus,

(3.9)
(
Id+γnAi(n)

)−1∣∣B×B =
(
Id+γnĀi(n)

)−1∣∣B×B
.

On the other hand, let

(3.10) Tn = Id+
(

1−
ρi(n)

γn

) ((
Id+γnĀi(n)

)−1 − Id
)

.

Alternatively, using Lemma 2.4, we can write

(3.11) Tn =
(
Id+τn

(
Ā−1

i(n) + ρi(n) Id
)−1

)−1

, where τn = γn − ρi(n).

Since τn > 0 by (iii), Tn is therefore the resolvent of the operator τnCi(n), where

(3.12) Ci(n) =
(
Ā−1

i(n) + ρi(n) Id
)−1

,
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which is maximal monotone as the inverse of such an operator. Hence, it follows from
[2, Proposition 2.3] that
(3.13)

Tn : dom Tn = H → H and (∀(x, z) ∈ H × FixTn) 〈z − Tnx , x− Tnx〉 ≤ 0,

which, by [7, Proposition 2.3(ii)], implies

(3.14) (∀µ ∈ [0, 2])(∀(x, z) ∈ H × Fix Tn)

‖x + µ(Tnx− x)− z‖2 ≤ ‖x− z‖2 − µ(2− µ)‖Tnx− x‖2.

Now, let

(3.15) µn =
λn

1− ρi(n)/γn
.

Then we get from (iv) that

(3.16) µn ∈ [ε, 2− ε].

We also obtain from (3.5), (3.3), (3.12), and (3.11) that

(3.17) B ∩ Si(n) = B ∩A−1
i(n)(0) = B ∩ Ā−1

i(n)(0) = B ∩ C−1
i(n)(0) = B ∩ FixTn.

Hence, PSx0 ∈ B∩S ⊂ B∩FixTn and it results from (3.14) with µ = 1 and z = PSx0

that

(3.18) Tn(B) ⊂ B.

Let us now show that Algorithm 1.1 is viable, i.e., that the recursion (1.4)–(1.5)
does generate an infinite sequence. To this end, we shall show that the sequence
(xn)n∈N is well defined and that it lies in int D, whereas the sequence (xn + vn)n∈N
lies in intB. Since (vi) yields ‖v0‖ < η− dS(x0), it follows from (3.7) that ‖x0 + v0−
PSx0‖ ≤ ‖v0‖ + dS(x0) < η, whence x0 + v0 ∈ intB. Now assume that, for some
n ∈ N, the points (xk)0≤k≤n and (xk + vk)0≤k≤n lie in intD and intB, respectively.
Then it results from (vii) and (3.9) that (1.5) can be written as

(3.19) xn+ 1
2
∈ (Id+γnAi(n))−1

∣∣B×B(xn + vn) = (Id+γnĀi(n))−1
∣∣B×B(xn + vn).

In view of (3.15), (1.4) can now be written as

(3.20) xn+1 ∈ xn + µn

(
1−

ρi(n)

γn

) (
(Id+γnĀi(n))−1

∣∣B×B(xn + vn) + un − xn

)
,

which, by virtue of (3.10), yields

(3.21) xn+1 ∈ xn + µn

(
Tn

∣∣B×B(xn + vn) + wn − xn

)
,

where

(3.22) wn =
(

1−
ρi(n)

γn

)
un −

ρi(n)

γn
vn.
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However, since xn + vn ∈ B, (3.18) yields Tn

∣∣B×B(xn + vn) = Tn(xn + vn). Hence,
since Tn is single-valued and defined everywhere on H (see (3.13)), we deduce from
(3.21) that xn+1 is uniquely defined by

(3.23) xn+1 = xn + µn

(
Tn(xn + vn) + wn − xn

)
.

Now put

(3.24) en = wn + Tn(xn + vn)− Tnxn.

Then we derive from (3.23) that

(3.25) xn+1 = xn + µn(Tnxn − xn) + µnen

and it follows from (3.16) and (3.14) that

‖xn+1 − PSx0‖ ≤ ‖xn − PSx0 + µn(Tnxn − xn)‖+ µn‖en‖
≤ ‖xn − PSx0‖+ µn‖en‖.(3.26)

Consequently, since (xk + vk)0≤k≤n lies in B, we have

‖xn+1 − PSx0‖ ≤ ‖x0 − PSx0‖+
n∑

k=0

µk‖ek‖

≤ dS(x0) + (2− ε)
∑
k∈N

‖ek‖.(3.27)

On the other hand, it follows from (3.24), the nonexpansivity of Tn [1, Proposi-
tion 3.5.3], (3.22), and (iii) that

(3.28) ‖en‖ ≤ ‖wn‖+ ‖Tn(xn + vn)− Tnxn‖ ≤ ‖wn‖+ ‖vn‖ ≤ ‖un‖+ 2‖vn‖.

Therefore, we derive from (vi) that

(3.29) dS(x0) + (2− ε)
∑
k∈N

‖ek‖ < ν,

and deduce from (3.27) that ‖xn+1 −PSx0‖ < ν, i.e., xn+1 ∈ intD. In turn, (vi) and
(3.1) yield

(3.30) ‖xn+1 + vn+1 − PSx0‖ < ν + ‖vn+1‖ < ν +
ν

2(2− ε)
= η,

i.e., xn+1 + vn+1 ∈ intB. We have thus shown by induction that the entire sequence
(xn + vn)n∈N lies in B and that (xn)n∈N is a well defined sequence which lies entirely
in int D ⊂ intB. In view of (3.23), (3.11), and (3.12), the recursion governing the
sequence (xn)n∈N can now be rewritten as

(3.31) (∀n ∈ N) xn+1 = xn + µn(xn+ 1
2

+ wn − xn),

where xn+ 1
2

is the unique solution to the inclusion

(3.32) vn ∈ xn+ 1
2
− xn + τnCi(n)xn+ 1

2
,
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namely, xn+ 1
2

=
(
Id+τnCi(n)

)−1(xn + vn) = Tn(xn + vn) ∈ B, where the last
inclusion follows from xn + vn ∈ B and (3.18). In summary, since the operators
(Ci)i∈I are maximal monotone, infn∈N τn > 0, (µn)n∈N lies in [ε, 2−ε],

∑
n∈N ‖wn‖ ≤∑

n∈N ‖un‖+
∑

n∈N ‖vn‖ < +∞, and
∑

n∈N ‖vn‖ < +∞, it follows from Theorem 1.2
that (xn)n∈N converges weakly to a point x in

⋂
i∈I C−1

i (0). On the other hand,
since (xn)n∈N lies in the weakly closed set B, x ∈ B. As a result, (3.17) yields
x ∈ B ∩

⋂
i∈I C−1

i (0) = B ∩ S.
Remark 3.2. The above result unifies and extends several results found in the

literature.
• If I = {1} (a single operator is considered), λn ≡ 1, and un ≡ 0 ≡ vn, then

Theorem 3.1 is found in [20, Theorem 9].
• If I = {1}, ρ1 = 0, and V = H = X1, Theorem 3.1 reduces to [11, Theorem 3],

and to [22, Theorem 1] if we further assume λn ≡ 1.
• If ρi ≡ 0 and V = H ≡ Xi, Theorem 3.1 reduces to Theorem 1.2.
• If ρi ≡ 0, V = H ≡ Xi, and un ≡ 0 ≡ vn, Theorem 3.1 corresponds to [2,

Corollary 6.1(i)].
• If I = {1, . . . ,m}, (Si)i∈I is a family of closed convex sets inH with associated

projection operators (Pi)i∈I , i : n 7→ n modulo m+1, for every i ∈ I, Ai = NSi

(hence ρi ≡ 0 and V = H ≡ Xi), and un ≡ 0 ≡ vn, then Algorithm 1.1
produces the method of cyclic projections
(3.33)
(∀n ∈ N) xn+1 = xn + λn(Pn modulo m+1xn − xn) where ε ≤ λn ≤ 2− ε,

and Theorem 3.1 reduces to [13, Theorem 1].

4. Nonlinear programming application. Using the same arguments as in [20,
section 5], one can derive multiplier methods for quite general variational inclusions by
combining Theorem 3.1 with an abstract duality framework for set-valued mappings.
Instead of going through all the steps and applications discussed in [20], we analyze
the proximal method of multipliers for nonlinear (nonconvex) programming as an
example. The proximal method of multipliers was introduced and analyzed in the
convex case by Rockafellar [23] and in the nonconvex case in [20, section 7] with
exact, unrelaxed iterates.

Consider the nonlinear programming problem

(4.1) minimize f0(x) subject to

{
fi(x) = 0, for 1 ≤ i ≤ r;
fi(x) ≤ 0, for r + 1 ≤ i ≤ m;

where (fi)0≤i≤m are real-valued C2-functions defined on the standard Euclidean space
RN . Our aim is to find Karush-Kuhn-Tucker (KKT) points for (4.1). To this end, we
introduce the closed convex cone K = {0}r × Rm−r

− , let F : x 7→
(
f1(x), . . . , fm(x)

)
,

and set H = RN × Rm. We shall derive from Theorem 3.1 a local convergence result
for the following proximal method of multipliers.

Algorithm 4.1. Let (x0, y0) ∈ H, let (γn)n∈N be a sequence in ]0,+∞[, and let
(wn)n∈N be a sequence in RN . A sequence

(
(xn, yn)

)
n∈N is constructed according to

the updating rule

(4.2) (∀n ∈ N) (xn+1, yn+1) = (xn, yn) + λn

(
(xn+ 1

2
, yn+ 1

2
)− (xn, yn)

)
,

where xn+ 1
2

minimizes approximately the function

(4.3) ϕn : x 7→ f0(x) +
1

2γn
‖x− xn‖2 +

1
2γn

dK

(
yn + γnF (x)

)2
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in the sense that ∇ϕn(xn+ 1
2
) = wn, and

(4.4)

{
yi

n+ 1
2

= yi
n + γnfi(xn+ 1

2
), for 1 ≤ i ≤ r;

yi
n+ 1

2
= max

{
yi

n + γnfi(xn+ 1
2
), 0

}
, for r + 1 ≤ i ≤ m.

Remark 4.2. It was shown in the proof of [20, Theorem 19] that, under condition
(i) of Theorem 4.3 and for x near x̄, the condition ∇ϕn(x) = 0 implies that x is a local
minimizer of ϕn. For this reason, the condition ∇ϕn(xn+ 1

2
) = wn is interpreted in

Algorithm 4.1 as an approximate minimization. In practice, the parameter γn is often
chosen adaptively while the size of the vector ‖wn‖ can be made arbitrarily small by
choosing the stopping criterion appropriately in the minimization of ϕn in (4.3).

Define a mapping L : H ⇒ H by

(4.5) L : (x, y) 7→
(
∇f0(x) + 〈y ,∇F (x)〉 ,−F (x) + NK∗(y)

)
,

where K∗ = Rr × Rm−r
+ is the polar cone of K. Then the KKT system for (4.1) can

be written as [25, Example 11.46]

(4.6) (0, 0) ∈ L(x, y).

Let (x̄, ȳ) ∈ H be a point satisfying the KKT conditions for (4.1) and define

(4.7) I+ = {1, . . . , r} ∪ {r + 1 ≤ i ≤ m | fi(x̄) = 0 and ȳi > 0}.

Now let l : (x, y) 7→ f0(x) + 〈y , F (x)〉. Recall that (x̄, ȳ) is said to satisfy the strong
second order sufficient condition for (4.1) if [21]

(4.8) (∀y ∈ Rm)

{
y 6= 0
(∀i ∈ I+) 〈y ,∇fi(x̄)〉 = 0

⇒
〈
y ,∇2

xxl(x̄, ȳ)y
〉

> 0.

Theorem 4.3. Suppose that in Algorithm 4.1 the following conditions are satis-
fied:

(i) (x̄, ȳ) ∈ H is a KKT point for (4.1) satisfying (4.8) and such that the gradients(
∇fi(x̄)

)
i∈I+ are linearly independent;

(ii) infn∈N γn is large enough;
(iii) (∃ ε ∈ ]0, 1[)(∀n ∈ N) ε ≤ λn ≤ 2− ε.

Then there exists a closed ball B centered at (x̄, ȳ) such that if the following conditions
hold:

(iv) (x0, y0) is sufficiently close to (x̄, ȳ);
(v)

∑
n∈N γn‖wn‖ is small enough;

(vi) for every n ∈ N, (xn+ 1
2
, yn+ 1

2
) ∈ B,

then there is one and only one orbit
(
(xn, yn)

)
n∈N of Algorithm 4.1 contained in B

and, furthermore,
(
(xn, yn)

)
n∈N converges to (x̄, ȳ).

Proof. By [18, Exemple 4.b & Proposition 7.d],

(4.9) ∇d2
K = 2(Id−PK) = 2PK∗ .

Thus, it follows from (4.3) that

(4.10) ∇ϕn(x) = ∇f0(x) + γ−1
n (x− xn) +

〈
PK∗

(
yn + γnF (x)

)
,∇F (x)

〉
.
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Note also that yn+ 1
2

in (4.4) can be expressed as

(4.11) yn+ 1
2

= PK∗
(
yn + γnF (xn+ 1

2
)
)

= (I + NK∗)−1
(
yn + γnF (xn+ 1

2
)
)
.

The update rules for (xn+ 1
2
, yn+ 1

2
) are thus equivalent to the system

(4.12)

{
wn = ∇f0(xn+ 1

2
) + γ−1

n (xn+ 1
2
− xn) +

〈
yn+ 1

2
,∇F (xn+ 1

2
)
〉

,

yn + γnF (xn+ 1
2
) ∈ yn+ 1

2
+ NK∗(yn+ 1

2
).

Alternatively, (xn+ 1
2
, yn+ 1

2
) is a solution to

(4.13) (γnwn, 0) ∈ (xn+ 1
2
, yn+ 1

2
)− (xn, yn) + γnL(xn+ 1

2
, yn+ 1

2
).

Now, set A1 = L, I = {1}, and i(n) = 1 for all n ∈ N. Then, in view of (4.13), the
iterations described by (4.2)–(4.4) are seen to conform to the format (1.4)–(1.5) and
Algorithm 4.1 therefore fits the general framework of Algorithm 1.1. Accordingly, it
suffices to verify the conditions of Theorem 3.1 to establish the claims. By [21, Theo-
rem 4.1], condition (i) implies that L−1 has a Lipschitz localization at

(
(0, 0), (x̄, ȳ)

)
.

Therefore, by Lemma 2.3, condition (i) of Theorem 3.1 holds with S = S1 = {(x̄, ȳ)}
for some ρ ∈ [0,+∞[. Now let γ = infn∈N γn. Then condition (iii) of Theorem 3.1
reads γ > ρ, and is trivially implied by condition (ii) above. Next, let us show that
condition (iii) above implies condition (iv) of Theorem 3.1, i.e.,

(4.14) (∃ ζ ∈ ]0, 1[)(∀n ∈ N) ζ ≤ λn

1− ρ/γn
≤ 2− ζ.

It is readily checked that for γ > 2ρ/ε (as is allowed by (ii) above), we have

(4.15) ζ =
εγ − 2ρ

γ − ρ
∈ ]0, ε[ .

Hence, it follows from (iii) above that

(4.16) (∀n ∈ N) ζ < ε ≤ λn <
λn

1− ρ/γn
≤ 2− ε

1− ρ/γ
= 2− ζ,

which establishes (4.14). Finally, it is clear that conditions (v)–(vii) of Theorem 3.1
are implied by conditions (iv)–(vi) above.

Remark 4.4.
(i) In most concrete problems, it is not possible to obtain the value of ρ in the

above proof [21]. As a result, condition (ii) and (v) in Theorem 4.3 are stated
in qualitative terms rather than with hard bounds involving ρ.

(ii) The above result extends [20, Theorem 19] by allowing for relaxations and
inexact computation of the iterates, thus making the algorithm more practical
and flexible.
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