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1 Problem statement

This paper is concerned with the numerical solution of systems of coupled monotone inclusions in
Hilbert spaces. A simple instance of this problem is to

0eA -
find z; € H, z2 € H such that R (1.1)
0e AQQ?Q — X1+ X,

where (H, ||-||) is a real Hilbert space, and where A; and Ay are maximal monotone operators acting
on H. This formulation arises in various areas of nonlinear analysis [12]. For example, if A} = df;
and Ao = Jfy are the subdifferentials of proper lower semicontinuous convex functions f; and fo
from H to |—o0, 00|, (1.1) is equivalent to

migiize fy(e1) + fo(e) + 3 1 — 2] (1:2)
This joint minimization problem, which was first investigated in [1], models problems in disciplines
such as the cognitive sciences [4], image processing [26], and signal processing [28] (see also the
references therein for further applications in mechanics, filter design, and dynamical games). In
particular, if f; and fo are the indicator functions of closed convex subsets C; and Cy of H, (1.2)
reduces to the classical best approximation pair problem [8, 11, 18, 29]

minimize r1 — X9l 1.3
x1€C’1,$2gCQ H ! 2” ( )

On the numerical side, a simple algorithm is available to solve (1.1), namely,

T2.n = (Id +A2)_1$1,n

., (1.4)
Tin+1 = (Id +A1) xgm.

z10€H and (VneN) {

This alternating resolvent method produces sequences (21, )nen and (225, )nen that converge weakly
to points 1 and 9, respectively, such that (x1,x3) solves (1.1) if solutions exist [12, Theorem 3.3].
In [3], the variational formulation (1.2) was extended to

1
inimize + + =||Lyz1 — Loxsol|3, 1.5
,inimize fiz1) + fa22) + Sl L1z = Laaalg (1.5)
where Hy, Ho, and G are Hilbert spaces, fi: H; — ]—00, +00] and fa: He — |—00, +00] are proper
lower semicontinuous convex functions, and Lq: Hy — G and Ls: He — G are linear and bounded.

This problem was solved in [3] via an inertial alternating minimization procedure first proposed in
[4] for (1.2).

The above problems and their solution algorithms are limited to two variables which, in addition,
must be linearly coupled. These are serious restrictions since models featuring more than two
variables and/or nonlinear coupling schemes arise naturally in applications. The purpose of this
paper is to address simultaneously these restrictions by proposing a parallel algorithm for solving
systems of monotone inclusions involving an arbitrary number of variables and nonlinear coupling.
The breadth and flexibility of this framework will be illustrated through applications in the areas
of evolution inclusions, variational problems, best approximation, and network flows.

We now state our problem formulation and our standing assumptions.



Problem 1.1 Let (H;)1<i<m be real Hilbert spaces, where m > 2. For every i € {1,...,m}, let
A;: H; — 2" be maximal monotone and let Bj: Hy X -+ X Hy — H;. It is assumed that there
exists [ € ]0, +oo] such that

V(@1 m) € Hi X X H ) (YY1, -+, ym) € Hi X - X Hyp)

S (@i =i | Biwy, - wm) = Bilyn, - ym)) = B || Biler, - wm) = Bi(yr, - ym)|)% (1.6)
i=1 1=1

The problem is to

0c Ajxq + Bl(fl,‘l, - ,xm)
find x1 € H1,..., %, € Hy,  such that : (1.7)
0€ Apxm + Bn(x1,...,2m),

under the assumption that such points exist.

In abstract terms, the system of inclusions in (1.7) models an equilibrium involving m variables
in different Hilbert spaces. The ith inclusion in this system is a perturbation of the basic inclusion
0 € A;z; by addition of the coupling term B;(x1,...,Z;). Our analysis captures various linear and
nonlinear coupling schemes. If

(Vie{l,...,m}) Hi=H and (VzxeH) Bi(z,...,z)=0, (1.8)

then Problem 1.1 is a relaxation of the standard problem [20, 33] of finding a common zero of
the operators (A;)i<i<m, i.e., of solving the inclusion 0 € ()“; A;x. In particular, if m = 2,
Hi = Ho = H, By = —By: (z1,22) — x1 — x2, and § = 1/2, then Problem 1.1 reverts to
(1.1). On the other hand, if m = 2, Ay = Jf1, As = 0fa, Bi: (x1,22) — Li(Liz1 — Lax2),
Bs: (z1,m2) — —L3(L1x1 — Laxs), and 8 = (|| L1||* + || L2||?) 7!, then Problem 1.1 reverts to (1.5).
Generally speaking, (1.7) covers coupled problems involving minimizations, variational inequalities,
saddle points, or evolution inclusions, depending on the type of the maximal monotone operators
(Ai)1<i<m.

The paper is organized as follows. In Section 2, we present our algorithm for solving Problem 1.1
and prove its convergence. Applications to systems of evolution inclusions are treated in Section 3.
Finally, Section 4 is devoted to variational formulations deriving from Problem 1.1 and features
applications to best approximation and network flows.

Notation. Throughout, H and (H;)1<i<m are real Hilbert spaces. For convenience, their scalar
products are all denoted by (- | -) and the associated norms by || - ||. The symbols — and — denote,
respectively, weak and strong convergence, Id denotes the identity operator, and L* denotes the
adjoint of a bounded linear operator L. The indicator function of a subset C of H is

0 if C;
o= 1 Fes (1.9)
+oo, if x ¢ C,

and the distance from x € H to C'is do(z) = infycc || — y||; if C' is nonempty closed and convex,
the projection of z onto C' is the unique point Pox in C such that ||z — Pox|| = do(x). We denote
by T'g(H) the class of lower semicontinuous convex functions f: H — ]—o0, +0oo] which are proper



in the sense that dom f = {z € H | f(z) < 400} # @. The subdifferential of f € I'o(H) is the
maximal monotone operator

8f:H—>2H:a:r—>{u€H | (VyeH) y—a|u)+ flx) < fly)} (1.10)

We denote by graAd = {(:U,u) EHXH | u € AZL’} the graph of a set-valued operator A: H —
2" by domA = {x €EH | Ax # @} its domain, and by J4 = (Id +4)~! its resolvent. If A is
monotone, then Jy is single-valued and nonexpansive and, furthermore, if A is maximal monotone,
then dom J4 = H. For complements and further background on convex analysis and monotone
operator theory, see [5, 15, 44, 46, 48|.

2 Algorithm

Let us start with a characterization of the solutions to Problem 1.1.

Proposition 2.1 Let ($i)1§i§m € Hi x - X Hp, let (Ai)lgigm S [0,1[m, and let v € ]O,—FOO[.
Then (z;)1<i<m solves Problem 1.1 if and only if

(VZ S {1, ceey m}) r; = )\ll’z + (1 — /\i)J’YAi ({L‘l — ’)/Bi(fbl, e ,l’m)) (2.1)

Proof. Let i € {1,...,m}. Then, since B; is single-valued,

0€ Ajx; + Bz-(acl, R ,wm) = ’yBZ-(xl, R ,a:m) € x; +vAjx;
= T = WAi(mi—’yBi(:):l,...,xm))
& T =3+ (1 — )\z) (JA/AZ. (1‘2 — 'yBi(:cl, ey .%'m)) — :L‘Z'), (2.2)

and we obtain (2.1). O

The above characterization suggests the following algorithm, which constructs m sequences
((zin)nen)i<i<m. Recall that [ is the constant appearing in (1.6).

Algorithm 2.2 Fix ¢ € |0,min{1, 8}[, (Yn)nen in [,28 — €], (An)nen in [0,1 — €], and (z4,0)1<i<m
€ Hy X -+ X Hp,. Set, for every n € N,

Tint+l = )\1,n$1,n + (1 - )\l,n) (J'ynAlyn (ajl,n - 'Yn(Bl,n(-ﬁl,n’ .- ,$m,n) + bl,n)) + al,n)

Zonn1 = Mosn + (L= D) (Tt @ =GB @1 Bin) + b)) + o),

(2.3)
where, for every ¢ € {1,...,m}, the following hold.
(i) (Ain)nen are maximal monotone operators from H; to 2Mi such that
(Vp €10, +o0l) Z sup || Jy,A;,Y — Ty, Ayl < +oo. (2.4)

nen lvli<e

(ii) (Bin)nen are operators from Hj x --- X Hy, to H; such that



(a) the operators (B; , — Bj)nen are Lipschitz-continuous with respective constants (ki )nen
in ]0, 4-o0[ satisfying > .y Kin < 400; and

(b) there exists z € Hy X - - X Hy,, independent of 4, such that (Vn € N) B; ,z = B;z.

(iii) (@in)nen and (b;n)nen are sequences in H; such that Y |lain| < +ooand D ||bin| <
+00.

(iv) (Min)nen is a sequence in [0, 1] such that Y [Ain — An| < +o00.

Conditions (i) and (ii) describe the types of approximations to the original operators (A;)i<i<m
and (B;)i1<i<m which can be utilized. Condition (iii) quantifies the tolerance which is allowed
in the implementation of these approximations (see [25, 31, 32| for specific examples), while (iv)
quantifies that allowed in the departure from the global relaxation scheme. The parallel nature of
Algorithm 2.2 stems from the fact that the m evaluations of the resolvent operators in (2.3) can be
performed independently and, therefore, simultaneously on concurrent processors.

Our asymptotic analysis of Algorithm 2.2 will be based on Theorem 2.8 below on the convergence
of the forward-backward algorithm. First, we need to introduce the notion of demiregularity. This
notion captures various properties typically used to establish the strong convergence of dynamical
systems, e.g., compactness [18], bounded compactness [8, 21, 22], uniform monotonicity [22, 24, 48],
uniform convexity [26, 29, 34, 46], compactness of resolvents [30], and demicompactness [38, 47]. In
the case of at most single-valued operators, demiregularity captures standard regularity properties
used in nonlinear analysis [48, Definition 27.1].

Definition 2.3 An operator A: H — 2" is demiregular at y € dom A if, for every sequence
((Yn,Un))nen in gra A and every v € Ay, we have

{yn Y = yp— Y. (2.5)

Up — U

Proposition 2.4 Let A: H — 2™, lety € dom A, and let M be the class of nondecreasing functions
from [0, 400 to [0,400] that vanish only at 0. Suppose that one of the following holds.

(i) A is uniformly monotone at y, i.e., there exists ¢ € M such that

(Vo € Ay)(V(z,u) € grad) (r—y|u—v)=o(lz—yl). (2.6)

(ii) A is uniformly monotone, i.e., there exists ¢ € M such that (2.6) holds for every y € dom A.
(iii) A is strongly monotone, i.e., there exists p € |0, 4+00] such that A — pld is monotone.

(iv) A= 0f, where f € T'o(H) is uniformly convex at y [406, Section 3.4/, i.e., there exists p € M
such that

(Va €10, 1[)(Vx € dom f)
flaz+ (1 —a)y) +a(l —a)¢(lz —yl) < af(z)+ 1 -a)f(y). (27)

(v) A=0f, where f € To(H) is uniformly convez, i.e., there exists ¢ € M such that (2.7) holds
for every y € dom f.



(vi) A= 0f, where f € To(H) is strongly convex, i.e., there exists p € |0, +oo such that f—p||-||?/2
1S conver.

(vil) A =0f, where f € T'o(H) and the lower level sets of f are boundedly compact.
(vili) J4 is compact, i.e., for every bounded set C C H, the closure of Jo(C') is compact.

(ix) dom A is boundedly relatively compact, i.e., the intersection of its closure with every closed
ball is compact.

(x) H is finite-dimensional.
(xi) A: H — H is single-valued with a single-valued continuous inverse.

(xii) A is single-valued on dom A and Id —A demicompact [38], [47, Section 10.4], i.e., for every
bounded sequence (zy)nen in dom A such that (Azy)nen converges strongly, (Tn)nen admits a
strong cluster point.

Then A is demiregular at y.

Proof. Let ((yn,vn))nen be a sequence in gra A and let v € Ay be such that y, — y and v, — v.
We must show that y,, — .

(i): By (2.6), there exists ¢ € M such that (Vn € N) (y, —y | v, —v) > ¢(||lyn — y||). However,
since y, — y and v, — v, we have (y, —y | v, —v) — 0. Therefore, appealing to the properties of
¢, we conclude that ||y, — y|| — 0.

ii)=(i): Clear.
iii)

(
(
(iv)
(
(

=(ii): Indeed, A is uniformly monotone with ¢: ¢ — pt2.
=(i): See [46, Section 3.4].

v)=(iv): Clear.

vi)=(v): Indeed, f is uniformly convex with ¢: t s pt2/2.

(vii): Since (yp, —y | v) — 0, there exists p € |0, +-o00[ such that sup,cy (yn — y | vn) < p. Hence,
since y € dom df C dom f, (1.10) yields

(VneN)  f(yn) < fy) + (yn —y | va) < f(y) +p < +o0, (2.8)

which shows that (y,)nen lies in a lower level set of f. Since (y,)nen is bounded, it therefore lies
in a compact set. However, since weak convergence and strong convergence coincide for sequences
in compact sets, we conclude that y,, — .

(viii): We have (Vn € N) (yn,vn) € graAd = (vp, + Yn) — Yn € Ayn = yn = Ja(vn + yn). Since
(Un + Yn)nen converge weakly, it lies in a bounded set C'. Thus, (y,)nen lies in J4(C'), which has
compact closure. Hence y, — y = yn — ¥.

(ix)=-(viii): Let C' C 'H be bounded. Then J4(C) C J4(H) = dom A and, by nonexpansivity of
Ja, J4(C) is bounded. Altogether, J4(C) has compact closure.

(x)=(ix): Clear.



(xi): Since Ay, = v, — v = Ay, we have y, = A~ lv, — A" lv =y.

(xii): Since (yp)nen converges weakly, it is bounded. In addition, (Ayy,)nen = (Vn)nen converges
strongly. Hence, by demicompactness of Id —A, (yn)nen has a strong cluster point z and, since
Yn — Yy, we must have x = y. Now suppose that y, /4 y. Then, there exist ¢ € |0, +o00] and a
subsequence (yg, Jnen such that

(" eN) lyk, —yll = e (2.9)

However, since yr, — y and (Ayg, )nen converges strongly, arguing as above, we can extract a
further subsequence (ylkn Jnen such that Y, — Y, which contradicts (2.9). Therefore, y, — y. O

Next, we recall the notion of cocoercivity.

Definition 2.5 Let x € |0,+00[. An operator B: H — H is x-cocoercive if xB is firmly nonex-
pansive, i.e.,
(Ve € H)(Vy € H) (z —y | Bz — By) > x||Bz — By|*. (2.10)

Firmly nonexpansive operators include resolvents of maximal monotone operators, proximity
operators, and projectors onto nonempty closed convex sets. In addition, the Yosida approximation
of a maximal monotone operator of index y is x-cocoercive [2] (further examples of cocoercive
operators can be found in [49]). Tt is clear from (2.10) that, if B is y-cocoercive, then it is x -
Lipschitz continuous. The next lemma, which provides a converse implication, supplies us with

another important instance of cocoercive operator (see also [27]).

Lemma 2.6 [7, Corollaire 10] Let p: H — R be a differentiable convex function and let T € |0, +o0|.

Suppose that V¢ is T-Lipschitz continuous. Then Vi is T~ -cocoercive.

We shall also use the following fact.

Lemma 2.7 [22, Lemma 2.3] Let x € |0,+oc[, let B: H — H be a x-cocoercive operator, and let
~v €10,2x[. Then Id — B is nonexpansive.

We are now ready to record some convergence properties of the forward-backward algorithm,
which are of interest in their own right. The forward-backward algorithm finds its roots in the
projected gradient method [34] and certain methods for solving variational inequalities [6, 16, 35, 43|
(see also the bibliography of [22] for more recent developments).

Theorem 2.8 Let (H,|||-|||) be a real Hilbert space, let x € 10, +00], let A: H — 2™ be a mazimal
monotone operator, and let B: H — H be a x-cocoercive operator such that

Z = (A+B)"Y0) £ 2. (2.11)

Fiz e € )0, min{1, x}[, let (7n)nen be a sequence in [g,2x —¢], let (An)nen be a sequence in [0,1 — €],
and let (an)nen and (by)nen be sequences in H such that Y, |||an||| < +oo and D, |||bal|| <
+o00. Finally, fit xqg € H and, for every n € N, set

Tpt1 = ATy + (1= Ay) (J%A(wn — Yn(Bxy, + by)) + an). (2.12)

Then the following hold for some x € Z.

(i) z, — .



(ii) Bz, — Bex.
(ili) xp — Jy, a(xn — WmBxy) — 0.
(iv) Suppose that one of the following is satisfied.

(a) A is demiregular at  (see Proposition 2./ for special cases).
(b) B is demiregular at x (see Proposition 2./ for special cases).
(c) int Z # @.

Then x,, — x.

Proof. For every n € N, set

Tl,n - J’ynAa TQ,n =1Id — fYnBa

(2.13)

2
€ln = Qp, €2 n = —Ynbn, pn =1 — A, ,Bl,n =2, and ﬁZ,n = 7X
n

Then ) cnpnlllein|l]l < +o00, Do cntnllle2nll| < +oo, and, by [22, Equation (6.5)], Z =
Mpen Fix Ty, T2 . Moreover, as seen in [22, Section 6], (1 — 81,,)Id + 81,,T1,, and (1 — f2,)Id +
B2.n T2, are nonexpansive, and (2.12) can be rewritten as

Tn+1 = Tp, + Hn (Tl,n (T2,nmn + e2,n) + €1n — mn)7 (214)
which is precisely the iteration governing [22, Algorithm 1.2], where m = 2.
(i): [22, Corollary 6.5].

(i1)&(iii): We derive from (2.14), [22, Remark 3.4], and our assumptions on (Ap)nen and (4 )nen
that (Id —T2,)xy, — (Id — T3 )x — 0 and, in turn, that Bx,, — Bx. Likewise, [22, Remark 3.4]
yields @, — T, T2z, — 0 and, therefore, x, — J,, a(x, — YwBx,) — 0.

(iv)(a): Set v = —Bzx and
(e §Yn=Tmal@a- nBn) (2.15)
vy =7, (Tn — Y,) — By,

On the one hand, we have v = —Bx € Az and (Vn € N) (y,,,v,) € gra A. On the other hand, we
derive from (i) and (iii) that y,, — . Furthermore, since

zn =y,

n

(Vn e N) |[jon — ]| < + [[[ B, — Bzl|], (2.16)

it follows from (ii), (iii), and the condition inf,ex7, > 0 that v, — v. It then results from
Definition 2.3 that y,, — « and, in turn, from (iii) that =, — x.

(iv)(b): Set v = Bx and (Vn € N) v,, = Bx,,. Then (i) yields @, — « and (ii) yields v, — v.
It thus follows from Definition 2.3 that x,, — .

(iv)(c): This follows from (i) and [22, Theorem 3.3(i) & Lemma 2.8(iv)]. O

The main results of this section are the following theorems. Let us start with weak convergence.



Theorem 2.9 Let ((zin)nen)i<i<m be sequences generated by Algorithm 2.2. Then, for every
i€ {l,...,m}, (xin)nen converges weakly to a point x; € H;, and (x;)i1<i<m 5 a solution to
Problem 1.1.

Proof. Throughout the proof, a generic element « in the Cartesian product H; x --- x H,, will be
expressed in terms of its components as = (z;)1<i<m. We shall show that our algorithmic setting
reduces to the situation described in Theorem 2.8(i) in the Hilbert direct sum H =H; & --- ® Hyp,
obtained by endowing H; X --- X H,,, with the scalar product

m

(10 (@y) =Y | i), (2.17)

=1

with associated norm

-1l 2=

S flaal. (2.18)
=1

To this end, we shall show that the iterations (2.3) can be cast in the form of (2.12). First, define
A:H — 2" 2 XA, and (VneN) A,:H — 2™z XA ;. (2.19)
i=1 i=1

It follows from the maximal monotonicity of the operators (A4;)1<i<m, condition (i) in Algorithm 2.2,
(2.17), and (2.19) that
A and (A, )nen are maximal monotone, (2.20)

with resolvents
JarH — H:z— (Ja,vi)i<icm and (Vn€N) Ja,: H— H:z (Ja,,Ti)1<i<m, (2:21)

respectively. Moreover, for every p € |0, +oo[, we derive from (2.18), (2.21), and condition (i) in
Algorithm 2.2 that

m
Z Sup H’J'YnAny - J"/nAy|H = Z Sup Z HJ’YnAi,nyi - J’YnAzyl||2
Sollii<e Sli<e \ S

m
<> sup >y, — Jyauill

Sillwlli<e =

m
<IN sup a0 — Tyl
i=1 neN llyill<p

< +oo. (2.22)
Now define
B:H—H:xz— (Bix)i<i<m and (VneN) B,:H —H:x— (Bip®)i<i<m- (2.23)

Then (1.7) is equivalent to
findx € Z = (A+ B)™(0). (2.24)

Moreover, in the light of (2.17), (2.18), and (2.23), (1.6) becomes
(Vz € H)(Vy € H) ((x —y| Bz~ By)) > §|||Bz — By|||*. (2.25)



In other words, B is -cocoercive. Next, let n € N and set
cn = (ain)i<icm and  dy = (bin)i<i<m.
We deduce from (2.18) and condition (iii) in Algorithm 2.2 that

m m
Do lllerlll < D2\ Naiel < D0 llaigll < +oo

keN keN \ i=1 1=1 keN

and, likewise, that

> Ml < +oe.

keN
Now set
Tn = (Tin)i<icm and Ay H —H: z = (Ain®i)i<i<m.

It follows from (2.18) and condition (iv) in Algorithm 2.2 that

I|[|[Ap]]l = max Xjp <1 and |||[Id —A,l||=1— min A\;, <1.
1<i<m 1<i<m
Hence,
ARl +[[Td = An[l] = 1+ max (Ajn —An) = min (Xin —An) < 1+ 7,
1<i<m 1<i<m
where

T = 2 12&;};@ |Xin — Anl.

We observe that, by virtue of condition (iv) in Algorithm 2.2,

m
ZTk = 22128%)§1|Ai’k — )\k| < 222 |>\i,k — )\k’ < +00.
keN —

keN i=1 keN

Moreover, in view of (2.21), (2.23), (2.26), and (2.29), the iterations (2.3) are equivalent to

Ty = Az + (Id — Ay) (4, (20 — W (Bazn + dn)) +¢n).

Now define
D, = B, — B.

(2.26)

(2.27)

(2.28)

(2.29)

(2.30)

(2.31)

(2.32)

(2.33)

(2.34)

(2.35)

It follows from condition (ii)(a) in Algorithm 2.2, (2.18), and (2.23) that D,, is Lipschitz continuous

with constant k, = /> ", k7 and that

m m
ka:Z Z/ﬂ?7k§ZZHi,k<+oo.

keN keN i=1 i=1 keN

Furthermore, set
b, = D,x, + d,

and let x € Z. Then

o[l < [[[Dnall] + [[|dx]]]
< |[[Dn@y — Dypz[|| + ||| Dpz — Dnz|[| +|||dy]]]
< wn(|l[@n — ||| + |l = 2[[]) +[[|dall],

10

(2.36)

(2.37)

(2.38)



where z is provided by assumption (ii)(b) in Algorithm 2.2. We now set
T,=1d —v,B and e, =Jy,a,(Thz)— . (2.39)
On the one hand, the inequality supyey v < 20 yields
1Tl < p, where p = |||]|| +26/[| B (2.40)
On the other hand, since @ is a solution to Problem 1.1, Proposition 2.1, (2.21), and (2.23) supply
x=J, aA(Tyx). (2.41)

Therefore, (2.39), (2.40), and (2.22) imply that

> lllexlll = M yean (Tra) — /| =Y (1, 4, (Trz) — Jo,a(Ti)|]] < +o00. (2.42)
keN keN keN
In addition, (2.35), (2.37), and (2.39) yield
A, (T — W (Brn +dp)) —x = Jy, A, (Tn@n — Yaby) — Jy, 4, (Th) + ey, (2.43)

Since J,, o and, by Lemma 2.7, T',, are nonexpansive, we derive from (2.43) and (2.38) that

117504, (®n = W (Bnzn + dn)) = /|| < 175, 4, (Tn@n = bn) = Jy, 4, (Tnz)||| + [llen]]
< |[Thzn — byn — Tzl + [|[exn]|]
< llen — z[[| + vnlllbnll] + [[lenll|
< |lfen — ||| + 26][|bnll] + |[|exl]|
< (L+26kn) |||l — ||| + 20kn||z — 2]|]
+ 26|/l dnll| + [llen]l]- (2.44)

Thus, it results from (2.34), (2.44), (2.31), and (2.30) that

[|xns1 — ||| = |||[An(Tn — ) + (Id — An)(J'YnAn (mn — Yn(Bn®y + dn)) — +Cn)|||

< |[[Anll[ [[ln — || + [[Td — Aq][[[leal]
+[1Id — An[l[ {175, 4, (2n = Y0 (Bnan + dn)) — ||

< |[[Anll[ [len — || + [[1d — Axn][[[[lea]]
+ 1[I — Agll| (1 + 2885 [[|@n — ||| + 28kn| ||z — =[]
+26ldnlll + [llexll])

< (Al +[111d = An]ID)llzn — 2l + [[Td — Anll] ([[lenll] + 285nl||2n — |||
+ 28kl — 2|[] + 28 |dall] + |llexll])

< (L4 7)lllen — (|| + [llenll] + 26|l |zn — ||
+ 260l — 2l[| + 28] |dn] || + [||€x]]|

< (14 an)|||®n — ||| + On, (2.45)

where
On =Tn + 20k, and 0y = |[|enl|| + 2850l — 2l[| + 28] |dn|] + [llen]]]- (2.46)

In turn, it follows from (2.33), (2.36), (2.27), (2.28), and (2.42) that ), .oy < 400 and D ;o 0k <
+00. Thus, (2.45) and [39, Lemma 2.2.2] yield

sup |||z — ||| < +00 (2.47)
kEN
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and, using (2.36) and (2.28), we derive from (2.38) that

> Il < +oo. (2.48)
keN

In view of (2.37), (2.35), and (2.39), (2.34) is equivalent to
Tpi1 = Apzn + (Id — An)(J’ynA(Tnmn — Ynbn) + hn)a (2.49)

where
hn=J,, 4, Thy —Ybn) — Jy, aA(Thxn — Ynbyn) + cp. (2.50)
Now set p = suppen |||k — ||| + p + 26 supgen |||bk|||. Then it follows from (2.47) and (2.48) that
p < +00. Moreover, we deduce from the nonexpansivity of T',, and (2.40) that
T nen = Wmbulll < [[[Tnan — To||| + [[[Thz|]] + 25][bxll]
< [fan = z[[[ + p + 25| [ba]]
< . (2.51)

Hence, appealing to (2.22) and (2.27), we infer from (2.50) that

> Ikl < +o0. (2.52)
keN
Note that, upon introducing
1
a, =h, + q(An - )\nId)(:Dn - J’ynA(Tn:Bn - 7nbn) - hn) (253)

and using (2.39), we can rewrite (2.49) in the form of (2.12), namely,
Tnt1 = \pn + (1= Ay) (J%A(wn — Yn(Bxy, + by)) + an). (2.54)
On the other hand, using (2.41) and the nonexpansivity of .J,, 4 and T',,, we get

||| — J’ynA(ann — Yubn) — || < |J2n — || + H|J’YnA(Tna7) - J’ynA(ann — Ynbn)l||
+ [[[Fenll|
< 2|[|en, — ||| + 28] [ball| + [|[Fnl]]- (2.55)

Therefore, we derive from (2.47), (2.48), and (2.52) that

v = Zug [ler — Iy, a(Trr — yibi) — hi|| < o0, (2.56)
€

and hence, from (2.53), (2.29) and the inequality A\, <1 — ¢, that
1
llanlll < {lhalll + = [lAn = AaId [[| [l = Jy, A(Tn@n — nbn) = hal]]
< Ml + 2 max i = Aul. (2.57)
g 1<i<m

Thus, using (2.52) and arguing as in (2.33), we get

> llaxll] < +oc. (2.58)

keN
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However, Theorem 2.8(i) asserts that, with properties (2.20), (2.25), (2.48), (2.58), and under the
hypotheses on (7v,)nen and (Ay)nen stated in Algorithm 2.2, the sequence (xy),cn generated by
(2.54) converges weakly to a point in Z. Since (2.54) is equivalent to (2.3) and (2.24) is equivalent
to (1.7), the proof is complete. O

We conclude this section with the following theorem, in which we describe instances of strong
convergence derived from Theorem 2.8.

Theorem 2.10 Let ((zin)neN)1<i<m and (z;)1<i<m be as in Theorem 2.9. Then the following hold.
(i) Suppose that, for some i € {1,...,m}, A; is demiregular at x; (see Proposition 2.J for special
cases). Then x;, — x;.

(ii) Suppose that the operator (y;)i<j<m — (Bi(yj)léjﬁm)1gigm is demiregular at (x;)1<i<m (see
Proposition 2. for special cases). Then, for everyi € {1,...,m}, x;, — ;.

(iii) Suppose that the set of solutions to Problem 1.1 has a nonempty interior. Then, for every

ie{l,...,m}, zin — x;.

Proof. We use the same product space setting and notation as in the proof of Theorem 2.9. In
particular, we set © = (x1,...,2y) and H = H1 @ -+ - ® H,,, and we define

A:H—-2M y— XAy, and B:H—H:y— (Biy)i<i<m- (2.59)
i=1

As seen in the proof of Theorem 2.9, the convergence properties of (€, )nen = ((Zin)i<i<m)nen
follow from those listed in Theorem 2.8 and applied to the operators defined in (2.59); moreover,
the set of solutions to Problem 1.1 is Z = (A + B)~1(0).

(i): Set v; = —B;(x1,...,2zy) and

zn:J i\ Lin — nBz ny s bmmn
(Vn € N) {y e (i = I Bi(@Ln o Tmn) (2.60)

Vin = %?1(901,71 - yi,n) - Bi(xl,na cee awm,n)‘
We first derive from (1.7) that
v; = —Bi(I‘l, e .Tm) € Ax;. (261)

Moreover, it follows from Theorem 2.8(i) that

Tin — T, (2.62)
from Theorem 2.8(ii) that
|Bi(1ms- - Tmn) — Bi(z1,...,2m)| = ||Biz, — Biz| < |||Bx,, — Bz||| — 0, (2.63)
and from Theorem 2.8(iii) and (2.21) that
i = Yinll < |[|@n = Ty, a(@n = Bza)||| — 0. (2.64)
Combining (2.62) and (2.64), we obtain
Yin — 10 (2.65)
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Next, we derive from (2.60) that
(Vn e N)  (Yin,vin) € grad,; (2.66)
and that

(v €N [fosn — vi]| < 1B = il
7

n

+ [|Bi(x1n, s Tmpn) — Bi(x1, ..., 2m)] (2.67)

Hence, it follows from (2.64), the condition inf,cnv, > 0, and (2.63), that
Vi — i (2.68)
Altogether, (2.61), (2.65), (2.66), (2.68), and Definition 2.3 yield y;, — ;. In turn, appealing to
(2.64), we conclude that z;, — z;.
(ii): This follows Theorem 2.8(iv)(bh).
(iii): This follows Theorem 2.8(iv)(c). O

3 Coupling evolution inclusions

Evolution inclusions arise in various fields of applied mathematics [30, 42]. In this section, we
address the problem of solving systems of coupled evolution inclusions with periodicity conditions.

Let us recall some standard notation [15, 48]. Fix T € ]0, +oo[ and p € [1,4o0[. Then D(]0,T)
is the set of infinitely differentiable functions from ]0,7[ to R with compact support in ]0,77.
Given a real Hilbert space H, C([0,7];H) is the space of continuous functions from [0,7] to H
and LP([0,T7]; H) is the space of classes of equivalences of Borel measurable functions z: [0,7] —
H such that fo |z (t)|[Fdt < 4o0. L2([0,T);H) is a Hilbert space with scalar product (z,y) —

fo ) dt. Now take z and y in L'([0,7];H). Then y is the weak derivative of z if
fo = — fo (do(t)/dt)x(t)dt for every ¢ € D(]0,T[), in which case we use the notation
Yy = a:’ . Moreover7

Wh2([0,T);H) = {z € L*([0,T};H) | 2’ € L*([0, T]; H)}, (3.1)
equipped with the scalar product (z,y) — fo t) | y(t))ydt + fo t) | y'(t))ydt, is a Hilbert

space.

Problem 3.1 Let (H;)1<i<m be real Hilbert spaces and let T' € |0, +oco[. For every i € {1,...,m},

set
Wi = {z € ([0, T); Hi) nWH([0,T]; Hy) | (T) = =(0)}, (3.2)

let f; € To(H;), and let B;: Hy x -+ x H,;, — H;. It is assumed that there exists 3 € ]0,+oo[ such
that

(V(Xl,...,Xm)EH1X-~~XHm)(V(y1,...,ym)EHIX-”XHm)

Z<Xi_}’i‘Bi(xlw--axm)_Bi(yla--'aYm >ﬂZHB (X1, .00y Bi(Ylv---aym>H2Hi‘ (3.3)
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The problem is to

find x1 € Wi,...,Tm € W,, such that
(Vie{l,...,m}) 0e€xi(t)+ fi(xi(t)) + Bi(x1(t),...,zm(t)) ae. on |0,T[, (3.4)

under the assumption that such functions exist.

Algorithm 3.2 Fix ¢ € |0,min{1, 8}[, (Yn)nen in [£,208 —¢], and (Ap)nen in [0,1 —¢]. Let, for
every n € N and every ¢ € {1,...,m}, y;, be the unique solution in Wj; to the inclusion

‘ri,n(t) - yi,n(t)

o — (Bi(@1,n(t), ., Zmn(t)) + bin(t))

€ Yi n(t) + Ofi(yin(t)) + €in(t) ae. on J0,T[ (3.5)

and set
Tint1 = NinZin + (1 — XNin)Yin (3.6)

where, for every ¢ € {1,...,m}, the following hold.

(i) zi0 € WH2([0,T]; Hy).

(ii) (bin)nen and (ein)nen are sequences in L2([0,T]; H;) such that

T T
3 \//O B3, dt < +00 and Y \//O lein(t)13,dt < +o0. (3.7)

neN neN

(iii) (Ain)nen is a sequence in [0, 1] such that > [Ain — An| < 4-00.
In (3.5), bin(t) models the error tolerated in computing Bi(z1,(t),...,Zmn(t)), while e;n(t)
models the error tolerated in solving the inclusion with respect to of;(y; . (t)).

We now examine the weak convergence properties of Algorithm 3.2 (strong convergence condi-
tions can be derived from Theorem 2.10).

Theorem 3.3 Let ((zin)neN)i<i<m be sequences generated by Algorithm 3.2. Then, for every i €

{1,...,m}, (Tin)nen converges weakly in W12([0,T];H;) to a point x; € Wi, and (z;)1<i<m s a
solution to Problem 5.1.

Proof. For every i € {1,...,m}, set H; = L?([0,T]; H;) and

A Hy — oM
{u € Hi | u(t) € 2'(t) + Ofi(z(t)) ae. in ]O,T[}, if xeW; (3.8)
T
9, otherwise.

Let us first show that the operators (A;)i<i<m are maximal monotone. For this purpose, let i €
{1,...,m}, and take (z,u) € gra A; and (y,v) € gra A4;. It follows from (3.8) that, almost everywhere
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on 0, T, u(t) — 2/ (t) € Of;(x(t)) and v(t) — y/(t) € Of;(y(t)). Therefore, by monotonicity of of;, we
have

T
| @0 =01 () = (0) = (o(6) = () 1 > 0, (3.9)
Hence,
T
@y u=vh= [ (o0 - y(®) |ult) v e
0
T
= [ =) | (ult) = '0) = (ol0) = /()

K3

T
4 [ Gt -y |50~ 0 e
0

1 (T dz(t) —y@)l,
> 2/0 a Hi gt
= %(IIH«“(T) —y(D)IIE, — 12(0) = y(0)I§,)
=0. (3.10)

Thus, A; is monotone. To prove maximality, set g; = (1/2)| - |, + fi. Then g; € To(H;) and
0g; = Id +0f;. Moreover, since f; € I'g(H;), it follows from the Fenchel-Moreau theorem that it
is minorized by a continuous affine functional, say f; > (- | v)y. +n for some v € H; and n € R.
Now, let y € domf; = domg; and take (x,u) € gradg;. Then (1.10) and Cauchy-Schwarz imply the
coercivity property

oy lwn, gk —8ily)
IxX[lw, = lxllk,
_ Ixllwe | £iG0 — giy)
2 %[ H,
X[l n—gi(y)
2 [/
— 400 as ||x||n, — +o0. (3.11)

> = IIvlln, +
Therefore, [15, Corollaire 3.4] asserts that for every w € H; there exists z € W; such that
w(t) € 2/(t) + 0gi(2(t)) = 2'(t) + 2(t) + Ofi(2(t)) a.e. on ]0, T, (3.12)

i.e., by (3.8), such that w — z € A;z. This shows that the range of Id +A; is H; and hence, by
Minty’s theorem [5, Theorem 3.5.8], that A; is maximal monotone.

Next, for every i € {1,...,m} and every (z1,...,2m) € H1 X -+ X Hyy, define almost everywhere
Bi(x1,...,2m): [0,T] — H;: t — Bi(z1(t), ..., zm(t)). (3.13)

Now let (z1,...,2m) € Hi X -+ X Hy, and set (Vi € {1,...,m}) b; = B;(0,...,0). Then it follows
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from (3.3) and Cauchy-Schwarz that, almost everywhere on [0, 77,

J

52\\5j(x1(t)7-~-7$ (1)) — bjl&, SZ zj(t) =0 Bj(z1(t), -, 2m(t)) = bj)y,

NERD

< 2 Nz @)ln; 1B (21(2), - -, 2 (8)) = bjlln;

1

.
Il

< ([ 2o Mz @R, [ D 1B (@10, e () = bjlE, . (3.14)
j=1

7j=1
Therefore, for every i € {1,...,m},
1BiCar, . o) O3, < 20Ibill3, + [ Bio1,. . 2) () — bill3,)

< 2<||bi||ai £ 1B (0), ) — bjuaj)

j=1
<2(Inl}, + i o5 0, ) ae. on 10.71, (3.15)
<
which yields , .
| 1B )@ e < 2Tl + >l (3.16)

so that we can now claim that B;: Hy x -+ x Hp,, — L2*([0,T);H;) = H;. In addition, upon
integrating, we derive from (3.3) and (3.13) that, for every (y1,...,ym) € H1 X + -+ X Hyn,

S @i —yi | Bilwr, . xm) = Bilys, - ym)) = B |Bi(@, - wm) = Bilyn, -y [P (3.17)
=1

i=1
We have thus established (1.6).

Let us now make the connection between Algorithm 3.2 and Algorithm 2.2. For every n € N and
every i € {1,...,m}, it follows from (3.5), (3.8), (3.13), and the maximal monotonicity of A; that
Yin is uniquely defined and can be expressed as

Yin = Jy, A, (x@ n— Yn (Bi(xlyn, N bm)> + ain (3.18)
where

Qi = Jvy, Ay ( — Tn€in + Tin — Tn (Bi(xl,rw cee 7$m,n) + bz,n))
— J’YnAz' <5L'i,n — Yn (Bi(l'l,na - a$m,n) + bz,n)) . (319)

We therefore deduce from (3.6) that

Tin+l = )\i,nxi,n + (1 - Az,n) (J'ynA (-Tz n — In (Bi($1,na <. ame,n) + bz,n)) + ai,n)- (320)
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Thus, (3.20) derives from (2.3) with A;, = A; and B;, = B;. On the other hand, for every
i € {1,...,m}, by nonexpansivity of the operators (J,,)nen, We deduce from (3.19) and (3.7)

that
S Nasnll € 3 Anllesnll €283 lleinll < +oc. (3.21)
neN neN neN
As a result, all the hypotheses of Algorithm 2.2 are satisfied and hence Theorem 2.9 asserts that, for
every i € {1,...,m}, (zin)nen converges weakly in H; = L2([0,7]; H;) to a point z;, and (7;)1<i<m
satisfies
(Vie{l,...,m}) 0¢€ Ajx;+ Bi(x1,...,2m). (3.22)
Accordingly,
= ; 2
o= max sup @il < +o0 (3.23)

and (Vi € {1,...,m}) z; € dom A; C W;. Moreover since, in view of (3.8) and (3.13), (3.22) reduces
to (3.4), (x;)1<i<m is a solution to Problem 3.1.

To complete the proof, let i € {1,...,m}. To show that (z;,)nen converges weakly to z; in
WL2([0, T); H;), it remains to show that (2}, )Jnen converges weakly to z in L%([0,T); H;). We first
observe that (z;,)nen lies in W12([0, T]; H;). Indeed, it follows from (3.8) that

(Vn € N)(Vz € H;)  Joy,a,2 € dom(y,4;) € Wi € WH2([0,T]; H,). (3.24)

As a result, we deduce from (3.19) that (a;,)nen lies in WH2([0,T];H;). On the other hand,
by construction, (y;n)nen lies in W; € WH2([0,T]; H;). In view of (3.6) and (i) in Algorithm 3.2,
(Zin)nen is therefore in W2([0, T; H;). Next, let us show that (27, Jnen is bounded in L*([0, T'; H;).
To this end, let n € N and set

_ Zin(t) = yin(t)

Wiy (t) = - Bi(1,n(t), .- Tmm(t)) = bin(t) — yin(t) —ein(t) ae. on ]0,T[. (3.25)
Then we derive from (3.5) that
wi,n(t) € Oﬂ(yl,n(t)) a.e. on ]O,T[. (3.26)
Hence, since w; ,, € H;, it follows from [15, Lemme 3.3] that
d fz O Yin t
w = <wi’n(t) | ygyn(t)>Hi a.e. on ]0,77. (3.27)

On the other hand, since y; , € W;, we have y; ,(T') = y;,(0). Therefore

T )  (Tdfioyin)) (s _
/0 (Wi () | Yin (), dt = /0 4t = fi(yin(T) = fiyin(0)) = 0 (3.28)

and, furthermore,

= 0. (3.29)

T T dllu: 2 ‘ 2 ‘ 2
1 dllyin ()l i (T) 17, — i (0)[I5,
in(t) |yl (), dt = = ’ Ldt = —— : ’ :

| a0 1 i) =5 [ =2 _

We deduce from (3.28), (3.25), and (3.29) that

0= /0T<wi,n(t) ‘ ygyn<t)>Hidt—/OT<Bi(x1,n(t),...,xm,n(w) | (D),

Tn

T

T / T / 2 /
—A(%ﬁﬂwﬂmmﬁ—é\MMmmﬁ—A<%ﬁH%Mmmﬁ (3.30)
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Thus, using Cauchy-Schwarz, the inequality 7, > ¢, and (3.13), we obtain
9l < (21l + 1B o)l Wil + il ) Il (3.31)
In turn, it follows from (3.6) that
2% g Il < Ainll2d ] 4+ (1= Ain) <i|lﬂf¢,n|l FIBi(@1n, - Zmn) |+ [binll + ||€i,n||>- (3.32)

On the other hand, arguing as in (3.16), we derive from (3.23) that

2mao? o
[Bi(z1,ms - -, Tmn) || < \/2T||bz'||2Hi T s V2T b, + v2m 3 (3.33)
Hence, using (ii) in Algorithm 3.2, we derive by induction from (3.32) that
o o
ot < ma {latoll, E 4 VET Il + V2 5 +sup (sl + lessl) b (330
€

This shows the boundedness of (7}, )nen in L2([0,T];H;). Now let z be the weak limit in
L?([0,T]; H;) of an arbitrary weakly convergent subsequence of (], Jnen. Since (2 n)nen converges
weakly in L2([0, T]; H;) to z;, it therefore follows from [48, Proposition 23.19] that z = z}. In turn,
this shows that (27, )nen converges weakly in L%([0,T); H;) to z}. O

4 The variational case

We study a special case of Problem 1.1 which yields a variational formulation that extends (1.5).

Recall that, for every f € Tg(H) and every z € H, the function y — f(y) + ||z — y/|?/2 admits
a unique minimizer, which is denoted by prox;z. The proximity operator thus defined can be
expressed as prox; = Jyy [36].

Problem 4.1 Let (H;)1<i<m and (Gi)i<k<p be real Hilbert spaces. For every i € {1,...,m}, let
fi € To(H;) and, for every k € {1,...,p}, let 7, € |0, +o0], let p: Gr — R be a differentiable convex
function with a 7g-Lipschitz-continuous gradient, and let Ly;: H; — Gi be linear and bounded. It
is assumed that minj<g<p > iv; || Lgil|* > 0. The problem is to

m p m
C . Loigs 4.1
B D SLCRD A O ) )

-----

under the assumption that solutions exist.

Algorithm 4.2 Set
1
5= (4.2)

_ .
LiilI?
plglggpmgll |
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Fix € € |0, min{1, B}[, (Yn)nen in [€,20 — €], (An)nen in [0,1 — €], and (24,0)1<i<m € H1 X -+ X Hyp.
Set, for every n € N,

Tintl = M pZin +

p m
(1 - )‘l,n) (proxwfl,n <x1,n —Tn (ZL21V¢I€ ( Z ijxj,n> + bl,n)) + al,n>7

k=1 j=1

Tmn+l = )\m,n‘rm,n +

p m
(1 - Am,n) <P1"OXfynfm7n <$m,n — Tn <ZL]:mVSOk < Z ij$j,n> + bm,n>> + am,n) >

k=1 j=1
(4.3)
where, for every ¢ € {1,...,m}, the following hold.
(1) (fin)nen are functions in I'g(H;) such that
(Vp €10, +o0]) Z sup || ProX., s Y — Prox, yl| < 4o0. (4.4)

nen lyli<e

(i) (@sn)nen and (b;n)nen are sequences in H; such that Y-y llain| < 400 and Y- bl <
+00.

(iii) (Ain)nen is a sequence in [0, 1] such that > [Ain — An| < 4-00.

We now turn our attention to the asymptotic behavior of Algorithm 4.2 (strong convergence
conditions can be derived from Theorem 2.10).

Theorem 4.3 Let ((2in)nen)i<i<m be sequences generated by Algorithm J.2. Then, for every

i€ {l,...,m}, (@in)nen converges weakly to a point x; € H;, and (x;)i1<i<m 5 a solution to
Problem J.1.
Proof. Problem 4.1 is a special case of Problem 1.1 where, for every i € {1,...,m},
p m
Ai = 8]01 and Bl (l'j)lgjﬁm = Z LZZVgok(ZLk]xJ> . (45)
k=1 j=1

Indeed, define H as in the proof of Theorem 2.9 and set
fiH —]—00,+00] : (zi)1<icm — Y, filw:) (4.6)
i=1

and

g: H—R: (zi)i1<i<m — zp: Pk < i Lkm')- (4.7)

k=1 =1
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Then f and g are in I'g(H) and it follows from Fermat’s rule and elementary subdifferential calculus
that, for every (z1,...,2n) € H,

(x1,...,2py) solves (4.1) < (0,...,0) € I(f +9g)(x1,...,Tm)
(0,...,0) € 0f (x1,...,xm) + Vg(x1,...,2m)

p m
s (Vie{l,...,m}) 0edf(x) —I—ZLZZ-Vgok(Zij:L’j>
j=1

k=1
& (Vie{l,...,m}) 0€ Ax; + Bi(z1,...,Tm). (4.8)

Next, let us show that the family (B;)i<i<m in (4.5) satisfies (1.6) with 8 as in (4.2). First,
Lemma 2.6 asserts that, for every k € {1,...,p}, Ve is 7 Lcocoercive. Hence, for every

(x1,...,2m) € H and every (yi,...,ym) € H, it follows from (4.5), (4.2), and the convexity of
| - [|* that

m P m
= Zz<xz Yi LZi <v90k(ZLk]x]) v@k<ZLkﬂ/j>>>
i=1 k=1 j=1 j=1
m P m
=> > <Lkz( — i) Vsﬁk<ZLkﬂ‘J> - V@k<Zijyj)>
i=1 k=1 Jj=1 J=1
p m m
=> <Z Lyizi — Zleyz V@k(Z%;%) - V¢k<Zijyj>>
k=1 ‘i=1 j=1
P4 2
>y . Vr ( Z Lkﬂ;) — Vo, ( Z ijyj>
k=1 j=1
p m m 2
= Z 5 ZIILmll ”V%(ZLM%’) - V@k(Z%%)
k=1 ZZ 1 ”L 7»” j=1 j=1
p m m 2
>pB) D 1Lkl HV% < > Lk;%) — Vg, < > ijyj)
k=1 i=1 j=1 j=1
m p m 2
>B8Y pY Lk <V¢k<Zijxj> - VSDk:<Zijyj>>
i=1 k=1 j=1 j=1
m D p m 2
>BY ZLsz(Pk(ZLkJ«TJ) - ZLZiV¢k<Zijyj) (4.9)
i=1 1l k=1 j=1 k=1 j=1
This shows that (1.6) holds. Furthermore, upon setting
(\V/’L S {1, ... ,m})(Vn € N) A'i,n = afw and Bi,n = B, (410)

we deduce from (4.4) that Algorithm 4.2 is a particular case of Algorithm 2.2. Altogether, Theo-
rem 4.3 follows from Theorem 2.9. O

Here are a couple of applications of Problem 4.1.
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Example 4.4 (network flows) Consider a network with M links indexed by j € {1,..., M} and
N paths indexed by I € {1,..., N}, linking a subset of @) origin-destination node pairs indexed by
ke {1,...,Q}. There are m types of users indexed by i € {1,...,m} transiting on the network.
For every ¢ € {1,...,m} and [ € {1,...,N}, let §& € R be the flux of user i on path [ and let
z; = (&1)1<i<n be the flow associated with user ¢. A standard problem in traffic theory is to find
a Wardrop equilibrium [45] of the network, i.e., flows (x;)1<i<m such that the costs in all paths
actually used are equal and less than those a single user would face on any unused path. Such an
equilibrium can be obtained by solving the variational problem [13, 37, 41]

o M hj(x1,...;xm)
minimize Z/o ¢j(h)dh, (4.11)
=1

1€CT, ., 2 €Cy

where ¢;: R — [0,400[ is a strictly increasing 7-Lipschitz continuous function modeling the cost
of transiting on link j and h;(x1,...,2,) is the total flow through link j, which can be expressed
as hj(x1,...,om) = St (Lz;)"ej, where e; is the jth canonical basis vector of RM and L is
an M x N binary matrix with jlth entry equal to 1 or 0, according as link j belongs to path
[ or not. Furthermore, each closed and convex constraint set C; in (4.11) is defined as C; =
{m)r<i<n € [0, +oo[Y | (VE € {1,...,Q}) D len, M= Sik }, where @ # Nj, C {1,..., N} is the set
of paths linking the pair k and d;; € [0, +00] is the flow of user ¢ that must transit from the origin
to the destination of pair k£ (for more details on network flows, see [40, 41]). Upon setting

M .
J
p1: RM = R: (vj)1<jem — Z/ ¢;(h)dh, (4.12)
j=170
problem (4.11) can be written as

minimize Z vy () + 1 ( Z Lmi> . (4.13)

N N
x1€ER 7-'~7xm€R i—1 i—1

Since 1 is strictly convex and differentiable with a 7-Lipschitz-continuous gradient, (4.13) is a
particular instance of Problem 4.1 with p =1, G; = RM and (Vi € {1,...,m}) H; =R, f; = ic,,
and Ly; = L. Accordingly, Theorem 4.3 asserts that (4.13) can be solved by Algorithm 4.2 which,
with the choice of parameters v, =~ €10,2/7[, \i,, =0, A\, =0, a;,, =0, and b; ,, = 0, yields

Vi€ {l,...,m}) @ins = Po, (xn LT ($1(p1m),- - ,¢M(pM,n))>, (4.14)

where (p1p,...,PMpn) = Z;”Zl Lz ,. In the special case when m = 1 the algorithm described in
(4.14) is proposed in [14]. Let us note that, as an alternative to (4.12), we can consider the function

M
Y1 RM — R: (Vj)lﬁjSM = Zyj¢j(yj>v (415)
j=1

under suitable assumptions on (¢;)1<j<p. In this case, (4.13) reduces to the problem of finding the
social optimum in the network [41], that is

$1€Cl,...,wm60m

M
minimize Z hj(@1, .. zm)d5 (R, ... Tm)), (4.16)
j=1
which can also be solved with Algorithm 4.2.
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Example 4.5 (best approximation) The convex feasibility problem is to find a point in the
intersection of closed convex subsets (Cj)i<i<m of a real Hilbert space H [10, 21]. This problem
arises in many applications in engineering and the physical sciences [17, 19]. In many instances, the
intersection of the sets (C;)1<i<m may turn out to be empty and a relaxation of this problem in the
presence of a hard constraint represented by Cj is to [23]

I

minimize — de (1), 4.17
z1€C QZWZ CZ( 1) ( )

=2

where (wj)2<i<m are strictly positive weights such that maxo<i<mw; = 1. We assume that this

problem admits at least one solution, as is the case when one of the sets in (C;)1<i<m is bounded

[23, Proposition 4]. Since, for every i € {2,...,m} and every x; € Cf, da (z1) = ming,ec, |21 —24]|?,

(4.17) can be reformulated as

N =
o Joinimize o Z WrptllT1 — g ). (4.18)
EARAS) m m k:l
This is a special instance of Problem 4.1 with p = m — 1 and, for every i € {1,...,m}, f; = (¢, and
d, if i=1;
w
Vke{l,....m—1}) o= ’“2“ -7 and Ly={-1Id, if i=Fk+1; (4.19)
0, otherwise.

We can derive from Algorithm 4.2 an algorithm which, by Theorem 4.3, generates orbits that
are guaranteed to converge weakly to a solution to (4.18). Indeed, in this case, (4.2) yields § =
1/(2(m—1)). For example, upon setting v, =~ € 10,1/(m — 1), A\, =0, Xi, =0, a;, =0, by, =0,
and f;, = tc, for simplicity, Algorithm 4.2 becomes

{fﬂl,nﬂ = Po, (1 =y Xy wi)zim + 7 ity wittin)

, (4.20)
(Vie{2,...,m}) ziny1 = Pg (’ywian +(1- ’ywi)xm).

In the particular case when m = 2 and v = 1/2, then we = 1, (4.18) is equivalent to finding a best
approximation pair relative to (C1,C2) [9, 11], and (4.20) reduces to

{xlm_;,_l = P01 ((«Tl,n + $2,n)/2)

(4.21)
Tomt1 = Poy, (@1, + 22,0)/2).
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