
THE DOUGLAS–RACHFORD ALGORITHM CONVERGES ONLY

WEAKLY
∗
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Abstract. We show that the weak convergence of the Douglas–Rachford algorithm for finding
a zero of the sum of two maximally monotone operators cannot be improved to strong convergence.
Likewise, we show that strong convergence can fail for the method of partial inverses.
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The original Douglas–Rachford splitting algorithm was designed to decompose
positive systems of linear equations [3]. It evolved in [5] into a powerful method for
finding a zero of the sum of two maximally monotone operators in Hilbert spaces,
a problem which is ubiquitous in applied mathematics (see [1] for background on
monotone operators). In this context, the Douglas–Rachford algorithm constitutes a
prime decomposition method in areas such as control, partial differential equations,
optimization, statistics, variational inequalities, mechanics, optimal transportation,
machine learning, and signal processing. Its asymptotic behavior is described next.

Theorem 1. Let H be a real Hilbert space, and let A and B be set-valued

maximally monotone operators from H to 2H with resolvents JA = (Id + A)−1 and

JB = (Id + B)−1. Suppose that zer (A + B) =
{

x ∈ H
∣

∣ 0 ∈ Ax+Bx
}

6= ∅, let

y0 ∈ H, and iterate

(1) (∀n ∈ N) xn = JByn and yn+1 = yn + JA(2xn − yn)− xn.

Then the following hold for some (y, x) ∈ graphJB:
(i) x = JA(2x− y), yn ⇀ y, and x ∈ zer (A+B).
(ii) xn ⇀ x.
Property (i) was established in [5]. Let us note that, since JB is not weakly

sequentially continuous in general, the weak convergence of (yn)n∈N in (i) does not
imply (ii). The latter was first established in [7] (see also [1, Theorem 26.11(iii)] for
an alternative proof). While various additional conditions on A and B have been
proposed to ensure the strong convergence of the sequence (xn)n∈N in (1) [1, 2, 5],
it remains an open question whether it can fail in the general setting of Theorem 1.
We show that this is indeed the case. Our argument relies on a result of Hundal [4]
concerning the method of alternating projections.

Counterexample 2. In Theorem 1, suppose that H is infinite-dimensional and

separable. Let (ek)k∈N be an orthonormal basis of H, let V = {e0}
⊥, let y0 = e2, and

let K be the smallest closed convex cone containing the set

(2)
{

exp
(

−100ξ3
)

e0 + cos
(π

2
(ξ − ⌊ξ⌋)

)

e⌊ξ⌋+1 + sin
(π

2
(ξ − ⌊ξ⌋)

)

e⌊ξ⌋+2

∣

∣ ξ ∈ [0,+∞[

}

,

∗Received by the editors December 20, 2019; accepted for publication February 24, 2020; published
electronically DATE.

http://www.siam.org/journals/mms/x-x/XXXX.html. This work was supported by the National
Science Foundation under grant CCF-1715671.

†North Carolina State University, Department of Mathematics, Raleigh, NC 27695-8205, USA
(mnbui@ncsu.edu)

‡North Carolina State University, Department of Mathematics, Raleigh, NC 27695-8205, USA
(plc@math.ncsu.edu)

1



where ⌊ξ⌋ denotes the integer part of ξ ∈ [0,+∞[. Let projV and projK be the projec-

tion operators onto V and K, and set

(3) A : x 7→

{

V ⊥, if x ∈ V ;

∅, if x /∈ V
and B =

(

projV ◦ projK ◦ projV
)−1
− Id.

Then A and B are maximally monotone, and the sequence (xn)∈N constructed in

Theorem 1 converges weakly, but not strongly, to a zero of A+B.

Proof. We first note that A is maximally monotone by virtue of [1, Examples 6.43
and 20.26]. Now set T = projV ◦projK ◦projV . Then it follows from [1, Example 4.14]
that T is firmly nonexpansive, that is,

(4) (∀x ∈ H)(∀y ∈ H) 〈x− y | Tx− Ty〉 > ‖Tx− Ty‖2.

In turn, we derive from [1, Proposition 23.10] that B = T−1 − Id is maximally
monotone. Next, we observe that 0 ∈ zerA and that, since K is a closed cone,
0 ∈ K. Thus, 0 = (projV ◦ projK ◦ projV )0, which implies that 0 ∈ zerB. Hence,

(5) 0 ∈ zer (A+B).

Now set

(6) z0 = exp(−100)e0 + e2 and (∀n ∈ N) zn+1 = projK
(

projV zn
)

.

Then, by nonexpansiveness of projK ,

(∀n ∈ N) ‖zn+1‖
2 = ‖projK

(

projV zn
)

− projK0‖2

6 ‖projV zn‖
2

= ‖zn‖
2 − ‖projV zn − zn‖

2(7)

and, therefore,

(8) projV zn − zn → 0.

As shown in [4], we also have

(9) zn ⇀ 0 and zn 6→ 0.

On the other hand, we derive from (3) that

(10) JA = projV and JB = projV ◦ projK ◦ projV ,

and from (6) that projV z0 = e2 = y0. It thus follows from (1) and (6) that x0 =
projV (projK(projV y0)) = projV (projK(projV z0)) = projV z1. Now, assume that, for
some n ∈ N, yn = projV zn and xn = projV zn+1. Since xn and yn lie in V , we derive
from (1) and (10) that

(11) yn+1 = yn + projV (2xn − yn)− xn = xn = projV zn+1

and hence that

xn+1 =
(

projV ◦ projK ◦ projV
)(

projV zn+1

)

= projV
(

projK
(

projV zn+1

))

= projV zn+2.(12)
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We have thus proven by induction that

(13) (∀n ∈ N) xn = projV zn+1.

In view of (8), we obtain xn − zn+1 → 0 and therefore derive from (9) and (5) that
xn ⇀ 0 ∈ zer (A+B) and xn 6→ 0.

Next, we settle a similar open question for Spingarn’s method of partial inverses
[6] by showing that its strong convergence can fail.

Theorem 3 ([6]). Let H be a real Hilbert space, let B : H → 2H be maximally

monotone, and let V be a closed vector subspace of H. Suppose that the problem

(14) find x ∈ V and u ∈ V ⊥ such that u ∈ Bx

has at least one solution. Let x0 ∈ V , let u0 ∈ V ⊥, and iterate

(15) (∀n ∈ N) xn+1 = projV
(

JB(xn+un)
)

and un+1 = projV ⊥

(

JB−1(xn+un)
)

.

Then (xn, un)n∈N converges weakly to a solution to (14).
Counterexample 4. Define H, V , K, and B as in Counterexample 2, and set

x0 = e2 and u0 = 0. Then (0, 0) solves (14) and the sequence (xn, un)n∈N constructed

in Theorem 3 converges weakly, but not strongly, to (0, 0).
Proof. Since JB = projV ◦ projK ◦ projV and JB−1 = Id− JB, (15) implies that

(16) (∀n ∈ N)

{

xn+1 =
(

projV ◦ projK ◦ projV
)

(xn + un)

un+1 = projV ⊥

(

xn + un −
(

projV ◦ projK ◦ projV
)

(xn + un)
)

.

We therefore obtain inductively that

(17) (∀n ∈ N) xn+1 = projV
(

projKxn

)

and un = 0.

Now define (zn)n∈N as in (6). Then, by induction, (∀n ∈ N) xn = projV zn. Hence, in
view of (8) and (9), we conclude that 0 6← xn ⇀ 0.
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