
SIAM J. IMAGING SCI. to appear

Proximal Activation of Smooth Functions in Splitting Algorithms for Convex Image
Recovery∗

Patrick L. Combettes† and Lilian E. Glaudin‡

Abstract. Structured convex optimization problems typically involve a mix of smooth and nonsmooth functions.

The common practice is to activate the smooth functions via their gradient and the nonsmooth ones via

their proximity operator. We show that, although intuitively natural, this approach is not necessarily

the most efficient numerically and that, in particular, activating all the functions proximally may be

advantageous. To make this viewpoint viable computationally, we derive a number of new examples of

proximity operators of smooth convex functions arising in applications. A novel variational model to

relax inconsistent convex feasibility problems is also investigated within the proposed framework. Sev-

eral numerical applications to image recovery are presented to compare the behavior of fully proximal

versus mixed proximal/gradient implementations of several splitting algorithms.

Key words. convex optimization, image recovery, inconsistent convex feasibility problem, proximal splitting algo-

rithm, proximity operator

1. Introduction. Splitting in convex optimization methods for image recovery can be

traced back to the influential work of Youla [62, 64]. The convex feasibility framework he

proposed consists in formulating the image recovery problem as that of finding an image in

a Hilbert space H satisfying m constraints derived from a priori knowledge and the observed

data. The constraints are represented by closed convex sets (Ci)16i6m and the problem is

therefore to

(1.1) find x ∈
m⋂

i=1

Ci.

Now, for every i ∈ {1, . . . ,m}, let projCi
be the projection operator onto Ci, which maps each

x ∈ H to its unique closest point in Ci, that is,

(1.2) projCi
: H → H : x 7→ argmin

y∈H

(
ιCi

(y) +
1

2
‖x− y‖2

)
,

where ιCi
: y 7→

{
0, if y ∈ Ci;

+∞, if y /∈ Ci.

The methodology of projection methods is to split the problem of finding a point in
⋂m
i=1Ci

into a sequence of simpler problems involving the sets (Ci)16i6m individually [8, 23]. For

instance, the POCS (Projection Onto Convex Sets) algorithm advocated in [64] is governed

∗The work of P. L. Combettes was supported by the National Science Foundation under grant CCF-1715671.
†North Carolina State University, Department of Mathematics, Raleigh, NC 27695-8205, USA

(plc@math.ncsu.edu)
‡Sorbonne Université, Laboratoire Jacques-Louis Lions, F-75005 Paris, France (glaudin@ljll.math.upmc.fr)

1

by the updating rule

(1.3) (∀n ∈ N) xn+1 = (projC1
◦ · · · ◦ projCm

)xn.

Convex variational formulations arising in modern image recovery have complex structures

that require sophisticated analysis tools and solution methods. Since projection operators are

of limited use beyond feasibility and best approximation problems, to solve such formulations,

one strategy is to use an extended notion of a projection operator. In [35] it was suggested to

use Moreau’s proximity operator [51] for this purpose. Recall that the proximity operator of

a proper lower semicontinuous convex function ϕ : H →]−∞,+∞] is

(1.4) proxϕ : H → H : x 7→ argmin
y∈H

(
ϕ(y) +

1

2
‖x− y‖2

)
,

and that it reduces to (1.2) when ϕ = ιCi
. We refer the reader to [9, Chapter 24] for a

detailed account of the properties of proximity operators with various examples, to [31] for a

tutorial on proximal methods in signal processing, and to [5, 11, 19, 21, 30, 52, 53, 54] for

specific applications to image recovery. Current proximal splitting methods can handle highly

structured convex minimization problems such as the following, which will be the focus of

our discussion (see below for notation).

Problem 1.1. Let H be a real Hilbert space, let I and J be disjoint finite subsets of N such

that K = I ∪ J 6= ∅, let f ∈ Γ0(H), and let (Gk)k∈K be a family of real Hilbert spaces. For

every k ∈ K, suppose that Lk : H → Gk is a nonzero bounded linear operator. For every

i ∈ I, let gi ∈ Γ0(Gi) and, for every j ∈ J , let µj ∈]0,+∞[and let hj : Gj → R be convex

and differentiable with a µj-Lipschitzian gradient. Assume that (see [32, Proposition 4.3] for

sufficient conditions)

(1.5) 0 ∈ range

(
∂f +

∑

i∈I

L∗
i ◦ ∂gi ◦ Li +

∑

j∈J

L∗
j ◦ (∇hj) ◦ Lj

)
.

The goal is to

(1.6) minimize
x∈H

f(x) +
∑

i∈I

gi(Lix) +
∑

j∈J

hj(Ljx).

The principle of a splitting method for solving (1.6) is to use separately each of the func-

tions f , (gi)i∈I , and (hj)j∈J , and each of the operators (Lk)k∈K , so as to reduce the execution

of the algorithm to a sequence of simple steps. A prevalent viewpoint in first order convex

splitting algorithms is that to activate each function ϕ appearing in the model there are two

options:

• if ϕ is smooth, i.e., real-valued and differentiable everywhere with a Lipschitzian gra-

dient, then use ∇ϕ;
• otherwise, use ϕ proximally, i.e., via its proximity operator (1.4).

In the present paper we propose a more nuanced viewpoint and submit that, when ϕ is

smooth, it may be computationally advantageous to activate it proximally when its proximity

2

Figure 1.1. Comparison of the steepest descent method (1.8) (in green) and of the proximal point algorithm

(1.9) (in red) in H = R
2 for ϕ : (ξ1, ξ2) 7→ 9ξ21 − 14ξ1ξ2 + 9ξ22 . The ellipsoids represent the level lines of ϕ. The

steepest descent method is implemented with γ = 1.8/β as this choice gave rise to the fastest convergence. On the

other hand, the proximal point algorithm is implemented with the default choice γ = 1 (larger values gave even faster

convergence). The two algorithms behave quite differently, both in terms of directions of movement and of trajectories.

At iteration n, call dn = ∇ϕ(xn)/‖∇ϕ(xn)‖ the normalized gradient at xn. Consider the action of the steepest

descent, say at iteration n = 2. The next iterate x3 is obtained by moving from x2 in the direction opposite to the

gradient at x2. By contrast, consider the action of the proximal point algorithm, say at iteration n = 0. The next

iterate x1 satisfies the implicit equation x0 − x1 = γ∇ϕ(x1), which means that x1 is obtained by moving from x0 in

the direction opposite to the gradient at x1. Finally, we include the orbit (in blue) of the inertial version of the steepest

descent method obtained by setting f = 0 and h = ϕ in Algorithm 3.3, and choosing the parameters α = 2.01 and

γ = 1/β, which gave the fastest convergence.

operator can be implemented. To motivate this viewpoint, let us first observe that a tight

Lipschitz constant for the gradient of ϕ may not be easy to estimate (see, e.g., [1, 13, 17]),

which limits the range of the proximal parameters and may have a detrimental incidence on

the speed of convergence. Our second observation is that proximal steps behave numerically

quite differently from gradient steps, which may have a positive impact on the asymptotic

performance of algorithms. To illustrate this fact, consider the problem of minimizing a differ-

entiable convex function ϕ : H → R with a β-Lipschitzian gradient (see Fig. 1.1 for a concrete

example). The associated continuous-time gradient dynamics is [6, Section 3.4]

(1.7) x(0) = x0 and − dx(t)

dt
= ∇ϕ(x(t)).

The forward Euler (explicit) discretization of this equation with time step γ ∈]0,+∞[assumes

the form −(xn+1 − xn)/γ = ∇ϕ(xn), which leads to the steepest descent algorithm

(1.8) (∀n ∈ N) xn+1 = xn − γ∇ϕ(xn).

On the other hand, the backward Euler (implicit) discretization of (1.7) is −(xn+1 − xn)/γ =

3

∇ϕ(xn+1), which leads to Martinet’s proximal point algorithm [49]

(1.9) (∀n ∈ N) xn+1 = proxγϕxn.

Alternatively, it follows from [9, Proposition 12.30] that the proximal point algorithm coin-

cides with the steepest descent method applied to the Moreau envelope of ϕ, namely,

(1.10) (∀n ∈ N) xn+1 = proxγϕxn = xn − γ∇
(
γϕ
)
(xn), where γϕ = ϕ� (q/γ).

While the convergence of (1.9) is guaranteed for any γ ∈]0,+∞[, that of (1.8) requires

γ < 2/β [9, Chapter 28], which results in potentially slow convergence. Historically, the idea

of using proximal steps in smooth minimization problems can be found in [12, Section 5.8].

There, the problem under consideration is the standard least-squares problem of minimizing

the smooth function ϕ : RN → R : x 7→ ‖Ax−b‖2/2 in connection with the numerical inversion

of the Laplace transform. Given γ ∈]0,+∞[and x0 ∈ R
N , the algorithm proposed in [12,

Eq. (5.8.3)] is

(1.11) (∀n ∈ N) xn+1 =
(
Id+γA⊤A

)−1(
xn + γA⊤b

)
,

and it is reported to be better than the standard steepest descent approach. Remarkably,

(1.11) is nothing but an early instance of the proximal point algorithm (1.9).

The paper is organized as follows. In Section 2, we enrich the list of known proximity op-

erators by providing new closed form expressions for those of various smooth convex functions

commonly encountered in applications. This investigation is of interest in its own right since

some splitting algorithms operate exclusively with proximal steps; see, e.g., [19, 27, 28, 30].

In connection with the numerical solution of Problem 1.1, we review in Section 3 some per-

tinent proximal splitting methods. Image recovery applications are presented in Section 4.

Numerical comparisons between splitting algorithms in which smooth functions are activated

via gradient steps and those in which all functions are activated via their proximity operators

are conducted. In particular, in Section 4.4, we propose a new variational model, based on

Problem 1.1 and the results of Section 2, to relax inconsistent convex feasibility problems.

While no universal conclusion may be drawn from these experiments, they suggest that fully

proximal splitting algorithms deserve to be given serious consideration in applications.

Notation. The notation follows that of [9]. Throughout, H is a real Hilbert space with

scalar product 〈· | ·〉, associated norm ‖ · ‖, and identity operator Id. Weak convergence is de-

noted by⇀. Given a real Hilbert space G, we denote by B (H,G) the space of continuous linear

operators from H to G. We set q = ‖ · ‖2/2 and denote by Γ0(H) the class of lower semicon-

tinuous convex functions f : H →]−∞,+∞] such that dom f =
{
x ∈ H

∣∣ f(x) < +∞
}
6= ∅.

Let f ∈ Γ0(H). Then f∗ denotes the conjugate of f , ∂f the subdifferential of f , and f � g
the inf-convolution of f and g ∈ Γ0(H). Let C be a convex subset of H. The strong relative

interior of C is denoted by sriC, the indicator function of C by ιC , the distance function to

C by dC , the support function of C by σC , and, if C is nonempty and closed, the projection

operator onto C by projC . The Hilbert direct sum of family of real Hilbert spaces (Hi)i∈I is

denoted by
⊕

i∈I Hi; in addition if, for every i ∈ I, fi : Hi → [0,+∞], then

(1.12)
⊕

i∈I

fi :
⊕

i∈I

Hi → [0,+∞] : (xi)i∈I 7→
∑

i∈I

fi(xi).

4

The standard Euclidean norm on R
N is denoted by ‖ · ‖2.

2. Proximity operators of smooth convex functions. Let β ∈]0,+∞[, let γ ∈]0,+∞[, and let

h : H → R be a convex function with a β-Lipschitzian gradient. Then there exists a function

g ∈ Γ0(H) such that h = g∗ � (βq) [9, Corollary 18.19]. In this case, we derive from [9,

Propositions 12.30 and 24.8(vii)] that

(2.1) ∇h = β
(
Id−proxg∗/β

)
and proxγhx = Id+

γβ

γβ + 1

(
prox(γβ+1)g∗/β − Id

)
.

The closed form expression for proxγhx above is, however, of limited use since g∗ and its

proximity operator are usually not available explicitly. Even when H = R, computing the

proximity operator of a smooth convex function may be involved: for instance the derivative

of h : x 7→ 3
√
1 + x6/3 is 3

√
2-Lipschitzian but evaluating proxγh requires solving a high degree

polynomial equation. Nonetheless, as we now show, a variety of smooth convex functions

encountered in applications have readily computable proximity operators.

2.1. Functions involving distances. The following fact will be needed.

Lemma 2.1. [13, Proposition 2.1] Let C be a nonempty closed convex subset of H, let φ ∈
Γ0(R) be even, and set ϕ = φ ◦ dC . Then ϕ ∈ Γ0(H). Moreover, proxϕ = projC if domφ = {0}
and, otherwise, for every x ∈ H,

(2.2) proxϕx =

x+
proxφ∗dC(x)

dC(x)

(
projCx− x

)
, if dC(x) > max ∂φ(0);

projCx, if x /∈ C and dC(x) 6 max ∂φ(0);

x, if x ∈ C.

We start with an example which leads to affine gradient and proximal operators.

Example 2.2. Let I be a nonempty finite set. For every i ∈ I, let Gi be a real Hilbert space,

let Vi be a closed vector subspace of Gi, let ri ∈ Gi, let Li ∈ B (H,Gi), and let αi ∈]0,+∞[.
Set h : H → R : x 7→ (1/2)

∑
i∈I αid

2
Vi
(Lix − ri) and Q = (Id+γ

∑
i∈I αiL

∗
i projV ⊥

i
Li)

−1. Let

γ ∈]0,+∞[, set β =
∑

i∈I αi‖Li‖2, and let x ∈ H. Then h : H → R is convex and Fréchet

differentiable with a β-Lipschitzian gradient,

(2.3)

∇h(x) =
∑

i∈I

αiL
∗
i

(
projV ⊥

i

(
Lix− ri

))
, and proxγhx = Q

(
x+ γ

∑

i∈I

αiL
∗
i

(
projV ⊥

i
ri

))
.

Proof. The convexity of h is clear. We have h(x) = (1/2)
∑

i∈I αi‖projV ⊥
i
(Lix − ri)‖2 and

∇h(x) is given by (2.3) since (∀i ∈ I) ∇d2Vi/2 = Id−projVi = projV ⊥
i

. Moreover,

(2.4) (∀i ∈ I) ‖L∗
iprojV ⊥

i
Li‖ 6 ‖L∗

i ‖ ‖projV ⊥
i
‖ ‖Li‖ 6 ‖Li‖2.

Hence, for every y ∈ H,

(2.5) ‖∇h(x) −∇h(y)‖ =

∥∥∥∥
∑

i∈I

αiL
∗
i

(
projV ⊥

i
Li(x− y)

)∥∥∥∥ 6
∑

i∈I

αi‖Li‖2‖x− y‖ = β‖x− y‖.
5

Now set p = proxγhx. Then we derive from (2.3) that

(2.6) x− p = γ∇h(p) = γ

(
∑

i∈I

αiL
∗
iprojV ⊥

i
Li

)
p− γ

∑

i∈I

αiL
∗
i

(
projV ⊥

i
ri

)
,

which yields the expression for proxγhx.

The next construction, which involves the distance function dC to a convex set C, will be

seen to capture a broad range of functions of interest.

Example 2.3. Let C be a nonempty closed convex subset of H, let β ∈]0,+∞[, let φ : R →
R be even, convex, and differentiable with a β-Lipschitzian derivative, and set h = φ ◦ dC .

Let γ ∈]0,+∞[and x ∈ H. Then h : H → R is convex and Fréchet differentiable with a

β-Lipschitzian gradient,

(2.7) ∇h(x) =

φ′
(
dC(x)

)

dC(x)

(
x− projCx

)
, if x /∈ C;

0, if x ∈ C,

and

(2.8) proxγhx =

projCx+
proxγφdC(x)

dC(x)
(x− projCx), if x /∈ C;

x, if x ∈ C.

Proof. Since φ and dC are convex and φ is increasing on [0,+∞[, h is convex [9, Propo-

sition 11.7(ii)]. In addition, since [9, Proposition 11.7(i)] asserts that 0 is a minimizer of

φ,

(2.9) ∂φ(0) = {φ′(0)} = {0}.

First, we derive (2.7) from [9, Proposition 17.33(ii)] and (2.9). Next, we infer from [9,

Proposition 13.26] that h∗ = σC + φ∗ ◦ ‖ · ‖. We invoke [9, Theorem 18.15] to deduce

that φ∗ is (1/β)-strongly convex and that h∗ is therefore likewise, and then to conclude that

∇h is β-Lipschitzian. On the other hand, we derive from Lemma 2.1, (2.9), and Moreau’s

decomposition [9, Remark 14.4] that

proxγhx =

x+

proxφ∗dC(x)

dC(x)

(
projCx− x

)
, if dC(x) > max ∂φ(0);

projCx, if dC(x) 6 max ∂φ(0)

(2.10)

=

x+

dC(x)− proxγφdC(x)

dC(x)
(projCx− x), if dC(x) > 0;

projCx, if dC(x) 6 0

=

projCx+
proxγφdC(x)

dC(x)
(x− projCx), if x /∈ C;

x, if x ∈ C,

(2.11)

as announced.

6

We now investigate a generalization of the Vapnik ε-insensitive loss function [59].

Example 2.4 (abstract smooth Vapnik loss function). Let C be a nonempty closed convex

subset of H, let ε ∈]0,+∞[, let β ∈]0,+∞[, let ψ : R → R be even, convex, and differentiable

with a β-Lipschitzian derivative, and set h = ψ ◦max(dC − ε, 0). Let γ ∈]0,+∞[and x ∈ H.

Then h : H → R is convex and Fréchet differentiable with a β-Lipschitzian gradient,

(2.12) ∇h(x) =

ψ′
(
dC(x)− ε

)

dC(x)

(
x− projCx

)
, if dC(x) > ε;

0, if dC(x) 6 ε,

and

(2.13) proxγhx =

projCx+
ε+ proxγψ

(
dC(x)− ε

)

dC(x)
(x− projCx), if dC(x) > ε;

x, if dC(x) 6 ε.

Proof. Let ϑ = max(| · | − ε, 0) be the standard Vapnik loss function, set φ = ψ ◦ ϑ, and let

ξ ∈ R. Upon applying Example 2.3 in R with C = [−ε, ε], we obtain that φ : R → R is convex

and Fréchet differentiable with a β-Lipschitzian derivative, that

(2.14) φ′(ξ) =

{
ψ′(|ξ| − ε)sign(ξ), if |ξ| > ε;

0, if |ξ| 6 ε,

and that

(2.15) proxγφξ =

{(
ε+ proxγψ(|ξ| − ε)

)
sign(ξ), if |ξ| > ε;

ξ, if |ξ| 6 ε.

Since h = φ ◦ dC and φ is even, we apply Example 2.3 to conclude.

The following is an extension of the Huber loss function [42].

Example 2.5 (abstract Huber function). Let C be a nonempty closed convex subset of H,

let ρ ∈]0,+∞[, and set

(2.16) h : H → R : x 7→

ρdC(x)−
ρ2

2
, if dC(x) > ρ;

dC(x)
2

2
, if dC(x) 6 ρ.

Let γ ∈]0,+∞[and x ∈ H. Then h : H → R is convex and Fréchet differentiable with a

nonexpansive gradient,

(2.17) ∇h(x) =

ρ

dC(x)

(
x− projCx

)
, if dC(x) > ρ;

x− projCx, if dC(x) 6 ρ,7

and

(2.18) proxγhx =

x+
γρ

dC(x)
(projCx− x), if dC(x) > (γ + 1)ρ;

1

γ + 1

(
x+ γprojCx

)
, if dC(x) 6 (γ + 1)ρ.

Proof. Let

(2.19) hρ : R → R : ξ 7→

ρ|ξ| − ρ2

2
, if |ξ| > ρ;

|ξ|2
2
, if |ξ| 6 ρ

be the standard Huber function with parameter ρ. Then h′ρ is 1-Lipschitzian. In addition, using

the expression of proxγhρ from [9, Example 24.9] and then Example 2.3, we obtain (2.18).

Example 2.6. Let C be a nonempty closed convex subset of H, let ω ∈]0,+∞[, and set

β = ω2 and h = ωdC − ln(1 + ωdC). Let γ ∈]0,+∞[and let x ∈ H. Then h : H → R is convex

and Fréchet differentiable with a β-Lipschitzian gradient,

(2.20) ∇h(x) =

ω2

1 + ωdC(x)

(
x− projCx

)
, if x /∈ C;

0, if x ∈ C,

and

(2.21) proxγhx =

projCx+
γω2 + 1− ωdC(x)−

√
|ωdC(x)− γω2 − 1|2 + 4ωdC(x)

2ωdC(x)
(projCx− x), if x /∈ C;

x, if x ∈ C.

Proof. We apply Example 2.3 with φ = ω| · |− ln(1+ω| · |). Note that φ′ : ξ 7→ ω2ξ/(1+ω|ξ|)
is ω2-Lipschitzian. Furthermore, we derive proxγφ by arguing as in [9, Example 24.42] (where

γ = 1) and we then invoke (2.8) to get (2.21).

The following extension of Example 2.3 involves a composition with a linear operator.

Example 2.7. Let G be a real Hilbert space and let M ∈ B (H,G) be such that MM∗ = θ Id
for some θ ∈]0,+∞[. Let D be a nonempty closed convex subset of G, let µ ∈]0,+∞[,
let φ : R → R be even, convex, and differentiable with a µ-Lipschitzian derivative, and set

h = φ ◦ dD ◦M and β = µ‖M‖2. Let γ ∈]0,+∞[and x ∈ H. Then h : H → R is convex and

Fréchet differentiable with a β-Lipschitzian gradient,

(2.22) ∇h(x) =

φ′
(
dD(Mx)

)

dD(Mx)
M∗
(
Mx− projD(Mx)

)
, if Mx /∈ D;

0, if Mx ∈ D,8

and

(2.23)

proxγhx =

x+

θ−1
(
dD(Mx)− proxγθφdD(Mx)

)

dD(Mx)
M∗
(
projD(Mx)−Mx

)
, if Mx /∈ D;

x, if Mx ∈ D.

Proof. We have h = (φ ◦ dD) ◦ M and therefore ∇h = M∗ ◦ ∇(φ ◦ dD) ◦ M . In turn,

the Lipschitz constant of ∇h is ‖M∗‖µ‖M‖ = β, and we derive (2.22) from (2.7). Now set

g = γφ ◦ dD. We derive from [9, Proposition 24.14] that

(2.24) proxγhx = proxg◦Mx = x+ θ−1M∗
(
proxθg(Mx)−Mx

)
.

We then obtain the expression for proxθg = proxγθφ◦dD from (2.8), which yields (2.23).

Remark 2.8. The condition MM∗ = θ Id used in Example 2.7 arises in particular in prob-

lems involving tight frame representations [20]. When it is not satisfied, one can still deal

with smooth functions of the type φ ◦ dC ◦M in modern structured proximal splitting tech-

niques by activating proxφ◦dC and M separately; see Propositions 3.8, 3.10, and 3.12 below

and [9]. One can then invoke Example 2.3 to compute the former.

2.2. Integral functions.

Example 2.9. Let (Ω,F , µ) be a complete σ-finite measure space, let (H, 〈· | ·〉
H
) be a sepa-

rable real Hilbert space, let C be a closed convex subset of H such that 0 ∈ C, and let φ : R → R

be even, convex, and differentiable with a β-Lipschitzian derivative. Suppose that H =
L2((Ω,F , µ);H), and that µ(Ω) < +∞ or φ(0) = 0. Set h : H → R : x 7→

∫
Ω φ(dC(x(ω)))µ(dω).

Let γ ∈]0,+∞[and x ∈ H. Then h : H → R is convex and Fréchet differentiable with a

β-Lipschitzian gradient, and for µ-almost every w ∈ Ω,

(2.25)
(
∇h(x)

)
(ω) =

φ′(dC(x(ω)))

dC(x(ω))

(
x(ω)− proj

C
x(ω)

)
, if x(ω) /∈ C;

0, if x(ω) ∈ C,

and

(2.26)
(
proxγhx

)
(ω) =

proj
C
x(ω) +

proxγφdC(x(ω))

dC(x(ω))

(
x(ω)− proj

C
x(ω)

)
, if x(ω) /∈ C;

x(ω), if x(ω) ∈ C.

Proof. Set ϕ = φ ◦ dC. As seen in Example 2.3, ϕ : H → R is convex and Fréchet differen-

tiable with a β-Lipschitzian gradient,

(2.27) (∀x ∈ H) ∇ϕ(x) =

φ′
(
dC(x)

)

dC(x)

(
x− proj

C
x
)
, if x /∈ C;

0, if x ∈ C,9

and

(2.28) (∀x ∈ H) proxγϕx =

proj
C
x+

proxγφdC(x)

dC(x)
(x− proj

C
x), if x /∈ C;

x, if x ∈ C.

Since φ is convex and even, it is minimized by 0 [9, Proposition 11.7(i)]. Hence, φ′(0) = 0
and, since 0 ∈ C, ϕ(0) = φ(0), while (2.27) yields ∇ϕ(0) = 0. Consequently, by virtue of the

descent lemma [9, Theorem 18.15(iii)],

(2.29) (∀x ∈ H) ϕ(x) 6 ϕ(0) + 〈x | ∇ϕ(0)〉
H
+
β

2
‖x‖2H = ϕ(0) +

β

2
‖x‖2H.

In turn,

(2.30) h(x) =

∫

Ω
ϕ(x(ω))µ(dω) 6 ϕ(0)µ(Ω) +

β

2
‖x‖2 < +∞.

On the other hand, [9, Proposition 16.63(ii)] asserts that ∇h(x) = (∇ϕ) ◦ x µ-a.e. which,

combined with (2.27), yields (2.25). Now let y be in H. Then

‖∇h(x)−∇h(y)‖2 =

∫

Ω
‖(∇h(x))(ω) − (∇h(y))(ω)‖2Hµ(dω)

=

∫

Ω
‖∇ϕ(x(ω)) −∇ϕ(y(ω))‖2Hµ(dω)

6 β2
∫

Ω
‖x(ω)− y(ω)‖2

H
µ(dω)

= β2‖x− y‖2,(2.31)

which shows that ∇h is β-Lipschitzian. Finally, we apply [9, Proposition 24.13] to derive

(2.26) from (2.28).

Remark 2.10. Let Ω be a nonempty bounded smooth open subset of R2, let H = R
2, let µ

be the Lebesgue measure, and suppose that C = {0} in Example 2.9. Furthermore, let hρ be

the Huber function of (2.19) and, for every x ∈ H1
0 (Ω), let Dx be the gradient of x. Then the

function

(2.32) h ◦D : H1
0 (Ω) → R : x 7→

∫

Ω
hρ(‖Dx(ω)‖2)dω

can be found in [41, 44, 48, 55] and it is called the Gauss-TV (or TV-Huber) function.

2.3. Functionals involving orthonormal decompositions. We first revisit a construction pro-

posed in [35]; see also [33, 37, 38] for special cases.

Example 2.11. Suppose that H is separable and that ∅ 6= K ⊂ N, and let (ek)k∈K be

an orthonormal basis of H. For every k ∈ K, let βk ∈]0,+∞[and let φk : R → R be a

differentiable convex function such that φk > φk(0) = 0 and φ′k is βk-Lipschitzian. Suppose

10

that β = supk∈K βk < +∞ and define (∀x ∈ H) h(x) =
∑

k∈K φk(〈x | ek〉). Let γ ∈]0,+∞[.
Then h : H → R is convex and Fréchet differentiable with a β-Lipschitzian gradient,

(2.33) (∀x ∈ H) ∇h(x) =
∑

k∈K

φ′k(〈x | ek〉)ek,

and

(2.34) (∀x ∈ H) proxγhx =
∑

k∈K

(
proxγφk〈x | ek〉

)
ek.

Proof. The identity (2.34) is established in [35]. The frame analysis operator is

(2.35) F : H → ℓ2(K) : x 7→ (〈x | ek〉)k∈K
and its adjoint is the frame synthesis operator

(2.36) F ∗ : ℓ2(K) → H : (ξk)k∈K 7→
∑

k∈K

ξkek.

Now denote by x = (ξk)k∈K a generic element in ℓ2(K) and define

(2.37) ϕ : ℓ2(K) →]−∞,+∞] : x 7→
∑

k∈K

φk(ξk).

Then h = ϕ ◦ F . Since all the functions (φk)k∈K are minimized at 0, we have (∀k ∈ K)
φ′k(0) = 0 = φk(0). In turn, we derive from the descent lemma [9, Theorem 18.15(iii)] that

(2.38) (∀k ∈ K)(∀ξk ∈ R) φk(ξk) 6 φk(0) + (ξk − 0)φ′k(0) +
βk
2
|0− ξk|2 =

β

2
|ξk|2.

As a result,

(2.39)
(
∀x ∈ ℓ2(K)

)
ϕ(x) =

∑

k∈K

φk(ξk) 6
β

2

∑

k∈K

|ξk|2 =
β

2
‖x‖2

and, therefore, ϕ : ℓ2(K) → R. In addition,

(2.40) (∀k ∈ K)(∀ξk ∈ R) |φ′k(ξk)|2 = |φ′k(ξk)− φ′k(0)|2 6 β2k |ξk − 0|2 6 β2|ξk|2,

which yields

(2.41)
(
∀x ∈ ℓ2(K)

) ∑

k∈K

|φ′k(ξk)|2 6 β2
∑

k∈K

|ξk|2 = β2‖x‖2 < +∞

and allows us to conclude that ϕ is differentiable with (∀x ∈ ℓ2(K)) ∇ϕ(x) = (φ′k(ξk))k∈K.

Moreover,
(
∀x ∈ ℓ2(K)

)(
∀y ∈ ℓ2(K)

)
‖∇ϕ(x)−∇ϕ(y)‖2 =

∑

k∈K

|φ′k(ξk)− φ′k(ηk)|2

6
∑

k∈K

β2k|ξk − ηk|2

6 β2‖x− y‖2.(2.42)

11

Altogether, ϕ : ℓ2(K) → R is convex and differentiable with a β-Lipschitzian gradient. Hence

h = ϕ ◦ F : H → R is convex and differentiable, with ∇h = F ∗ ◦ ∇ϕ ◦ F . Furthermore, since

F and F ∗ are isometries,

(∀x ∈ H)(∀y ∈ H) ‖∇h(x) −∇h(y)‖ = ‖F ∗(∇ϕ(Fx)) − F ∗(∇ϕ(Fy))‖
= ‖∇ϕ(Fx)−∇ϕ(Fy)‖
6 β‖Fx− Fy‖
= β‖x− y‖,(2.43)

which shows that ∇h is β-Lipschitzian.

Remark 2.12. It is clear from the proof of Example 2.11 that if the condition

(2.44) φk > φk(0) = 0

is not satisfied for a finite number of indices k ∈ K, the results remain valid. In particular,

if H is finite-dimensional, (2.44) is not required. An example of a smooth convex function

φk : R → R with an explicit proximity operator is φk = d2Ck
/2, where Ck is a nonempty closed

interval in R (set φ = | · |2/2 in Example 2.3). In this case, (2.44) holds if and only if 0 ∈ Ck.
If Ck = [1,+∞[, φk is the squared hinge loss [57]; if Ck = [−ε, ε] for some ε ∈]0,+∞[, φk
is the smooth Vapnik insensitive loss [4] (see also Example 2.4). Specializing Examples 2.3,

2.5, and 2.6, as well as (2.55) to H = R provides further examples of functions φk = ψk ◦ dCk

of interest. For instance, taking ψk to be the Huber function (2.19) and Ck = [1,+∞[yields

the modified Huber function of [65].

Example 2.13. Let M be a strictly positive integer and let ∅ 6= K ⊂ N. For every i ∈
{1, . . . ,M}, suppose that Hi is a separable real Hilbert space with orthonormal basis (ei,k)k∈K.

Let β ∈]0,+∞[, and let φ : R → R be an even differentiable convex function such that φ >

φ(0) = 0 and φ′ is β-Lipschitzian. For every (x1, . . . , xM) in H1⊕· · ·⊕HM , set h(x1, . . . , xM) =∑
k∈K φ(‖(〈x1 | e1,k〉, . . . , 〈xM | eM,k〉)‖2). Let γ ∈]0,+∞[, let (x1, . . . , xM) ∈ H1 ⊕ · · · ⊕ HM ,

and set, for every k ∈ K,

(2.45) αk =

φ′(‖(〈x1 | e1,k〉, . . . , 〈xM | eM,k〉)‖2)
‖(〈x1 | e1,k〉, . . . , 〈xM | eM,k〉)‖2

, if max
16i6M

|〈xi | ei,k〉| > 0;

0, otherwise,

and

(2.46) δk =

proxγφ(‖(〈x1 | e1,k〉, . . . , 〈xM | eM,k〉)‖2)
‖(〈x1 | e1,k〉, . . . , 〈xM | eM,k〉)‖2

, if max
16i6M

|〈xi | ei,k〉| > 0;

1, otherwise.

Then h : H1 ⊕ · · · ⊕HM → R is convex and Fréchet differentiable with a β-Lipschitzian gradi-

ent,

(2.47) ∇h(x1, . . . , xM) =

(
∑

k∈K

αk〈x1 | e1,k〉e1,k, . . . ,
∑

k∈K

αk〈xM | eM,k〉eM,k

)
,

12

and

(2.48) proxγh(x1, . . . , xM) =

(
∑

k∈K

δk〈x1 | e1,k〉e1,k, . . . ,
∑

k∈K

δk〈xM | eM,k〉eM,k

)
.

Proof. Arguing as in (2.38)–(2.39), we obtain that h is real-valued and, arguing as in

(2.40), we obtain supk∈K αk 6 β. Hence (∀i ∈ {1, . . . ,M}) (αk〈xi | ei,k〉)k∈K ∈ ℓ2(K) and∑
k∈K αk〈xi | ei,k〉ei,k ∈ Hi. Likewise, since φ is even, φ > φ(0) = 0 [9, Proposition 11.7(i)],

hence proxγφ0 = 0, and thus supk∈K δk 6 1. It therefore follows that (∀i ∈ {1, . . . ,M})
(δk〈xi | ei,k〉)k∈K ∈ ℓ2(K) and

∑
k∈K δk〈xi | ei,k〉ei,k ∈ Hi. Now let ℓ2(K;RM) =

⊕
k∈KR

M be

the space of square summable sequences with entries in R
M , and set

(2.49){
ϕ : RM → R : (ξ1, . . . , ξM) 7→ φ(‖(ξ1, . . . , ξM)‖2)
U : H1 ⊕ · · · ⊕ HM → ℓ2(K;RM) : (x1, . . . , xM) 7→

(
(〈x1 | e1,k〉, . . . , 〈xM | eM,k〉)

)
k∈K

.

Then U is a bijective isometry,

(2.50)

U−1 = U∗ : ℓ2(K;RM) → H1 ⊕ · · · ⊕ HM

(
(µ1,k, . . . , µM,k)

)
k∈K

7→
(
∑

k∈K

µ1,ke1,k, . . . ,
∑

k∈K

µM,keM,k

)
,

and h =
(⊕

k∈K ϕ
)
◦ U . In turn,

∇h = U∗ ◦ ∇
(
⊕

k∈K

ϕ

)
◦ U

= U∗ ◦ ∇
(
⊕

k∈K

(
φ ◦ ‖ · ‖2

)
)

◦ U

= U∗ ◦
(
⊗

k∈K

∇
(
φ ◦ ‖ · ‖2

)
)

◦ U,(2.51)

which yields (2.47) by applying Example 2.3 with C = {0}. On the other hand, using [9,

Proposition 24.14], we obtain

(2.52) proxγh = proxγ(
⊕

k∈K
ϕ)◦U =

(
U∗ ◦ proxγ

⊕
k∈K

ϕ ◦ U
)
= U∗ ◦

(
⊗

k∈K

proxγφ◦‖·‖2

)
◦ U,

which yields (2.48) by applying Example 2.3 with C = {0}.

2.4. Function involving explicit infimal convolutions. If h is explicitly constructed in terms

of a function g ∈ Γ0(H) as h = g� (βq) for some β ∈]0,+∞[, then, as in (2.1), we obtain

(2.53) ∇h = β
(
Id−proxg/β

)
and proxγhx = Id+

γβ

γβ + 1

(
prox(γβ+1)g/β − Id

)
.

In the same spirit, we have the following construction.

13

Example 2.14. Let ϕ ∈ Γ0(H), let β ∈]0,+∞[, and define h = βq − (βq)�ϕ. Let γ ∈
]0,+∞[and x ∈ H. Then h : H → R is convex and Fréchet differentiable with a β-Lipschitzian

gradient,

(2.54) ∇h(x) = βproxϕ/βx, and proxγhx = x− βγprox ϕ
β(1+βγ)

(
1

1 + βγ
x

)
.

Proof. It follows from [9, Proposition 12.30] that ∇h = β(Id−(Id−proxϕ/β)) = βproxϕ/β,

which is β-Lipschitzian since proxϕ/β is nonexpansive [9, Proposition 12.28]. Finally the

expression of proxγhx follows from [9, Proposition 24.8(viii)].

Remark 2.15. Let C be a nonempty closed convex subset of H, let β ∈]0,+∞[, let γ ∈
]0,+∞[, and let x ∈ H. Set ϕ = ιC in Example 2.14. Then we derive that h = β(q −
d2C/2): H → R is convex and Fréchet differentiable with a β-Lipschitzian gradient, and that

(2.55) ∇h(x) = βprojCx and proxγhx = x− βγprojC

(
1

1 + βγ
x

)
.

For β = 1, h is the generalized Huber function of [25, Example 3.2], that is,

(2.56) (∀x ∈ H) h(x) =

〈x | projCx〉 −
‖projCx‖2

2
, if x /∈ C;

‖x‖2
2

, if x ∈ C.

If H = R and C = [−ρ, ρ] for some ρ ∈]0,+∞[, h reduces to the standard Huber function

(2.19).

3. Splitting algorithms. In this section, we review several proximal splitting algorithms

which are relevant to our discussion and will be used in the numerical experiments (see [9]

for the supporting theory). We start with the forward-backward splitting algorithm.

Algorithm 3.1 (forward-backward). Let β ∈]0,+∞[, let f ∈ Γ0(H), let h : H → R be convex

and differentiable with a β-Lipschitzian gradient, and let (γn)n∈N be a sequence in]0, 2/β[such

that 0 < infn∈N γn 6 supn∈N γn < 2/β. Let x0 ∈ H and iterate

(3.1)

for n = 0, 1, . . .⌊
yn = xn − γn∇h(xn)
xn+1 = proxγnfyn.

Proposition 3.2. [33] Let (xn)n∈N be a sequence generated by Algorithm 3.1 and suppose

that Argmin(f + h) 6= ∅. Then there exists x ∈ Argmin(f + h) such that xn ⇀ x. In addition

(f + h)(xn)− inf(f + h)(H) = o(1/n).

Inertial variants of the above method have been popularized by [11]. They require addi-

tional storage capabilities but have been shown to be advantageous in terms of convergence

speed in certain situations. The following implementation proposed in [18] guarantees con-

vergence of the iterates.

14

Algorithm 3.3 (inertial forward-backward). Let β ∈]0,+∞[, let f ∈ Γ0(H), let h : H → R

be convex and differentiable with a β-Lipschitzian gradient, let γ ∈]0, 1/β], and let α ∈]2,+∞[.
Let x0 = x−1 ∈ H and iterate

(3.2)

for n = 0, 1, . . .
zn = xn +

n− 1

n+ α
(xn − xn−1)

yn = zn − γ∇h(zn)
xn+1 = proxγfyn.

Proposition 3.4. [18] Let (xn)n∈N be a sequence generated by Algorithm 3.3 and suppose

that Argmin(f + h) 6= ∅. Then there exists x ∈ Argmin(f + h) such that xn ⇀ x. In addition

(f + h)(xn)− inf(f + h)(H) = O(1/n2).

The next algorithm does not require smoothness of any of the functions.

Algorithm 3.5 (Douglas-Rachford). Let f and g be functions in Γ0(H) such that 0 ∈
sri (dom g−dom f), let γ ∈]0,+∞[, and let (λn)n∈N be sequence in [0, 2] such that

∑
n∈N λn(2−

λn) = +∞. Let y0 ∈ H and iterate

(3.3)

for n = 0, 1, . . .
zn = proxγgyn
xn = proxγf (2zn − yn)

yn+1 = yn + λn(xn − zn).

Proposition 3.6. [30] Let (xn)n∈N be a sequence generated by Algorithm 3.5 and suppose that

Argmin(f + g) 6= ∅. Then there exists x ∈ Argmin(f + g) such that xn ⇀ x.

Although this feature will not be used in Section 4, it should be noted that the forward-

backward [33], inertial forward-backward [7], and Douglas-Rachford [24] algorithms toler-

ate errors in the implementations of the proximity operators. The next three algorithms are

specifically tailored to handle Problem 1.1. Although they also compute dual solutions, for

brevity, we present only the primal convergence result for the error-free, unrelaxed formu-

lations of these algorithms. The first one is known as the primal-dual forward-backward-

forward algorithm; see [32] for details and [61] for a variable metric version.

Algorithm 3.7. Consider the setting of Problem 1.1. Set β =
√∑

i∈I ‖Li‖2 +
∑

j∈J µj‖Lj‖2,

let ε ∈]0, 1/(β + 1)[, let (γn)n∈N be a sequence in [ε, (1 − ε)/β], and let (∀i ∈ I) v∗i,0 ∈ Gi. Let

15

x0 ∈ H and iterate

(3.4)

for n = 0, 1, . . .

y1,n = xn − γn

(∑
i∈I L

∗
i v

∗
i,n +

∑
j∈J L

∗
j

(
∇hj(Ljxn)

))

p1,n = proxγnf y1,n
for every i ∈ I

y2,i,n = v∗i,n + γnLixn
p2,i,n = y2,i,n − γnproxgi/γn(y2,i,n/γn)

q2,i,n = p2,i,n + γnLip1,n
v∗i,n+1 = v∗i,n − y2,i,n + q2,i,n

q1,n = p1,n − γn

(∑
i∈I L

∗
i p2,i,n +

∑
j∈J L

∗
j

(
∇hj(Ljp1,n)

))

xn+1 = xn − y1,n + q1,n.

Proposition 3.8. [32] Let (xn)n∈N be a sequence generated by Algorithm 3.7. Then there

exists a solution x to (1.6) such that xn ⇀ x.

The following algorithm is an implementation of the forward-backward algorithm in a

renormed primal-dual space (see [19, 27, 36, 40, 60] for special cases and variants, and [34]

for a more general variable metric version).

Algorithm 3.9. Consider the setting of Problem 1.1 and let (τn)n∈N be a sequence in]0,+∞[
such that (∀n ∈ N) τn+1 > τn. For every i ∈ I, let v∗i,0 ∈ Gi, let (σi,n)n∈N be a sequence in]0,+∞[
such that (∀n ∈ N) σi,n+1 > σi,n. Suppose that

(3.5) sup
n∈N

(√
τn
∑

i∈I

σi,n‖Li‖2 +
1

2
max

{
τn,max

i∈I
σi,n

}∑

j∈J

µj‖Lj‖2
)
< 1.

Let x0 ∈ H and iterate

(3.6)

for n = 0, 1, . . .

y1,n = xn − τn

(∑
i∈I L

∗
i v

∗
i,n +

∑
j∈J L

∗
j

(
∇hj(Ljxn)

))

xn+1 = proxτnf y1,n
zn = 2xn+1 − xn
for every i ∈ I⌊
y2,i,n = v∗i,n + σi,n(Lizn)

v∗i,n+1 = y2,i,n − σi,nproxgi/σi,n(y2,i,n/σi,n).

Proposition 3.10. [34] Let (xn)n∈N be a sequence generated by Algorithm 3.9. Then there

exists a solution x to (1.6) such that xn ⇀ x.

The next algorithm, which was first proposed in [2] in the case when J = ∅, was extended

in [29] to a block-coordinate and block-iterative asynchronous method. The following version,

which explicitly exploits smooth functions, is proposed in [43].

Algorithm 3.11. Consider the setting of Problem 1.1 and let (γn)n∈N be a sequence in]0,+∞[
such that 0 < infn∈N γn 6 supn∈N γn < +∞. For every k ∈ I ∪ J , let v∗k,0 ∈ Gk, let (µk,n)n∈N

16

be a sequence in]0,+∞[such that 0 < infn∈N µk,n 6 supn∈N µk,n < +∞, and let (λn)n∈N be a

sequence in]0, 2[such that 0 < infn∈N λn 6 supn∈N λn < 2. Let x0 ∈ H and iterate

(3.7)

for n = 0, 1, . . .

l∗n =
∑

k∈I∪J L
∗
kv

∗
k,n

an = proxγnf (xn − γnl
∗
n)

a∗n = γ−1
n (xn − an)− l∗n

for i ∈ I

li,n = Lixn
bi,n = proxµi,ngi

(
li,n + µi,nv

∗
i,n

)

b∗i,n = v∗i,n + µ−1
i,n(li,n − bi,n)

ti,n = bi,n − Lian
for j ∈ J

lj,n = Ljxn
bj,n = lj,n − µj,n

(
∇hj(lj,n)− v∗j,n

)

b∗j,n = ∇hj(bj,n)
tj,n = bj,n − Ljan

t∗n = a∗n +
∑

k∈I∪J L
∗
kb

∗
k,n

τn = ‖t∗n‖2 +
∑

k∈I∪J ‖tk,n‖2
if τn = 0⌊
x = an
terminate.

if τn > 0

θn =
λn
τn

max
{
0, 〈xn | t∗n〉 − 〈an | a∗n〉+

∑
k∈I∪J

(
〈tk,n | v∗k,n〉 − 〈bk,n | b∗k,n〉

)}

xn+1 = xn − θnt
∗
n

for k ∈ I ∪ J⌊
v∗k,n+1 = v∗k,n − θntk,n.

Proposition 3.12. [43] Either Algorithm 3.11 terminates at a solution x to (1.6) in a finite

number of iterations, or it generates an infinite sequence (xn)n∈N which converges weakly to a

solution to (1.6).

4. Applications and numerical illustrations. We illustrate the viewpoint formulated in the

Introduction, which suggests that it may be computationally advantageous to activate smooth

functions proximally in certain instances.

We compare the splitting methods reviewed in Section 3 on various digital image restora-

tion and reconstruction problems. All images have
√
N ×

√
N pixels and therefore the under-

lying Hilbert space is H = R
N (N ∈ {962, 1282, 5122}) equipped with the standard Euclidean

norm ‖ · ‖2. All the algorithms guarantee the convergence of their iterates (xn)n∈N to a solu-

tion x of the underlying optimization problem. Let us also note that this set of experiments

constitutes the first implementation of Algorithm 3.11 to image recovery. The simulations are

run in Python on a personal computer running Linux Ubuntu version 18.04 with a 2.60GHz

dual-core processor and 8GB of RAM. Finally, the normalization used to plot the decibel value

17

(a) (b) (c)

(d) (e) (f)

Figure 4.1. (a) Original image x. (b) Degraded image y. (c) Image restored by the forward-backward algorithm

(Algorithm 3.1) after 50 iterations. (d) Image restored by the inertial forward-backward algorithm (Algorithm 3.3)

after 50 iterations. (e) Image restored by the Douglas-Rachford algorithm (Algorithm 3.5) after 50 iterations. (f)

Restored image (all algorithms yield visually equivalent images).

of the squared distance of an iterate xn to a solution x is

(4.1) 20 log10
‖xn − x‖2
‖x0 − x‖2

,

and that used for the objective value ϕ(xn) at iteration n is

(4.2) 10 log10
ϕ(xn)− ϕ(x)

ϕ(x0)− ϕ(x)
.

Remark 4.1. The applications to be considered below are instances of Problem 1.1 in

which f has bounded domain and the remaining functions have full domain, which ensures

existence of at least one solution [9, Corollary 11.16(i)]. In addition, the inclusion (1.5) holds

by virtue of [32, Proposition 4.3(ii)].

4.1. Sparse image deconvolution. We consider a very basic instance of Problem 1.1 with

only two functions. More specifically, we compare the numerical behavior of the forward-

backward algorithms of Propositions 3.2 and 3.4 with that of the Douglas-Rachford algorithm

18

0 5 10 15 20 25 30 35 40
−60

−50

−40

−30

−20

−10

0

Alg. 3.1-Forward-backward

Alg. 3.3-Inertial forward-backward

Alg. 3.5-Douglas-Rachford

0 50 100 150 200 250 300 350 400 450 500
−60

−50

−40

−30

−20

−10

0

Alg. 3.1-Forward-backward

Alg. 3.3-Inertial forward-backward

Alg. 3.5-Douglas-Rachford

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5

−60

−50

−40

−30

−20

−10

0
Alg. 3.1-Forward-backward

Alg. 3.3-Inertial forward-backward

Alg. 3.5-Douglas-Rachford

0 10 20 30 40 50 60 70 80 90 100

−60

−50

−40

−30

−20

−10

0
Alg. 3.1-Forward-backward

Alg. 3.3-Inertial forward-backward

Alg. 3.5-Douglas-Rachford

Figure 4.2. Top left: Normalized distance in dB to the asymptotic image produced by each algorithm versus

execution time in seconds. Top right: Normalized distance in dB to the asymptotic image produced by each algorithm

versus iteration number. In this experiment the objective function values remain finite and can therefore be displayed.

Bottom left: Normalized objective function of (4.3) in dB versus execution time in seconds. Bottom right: Normalized

objective function of (4.3) in dB versus iteration number.

of Proposition 3.6, which is a fully proximal method. Note that an elementary comparison of

these three algorithms to minimize f + h already appears in Fig. 1.1, where f = 0 and h = ϕ.

The images have size 128× 128.

The original image is x and the degraded image is y = Hx + w, where H models a

convolution with a uniform rectangular kernel of size 15× 5 and w is a Gaussian white noise

realization (see Fig. 4.1(a)–(b)). The blurred image-to-noise ratio is 15.5 dB. Since each pixel

value is known to be in [0, 255], we use the hard constraint set C = [0, 255]N . As is customary,

the natural sparsity of x is promoted using the function ‖ · ‖1. Altogether, the problem is to

(4.3) minimize
x∈C

‖x‖1 +
1

2
‖Hx− y‖22.

Now set f = ‖ · ‖1 + ιC , set h = ‖H · −y‖22/2, and let γ ∈]0,+∞[. Then f ∈ Γ0(H)
and proxγf = projC ◦ softγ [9, Propositions 24.12(ii) and 24.47], where softγ is the soft

thresholder on [−γ, γ]; the projector projC is implemented by setting to 0 the pixel values less

than 0, and to 255 those larger than 255. On the other hand, h is smooth, with gradient and

19

(a) (b)

(c) (d)

Figure 4.3. (a) Original image x. (b) Degraded image y1. (c) Degraded image y2. (d) Reconstructed image (all

algorithms yield visually equivalent images).

proximity operator provided by Example 2.2 as

(4.4) ∇h : x 7→ H∗(Hx− y) and proxγh : x 7→ (Id+γH∗H)−1(x+ γH∗y).

The linear operator H models a convolution and it is representable by a block-circulant ma-

trix. The computation of the inverse in (4.4) is therefore straightforward via the fast Fourier

transform [3].

We solve (4.3) with the forward-backward algorithms (Algorithm 3.1 and Algorithm 3.3),

as well as with the fully proximal Douglas-Rachford algorithm (Algorithm 3.5). The algo-

rithms are initialized at zero and implemented with the parameters for which they seem to

perform best, that is, γn ≡ 1.99/β for Algorithm 3.1, γ = 1/β and α = 3 for Algorithm 3.3,

and γ = 30 and λn ≡ 1.9 for Algorithm 3.5. The results of Figs. 4.1–4.2 show a superior

performance for Algorithm 3.5, which is fully proximal.

4.2. Multiview image reconstruction from partial diffraction data. We consider the problem

of reconstructing a 128 × 128 image x from a partial observation of its diffraction over some

frequency range R, possibly with measurement errors [56]. To exploit this information we

use the soft constraint penalty dE associated with the set

(4.5) E =
{
x ∈ R

N
∣∣ (∀k ∈ R) x̂(k) = x̂(k)

}
,

20

(a) (b) (c)

(d) (e) (f)

Figure 4.4. (a) Image restored by Pb. 4.2/Alg. 3.7-S after 20 iterations. (b) Image restored by Pb. 4.2/Alg. 3.9-

S after 20 iterations. (c) Image restored by Pb. 4.2/Alg. 3.11-S after 20 iterations. (d) Image restored by

Pb. 4.3/Alg. 3.7-P after 20 iterations. (e) Image restored by Pb. 4.3/Alg. 3.9-P after 20 iterations. (f) Image re-

stored by Pb. 4.3/Alg. 3.11-P after 20 iterations.

where x̂ denotes the two-dimensional discrete Fourier transform of x. The set R contains

the frequencies in {0, . . . , 15}2 as well as those resulting from the symmetry properties of the

discrete Fourier transform. In addition, we have at our disposal two blurred noisy observations

of x, namely (see Fig. 4.3(a)–(c)) y1 = H1x+w1 and y2 = H2x+w2. Here, H1 and H2 model

convolutional blurs with kernels of sizes 3 × 11 and 7 × 5, respectively, and w1 and w2 are

Gaussian white noise realizations. The blurred image-to-noise-ratios are 27.3 dB and 35.4

dB. We use C = [0, 255]N as a hard constraint set. Finally, we utilize a discrete version of

the Gauss-TV penalty of Remark 2.10 to control oscillations in the reconstructed image. This

leads to the formulation

(4.6) minimize
x∈C

1

2
dE(x) +

2

5
h(Dx) +

3

4
‖H1x− y1‖22 +

3

4
‖H2x− y2‖22,

where D : RN → R
N ×R

N : x 7→ (G1x,G2x), G1 and G2 being horizontal and vertical discrete

difference operators, and where (∀(y1, y2) = ((η1,k)16k6N , (η2,k)16k6N) ∈ G2 = R
N × R

N)

h(y1, y2) =
∑N

k=1 h2(‖(η1,k, η2,k)‖2), h2 being the Huber function (2.19). We derive from (4.6)

two versions of Problem 1.1.

21

0 5 10 15 20 25 30 35

−60

−50

−40

−30

−20

−10

0

Pb. 4.2/Alg. 3.7-S

Pb. 4.3/Alg. 3.7-P

Pb. 4.2/Alg. 3.9-S

Pb. 4.3/Alg. 3.9-P

Pb. 4.2/Alg. 3.11-S

Pb. 4.3/Alg. 3.11-P

0 20 40 60 80 100 120 140 160

−60

−50

−40

−30

−20

−10

0

Pb. 4.2/Alg. 3.7-S

Pb. 4.3/Alg. 3.7-P

Pb. 4.2/Alg. 3.9-S

Pb. 4.3/Alg. 3.9-P

Pb. 4.2/Alg. 3.11-S

Pb. 4.3/Alg. 3.11-P

Figure 4.5. Left: Normalized distance in dB to the asymptotic image produced by each algorithm versus execution

time in seconds. Right: Normalized distance in dB to the asymptotic image produced by each algorithm versus iteration

number. Each algorithm is represented by a given color; the solid line corresponds to the fully proximal implementation

and the dashed line to the implementation with gradient steps for the smooth functions.

Problem 4.2. In Problem 1.1, set f = ιC , I = {1}, g1 = 0.5dE , L1 = Id, J = {2, 3, 4},

h2 = 0.4h, L2 = D, h3 = 0.75‖ · −y1‖22, L3 = H1, h4 = 0.75‖ · −y2‖22, and L4 = H2.

Problem 4.3 (fully proximal). In Problem 1.1, set f = ιC , I = {1, 2, 3, 4}, J = ∅, g1 =
0.5dE , L1 = Id, g2 = 0.4h, L2 = D, g3 = 0.75‖H1 · −y1‖22, L3 = Id, g4 = 0.75‖H2 · −y2‖22, and

L4 = Id.

We apply to these two problems Algorithms 3.7, 3.9, and 3.11 with all initial vectors set

to 0. The following parameters are used, where β =
√∑

i∈I ‖Li‖2 +
∑

j∈J µj‖Lj‖2 (these

parameters were found to optimize the performance of each algorithm):

• Algorithm 3.7-S (with smooth terms for Problem 4.2): γn ≡ 0.99/β.
• Algorithm 3.7-P (fully proximal for Problem 4.3): γn ≡ 0.99/β.
• Algorithm 3.9-S (with smooth terms for Problem 4.2): σ1,n ≡ 8/(5β) and τn ≡ 8/(5β).
• Algorithm 3.9-P (fully proximal for Problem 4.3): σ1,n ≡ 1/(2β), σ2,n ≡ 1/(2β), σ3,n ≡

3/β, σ4,n ≡ 3/β, and τn ≡ 1/β.
• Algorithm 3.11-S (with smooth terms for Problem 4.2): γn ≡ 0.4, µ1,n ≡ 1.0, µ2,n ≡

2.49, µ3,n ≡ 0.65, µ4,n ≡ 0.65, and λn ≡ 1.99.
• Algorithm 3.11-P (fully proximal for Problem 4.3): γn ≡ 0.25, µ1,n ≡ 1.0, µ2,n ≡ 1.5,

µ3,n ≡ 1.0, µ4,n ≡ 1.0, and λn ≡ 1.99.

The proximity operators and the gradients used in these experiments follow from [9, Exam-

ple 24.28] for g1, Example 2.13 (with M = 2 and K = {1, . . . , N}, and using [9, Exam-

ple 24.9] to get the proximity operator of h2) for h2, and (4.4) for g3 and g4. On the other

hand proxγf = projC . We have ‖D‖2 = 8 and ‖H1‖2 = ‖H2‖2 = 1. On the other hand,

the functions h2, h3, and h4 are differentiable with a Lipschitzian gradient, and their Lips-

chitz constants are respectively 0.4, 0.75, and 0.75. Thus, all the assumptions required by the

algorithms are satisfied. The results shown in Figs. 4.4 and 4.5 illustrate the faster conver-

gence of the iterates (xn)n∈N of fully proximal algorithms to a solution x compared to their

gradient-based versions, both in terms of computation time and iterations. Note that these

primal-dual algorithms do not guarantee Fejér monotonicity in the primal space, i.e., that

22

(a) (b)

(c) (d)

Figure 4.6. (a) Original image x. (b) Degraded image y1. (c) Degraded image y2. (d) Reconstructed image (all

algorithms yield visually equivalent images).

(‖xn − x‖)n∈N goes to 0 monotonically. This is confirmed by the oscillations seen in Fig. 4.5.

Finally, Fig. 4.3(d) shows that the formulation (4.6) provides a faithful recovery of x.

4.3. Image interpolation. We consider the problem of reconstructing the 96 × 96 original

image x shown in Fig. 4.6(a) from a noisy occulted version y1 and a blurred and noisy mea-

surement y2 (see Fig. 4.6(b)–(c)). The occulted version is missing 57 lines and the observed

line numbers are indexed by R ⊂ {1, . . . , N}. The observations are y1 = Mx + w1 and

y2 = Hx + w2, where M is the masking operator zeroing the lines not indexed by R and

where H is a blurring operator. By contrast with the previous experiments, the blurring is

nonstationary and therefore does not correspond to a convolution operation. More precisely,

the action of the blurring operator H on a given pixel (i, j) is to replace it by an average of

the neighboring pixels weighted by an isotropic Gaussian kernel centered at (i, j) and with

random standard deviation σi,j ∈ [0, 1]. Finally ‖H‖ = 1, while w1 and w2 are realizations

of Gaussian white noises such that the image-to-noise ratio for y1 is 25.9 dB and the blurred

image-to-noise ratio for y2 is 31.0 dB. We denote by (y
(i)
1)i∈R the nonzero lines of y1 corre-

sponding to the observed lines of x.

To model this interpolation problem, we use C = [0, 255]N as a hard constraint as well

as the total variation penalty. In addition, we fit the observed lines via the penalty x 7→
23

∑
i∈R 10‖x(i) − y

(i)
1 ‖2 and the degraded image via the penalty x 7→ 5‖Hx− y2‖22. This leads to

the formulation

(4.7) minimize
x∈C

‖Dx‖1,2 + 10
∑

i∈R

‖x(i) − y
(i)
1 ‖2 + 5‖Hx− y2‖22,

where D is as in (4.6) and (∀(y1, y2) ∈ G2 = R
N × R

N) ‖(y1, y2)‖1,2 =
∑N

k=1 ‖(η1,k, η2,k)‖2.

Two versions of Problem 1.1 are employed.

Problem 4.4. In Problem 1.1, set f = ιC , I = {1, 2}, J = {3}, g1 = ‖ · ‖1,2, L1 = D,

g2 = 10
∑

i∈R ‖x(i) − y
(i)
1 ‖2, L2 = Id, h3 = 5‖ · −y2‖22, and L3 = H.

Problem 4.5 (fully proximal). In Problem 1.1, set f = ιC , I = {1, 2, 3}, J = ∅, g1 = ‖ · ‖1,2,
L1 = D, g2 = 10

∑
i∈R ‖x(i) − y

(i)
1 ‖2, L2 = Id, g3 = 5‖H · −y2‖22, and L3 = Id.

We apply to Problems 4.4 and 4.5 Algorithms 3.7, 3.9, and 3.11 with all initial vectors

set to 0. The following parameters are used, where β =
√∑

i∈I ‖Li‖2 +
∑

j∈J µj‖Lj‖2 (these

parameters were found to optimize the performance of each algorithm):

• Algorithm 3.7-S (with smooth terms for Problem 4.4): γn ≡ 0.99/β.
• Algorithm 3.7-P (fully proximal for Problem 4.5): γn ≡ 0.99/β.
• Algorithm 3.9-S (with smooth terms for Problem 4.4): σ1,n ≡ 2/(5β) and τn ≡ 0.1/β.
• Algorithm 3.9-P (fully proximal for Problem 4.5): σ1,n ≡ 1/β, σ2,n ≡ 1/β, σ3,n ≡ 1/β,

and τn ≡ 1/β.
• Algorithm 3.11-S (with smooth terms for Problem 4.4): γn ≡ 1, µ1,n ≡ 0.1, µ2,n ≡ 0.1,

µ3,n ≡ 0.01, and λn ≡ 1.9.
• Algorithm 3.11-P (fully proximal for Problem 4.5): γn ≡ 0.5, µ1,n ≡ 1.0, µ2,n ≡ 0.1,

µ3,n ≡ 0.01, and λn ≡ 1.9.

The proximity operators of f and g3 are discussed in Section 4.2. The proximity operator

of g1 is computed similarly to that of g2 in Problem 4.3 since, in view of Lemma 2.1, we

can apply (2.48) with φ = | · |. It follows from [9, Propositions 24.8(ii) and 24.11] and [9,

Example 24.20] that the proximity operator of g2 for index γ ∈]0,+∞[is

(4.8) proxγg2 : (x
(i))16i6N 7→ (p(i))16i6N , where (∀i ∈ {1, . . . , N})

p(i) =

x(i), if i /∈ R;

y
(i)
1 +

(
1− γ

max
{∥∥x(i) − y

(i)
1

∥∥
2
, γ
}
)
(
x(i) − y

(i)
1

)
, if i ∈ R.

As seen in Fig. 4.6(d), the missing lines are satisfactorily reconstructed. On the other hand, the

convergence profiles displayed in Fig. 4.7 indicate that the fully proximal algorithms behave

better than their gradient-based counterparts.

4.4. Inconsistent convex feasibility problems.

4.4.1. Mathematical model. As mentioned in the Introduction, the convex feasibility for-

malism first proposed in [64] has enjoyed continued interest from the image recovery com-

munity [14, 23, 47, 58]. A structured formulation of this problem is the following.

24

0 10 20 30 40 50 60 70 80
−50

−40

−30

−20

−10

0
Pb. 4.4/Alg. 3.7-S

Pb. 4.5/Alg. 3.7-P

Pb. 4.4/Alg. 3.9-S

Pb. 4.5/Alg. 3.9-P

Pb. 4.4/Alg. 3.11-S

Pb. 4.5/Alg. 3.11-P

0 100 200 300 400 500 600 700 800 900

−50

−40

−30

−20

−10

0
Pb. 4.4/Alg. 3.7-S

Pb. 4.5/Alg. 3.7-P

Pb. 4.4/Alg. 3.9-S

Pb. 4.5/Alg. 3.9-P

Pb. 4.4/Alg. 3.11-S

Pb. 4.5/Alg. 3.11-P

Figure 4.7. Left: Normalized distance in dB to the asymptotic image produced by each algorithm versus execution

time in seconds. Right: Normalized distance in dB to the asymptotic image produced by each algorithm versus iteration

number.

Problem 4.6. Let H be a real Hilbert space, let E be a nonempty closed convex subset of

H, let K be a nonempty finite subset of N, and let (Gk)k∈K be a family of real Hilbert spaces.

For every k ∈ K, suppose that 0 6= Lk ∈ B (H,Gk) and let Ck be a nonempty closed convex

subset of Gk. The goal is to

(4.9) find x ∈ E such that (∀k ∈ K) Lkx ∈ Ck.

In applications, because of possible inaccuracies in a priori knowledge, unmodeled dynam-

ics, or too aggressive confidence bounds on stochastic constraints, the above convex feasibility

problem may turn out to be inconsistent [16, 22, 23, 39, 63], i.e., E ∩ ⋂k∈K L
−1
k (Ck) = ∅.

To deal with this situation, we propose the following variational formulation as a relaxation

of (4.9).

Problem 4.7. Consider the setting of Problem 4.6. Let (I, J) be a partition of K such that,

for every i ∈ I, φi ∈ Γ0(R) is an even function that vanishes only at 0 and, for every j ∈ J ,

ψj : R → R is an even differentiable convex function that vanishes only at 0 with a Lipschitzian

derivative. The problem is to

(4.10) minimize
x∈E

∑

i∈I

φi
(
dCi

(Lix)
)
+
∑

j∈J

ψj
(
dCj

(Ljx)
)
.

Problem 4.7 unifies several formulations that have been proposed in the literature as

surrogates to the possibly inconsistent Problem 4.6:

• If (4.9) happens to have solutions, they are the same as those of (4.10).
• In (4.10), E plays the role of a hard constraint; if no such constraint is present, one

can set E = H. Further hard constraints can be modeled by taking φi = ι{0} for certain

i ∈ I.
• Suppose that J = ∅ and (∀i ∈ I) φi = ι{0}. Then (4.10) reverts to (4.9).
• Let (ωj)j∈J be real numbers in]0, 1] such that

∑
j∈J ωj = 1. Suppose that I = ∅,

E = H, and (∀j ∈ J) Gj = H, Lj = Id, and ψj = ωj| · |2/2. Then we recover

25

the least-squares formulation of [22], namely the problem of minimizing
∑

j∈J ωjd
2
Cj

over H.
• Let (ωj)j∈J be real numbers in]0, 1] such that

∑
j∈J ωj = 1. Suppose that I = ∅ and

(∀j ∈ J) Gj = H, Lj = Id, and ψj = ωj| · |2/2. Then we recover the hard-constrained

least-squares formulation of [26], namely

(4.11) minimize
x∈E

1

2

∑

j∈J

ωjd
2
Cj
(x).

For J = {1}, this framework reduces to the formulation proposed in [39, 63].
• Let (ωj)j∈J be real numbers in]0, 1] such that

∑
j∈J ωj = 1. Suppose that I = ∅ and

(J1, J2) is a partition of J . Suppose further that (∀j ∈ J1) Gj = H, Lj = Id, and

ψj = ωj| · |2/2, and that (∀j ∈ J2) ψj = ωj| · |2/2. Then we recover the formulation of

[15], namely

(4.12) minimize
x∈E

1

2

∑

j∈J1

ωjd
2
Cj
(x) +

1

2

∑

j∈J2

ωjd
2
Cj
(Ljx).

• Let (Hℓ)16ℓ6m and (Kk)16k6p be real Hilbert spaces. For every ℓ ∈ {1, . . . ,m} and

every k ∈ {1, . . . , p}, let Cℓ be a nonempty closed convex subset of Hℓ, let Ek be

a nonempty closed convex subset of Kk, and let Mkℓ ∈ B (Hℓ,Kk). Consider the

multivariate convex feasibility problem

(4.13) find x1 ∈ C1, . . . , xm ∈ Cm such that

m∑

ℓ=1

M1ℓxℓ ∈ E1, . . . ,
m∑

ℓ=1

Mpℓxℓ ∈ Ep.

Now let (I, J0) be a partition of {1, . . . ,m}, let (φi)i∈I be even functions in Γ0(R)
vanishing only at 0, and, for every j ∈ J0, let ψj : R → R be an even differentiable

convex function that vanishes only at 0 with a Lipschitzian derivative. A relaxation of

(4.13) proposed in [13, Section 3.3] is

(4.14) minimize
x1∈H1,..., xm∈Hm

∑

i∈I

φi
(
dCi

(xi)
)
+
∑

j∈J0

ψj
(
dCj

(xj)
)
+

1

2p

p∑

k=1

d2Ek

(
m∑

ℓ=1

Mkℓxℓ

)
.

Now let

(4.15)

H =
⊕m

ℓ=1 Hℓ, G0 =
⊕p

k=1Kk

L0 : H → G0 : (x1, . . . , xm) 7→
(∑m

ℓ=1M1ℓxℓ, . . . ,
∑m

ℓ=1Mpℓxℓ
)

C0 = E1 × · · · × Ep, ψ0 = | · |2/(2p)
(∀k ∈ I ∪ J0) Gk = Hk, Lk : H → Gk : (x1, . . . , xm) 7→ xk

J = {0} ∪ J0, E = H.

Then (4.13) reduces to an instance of (4.9), and (4.14) of (4.10).

26

Remark 4.8. Problem 4.7 corresponds to the special case of Problem 1.1 in which f = ιE,

(∀i ∈ I) gi = φi ◦ dCi
, and (∀j ∈ J) hj = ψj ◦ dCj

. To solve it with a fully proximal algorithm,

one can use Lemma 2.1 for the nonsmooth terms, and Example 2.3 or Example 2.7 for the

smooth ones.

Remark 4.9. The proposed variational formulation (4.10) is also of interest beyond the

field of image recovery. For instance, the set-theoretic Fermat-Weber (a.k.a. Heron) problem

arising in location theory is to [50]

(4.16) minimize
x∈H

∑

i∈I

dCi
(x).

Problem 4.7 therefore provides variants and generalizations of this formulation.

4.4.2. Application to image reconstruction from phase. This numerical example revolves

around the classical problem of recovering an image x from the observation of its Fourier

phase θ = ∠ x̂ [45, 46]. The original 512 × 512 image x is shown in Fig. 4.8(a). The problem

is modeled by Problem 4.6 as a convex feasibility problem with the following constraint sets.

• Mean pixel value: C1 =
{
x ∈ R

N
∣∣ 〈x | 1〉 = µ

}
.

• Upper bound on the norm of the gradient: Dx ∈ C2, with

(4.17) C2 =
{
y ∈ R

N × R
N
∣∣ ‖y‖2 6 η

}
,

where D is as in (4.6).
• Phase: C3 =

{
x ∈ R

N
∣∣ ∠x̂ = θ

}
.

• Proximity to the reference image r of Fig. 4.8(b): C4 =
{
x ∈ R

N
∣∣ ‖x− r‖2 6 ξ

}
. The

image r is a blurred and noise corrupted version of x, which is further degraded by

saturation (the pixel values beyond 130 are clipped to 130) and the addition of a local

high intensity noise on a rectangular area around the right eye. The only information

available to the user is the bound ξ on the distance of r to the true image.
• Pixel range: C5 = [0, 255]N .

Now set E = C5, K = {1, 2, 3, 4}, H = G1 = G3 = G4 = R
N , G2 = R

N × R
N , and L2 = D

in Problem 4.6. Then the feasibility problem (4.9) amounts to finding an image x ∈ C1 ∩
D−1(C2) ∩ C3 ∩ C4 ∩ C5. Because of inaccuracies in the values of µ, ξ, θ, and η, this problem

turns out to be inconsistent and we therefore turn to the formulation of Problem 4.7. To ensure

the robustness of the model to possible outliers, we adopt a constrained Huber framework,

namely

(4.18) minimize
x∈C5

hρ1(dC1(x)) + hρ2(dC2(Dx)) + hρ3(dC3(x)) + hρ4(dC4(x)),

where the functions (hρi)16i64 are defined in (2.19) and ρ1 = ρ2 = ρ3 = 1000 and ρ4 = 5000.

Two versions of Problem 1.1 are employed.

Problem 4.10. In Problem 1.1, set f = ιC5 , I = ∅, J = {1, 2, 3, 4}, h1 = hρ1 ◦ dC1 , L1 = Id,

h2 = hρ2 ◦ dC2 , L2 = D, h3 = hρ3 ◦ dC3 , L3 = Id, h4 = hρ4 ◦ dC4 , and L4 = Id.

Problem 4.11 (fully proximal). In Problem 1.1, set f = ιC5 , I = {1, 2, 3, 4}, J = ∅,

g1 = hρ1 ◦ dC1 , L1 = Id, g2 = hρ2 ◦ dC2 , L2 = D, g3 = hρ3 ◦ dC3 , L3 = Id, g4 = hρ4 ◦ dC4 , and

L4 = Id.

27

(a) (b) (c)

Figure 4.8. (a) Original image x. (b) Reference image r. (c) Reconstructed image (all algorithms yield visually

equivalent images).

We apply to Problems 4.10 and 4.11 Algorithms 3.7, 3.9, and 3.11 with all initial vectors

set to 0. The following parameters are used, where β =
√∑

i∈I ‖Li‖2 +
∑

j∈J µj‖Lj‖2 (these

parameters were found to optimize the performance of each algorithm):

• Algorithm 3.7-S (with smooth terms for Problem 4.10): γn ≡ 0.99/β.
• Algorithm 3.7-P (fully proximal for Problem 4.11): γn ≡ 0.99/β.
• Algorithm 3.9-S (with smooth terms for Problem 4.10): τn ≡ 1.99/β.
• Algorithm 3.9-P (fully proximal for Problem 4.11): σ1,n ≡ 1/(1.1β), σ2,n ≡ 1/(1.1β),
σ3,n ≡ 1/(1.1β), σ4,n ≡ 1/(1.1β), and τn ≡ 1/β.

• Algorithm 3.11-S (with smooth terms for Problem 4.10): γn ≡ 0.5, µ1,n ≡ 0.99, µ2,n ≡
0.99, µ3,n ≡ 0.99, µ4,n ≡ 0.99, and λn ≡ 1.9.

• Algorithm 3.11-P (fully proximal for Problem 4.11): γn ≡ 0.25, µ1,n ≡ 2.0, µ2,n ≡ 2.0,

µ3,n ≡ 0.5, µ4,n ≡ 2.0, and λn ≡ 1.9.

0 10 20 30 40 50 60 70 80 90 100 110 120
−70

−60

−50

−40

−30

−20

−10

0

Pb. 4.10/Alg. 3.7-S

Pb. 4.11/Alg. 3.7-P

Pb. 4.10/Alg. 3.9-S

Pb. 4.11/Alg. 3.9-P

Pb. 4.10/Alg. 3.11-S

Pb. 4.11/Alg. 3.11-P

0 50 100 150 200 250 300 350

−60

−50

−40

−30

−20

−10

0

Pb. 4.10/Alg. 3.7-S

Pb. 4.11/Alg. 3.7-P

Pb. 4.10/Alg. 3.9-S

Pb. 4.11/Alg. 3.9-P

Pb. 4.10/Alg. 3.11-S

Pb. 4.11/Alg. 3.11-P

Figure 4.9. Left: Normalized distance in dB to the asymptotic image produced by each algorithm versus execution

time in seconds. Right: Normalized distance in dB to the asymptotic image produced by each algorithm versus iteration

number.

The gradient and proximity operators of the functions (gi)16i64 are derived directly from

28

Example 2.3. They involve the projection operators (projCi
)16i64, which can be found in

[23, 64], as well as the proximity operator of hρ, which can be found in [9, Example 24.9].

As seen in Fig. 4.8(c), despite the inconsistencies in the a priori knowledge, the reconstructed

image captures important features of the original image. The results of Fig. 4.9 show the

faster convergence of the fully proximal algorithms compared to the gradient-based ones.

REFERENCES

[1] F. ABBOUD, E. CHOUZENOUX, J.-C. PESQUET, J.-H. CHENOT, AND L. LABORELLI, Dual block-coordinate

forward-backward algorithm with application to deconvolution and deinterlacing of video sequences, J.

Math. Imaging Vision, 59 (2017), pp. 415–431.

[2] A. ALOTAIBI, P. L. COMBETTES, AND N. SHAHZAD, Solving coupled composite monotone inclusions by succes-

sive Fej́er approximations of their Kuhn-Tucker set, SIAM J. Optim., 24 (2014), pp. 2076–2095.

[3] H. C. ANDREWS AND B. R. HUNT, Digital Image Restoration, Prentice-Hall, Englewood Cliffs, NJ, 1977.

[4] A. Y. ARAVKIN, J. V. BURKE, AND G. PILLONETTO, Sparse/robust estimation and Kalman smoothing with

nonsmooth log-concave densities: Modeling, computation, and theory, J. Mach. Learn. Res., 14 (2013),

pp. 2689–2728.

[5] T. ASPELMEIER, C. CHARITHA, AND D. R. LUKE, Local linear convergence of the ADMM/Douglas-Rachford al-

gorithms without strong convexity and application to statistical imaging, SIAM J. Imaging Sci., 9 (2016),

pp. 842–868.

[6] J.-P. AUBIN AND A. CELLINA, Differential Inclusions: Set-Valued Maps and Viability Theory, Springer-Verlag,

New York, 1984.

[7] J.-F. AUJOL AND C. DOSSAL, Stability of over-relaxations for the forward-backward algorithm, application to

FISTA, SIAM J. Optim., 25 (2015), pp. 2408–2433.

[8] H. H. BAUSCHKE AND J. M. BORWEIN, On projection algorithms for solving convex feasibility problems, SIAM

Rev., 38 (1996), pp. 367–426.

[9] H. H. BAUSCHKE AND P. L. COMBETTES, Convex Analysis and Monotone Operator Theory in Hilbert Spaces,

2nd ed., Springer, New York, 2017.

[10] H. H. BAUSCHKE, P. L. COMBETTES, AND D. R. LUKE, Finding best approximation pairs relative to two closed

convex sets in Hilbert spaces, J. Approx. Theory, 127 (2004), pp. 178–192.

[11] A. BECK AND M. TEBOULLE, A fast iterative shrinkage-thresholding algorithm for linear inverse problems,

SIAM J. Imaging Sci., 2 (2009), pp. 183–202.

[12] R. BELLMAN, R. E. KALABA, AND J. A. LOCKETT, Numerical Inversion of the Laplace Transform: Applications

to Biology, Economics Engineering, and Physics, Elsevier, New York, 1966.

[13] L. M. BRICEÑO-ARIAS AND P. L. COMBETTES, Convex variational formulation with smooth coupling for mul-

ticomponent signal decomposition and recovery, Numer. Math. Theory Methods Appl., 2 (2009), pp.

485–508.

[14] C. L. BYRNE, Iterative Optimization in Inverse Problems, CRC Press, Boca Raton, FL, 2014.

[15] Y. CENSOR, T. ELFVING, N. KOPF, AND T. BORTFELD, The multiple-sets split feasibility problem and its appli-

cations for inverse problems, Inverse Problems, 21 (2005), pp. 2071–2084.

[16] Y. CENSOR AND M. ZAKNOON, Algorithms and convergence results of projection methods for inconsistent

feasibility problems: A review, Pure Appl. Funct. Anal., 3 (2018), pp. 565–586.

[17] L. CHAÂRI, J.-C. PESQUET, A. BENAZZA-BENYAHIA, AND PH. CIUCIU, A wavelet-based regularized reconstruc-

tion algorithm for SENSE parallel MRI with applications to neuroimaging, Med. Image Anal., 15 (2011),

pp. 185–201.

[18] A. CHAMBOLLE AND C. DOSSAL, On the convergence of the iterates of the ‘Fast iterative shrinkage/thresholding

algorithm’, J. Optim. Theory Appl., 166 (2015), pp. 968–982.

[19] A. CHAMBOLLE AND T. POCK, A first-order primal-dual algorithm for convex problems with applications to

imaging, J. Math. Imaging Vision, 40 (2011), pp. 120–145.

[20] C. CHAUX, P. L. COMBETTES, J.-C. PESQUET, AND V. R. WAJS, A variational formulation for frame-based

inverse problems, Inverse Problems, 23 (2007), pp. 1495–1518.

[21] E. CHOUZENOUX, A. JEZIERSKA, J.-C. PESQUET, AND H. TALBOT, A convex approach for image restoration

29

with exact Poisson-Gaussian likelihood, SIAM J. Imaging Sci., 8 (2015), pp. 2662–2682.

[22] P. L. COMBETTES, Inconsistent signal feasibility problems: Least-squares solutions in a product space, IEEE

Trans. Signal Process., 42 (1994), pp. 2955–2966.

[23] P. L. COMBETTES, The convex feasibility problem in image recovery, in Advances in Imaging and Electron

Physics, P. Hawkes, ed., vol. 95, Academic Press, New York, 1996, pp. 155–270.

[24] P. L. COMBETTES, Solving monotone inclusions via compositions of nonexpansive averaged operators, Opti-

mization, 53 (2004), pp. 475–504.

[25] P. L. COMBETTES, Perspective functions: Properties, constructions, and examples, Set-Valued Var. Anal., 26

(2018), pp. 247–264.

[26] P. L. COMBETTES AND P. BONDON, Hard-constrained inconsistent signal feasibility problems, IEEE Trans.

Signal Process., 47 (1999), pp. 2460–2468.

[27] P. L. COMBETTES, L. CONDAT, J.-C. PESQUET, AND B. C. VŨ, A forward-backward view of some primal-dual

optimization methods in image recovery, Proc. IEEE Int. Conf. Image Process., Paris, France, Oct. 27–30,

2014, pp. 4141–4145.

[28] P. L. COMBETTES, DINH DŨNG, AND B. C. VŨ, Dualization of signal recovery problems, Set-Valued Var. Anal.,

18 (2010), pp. 373–404.

[29] P. L. COMBETTES AND J. ECKSTEIN, Asynchronous block-iterative primal-dual decomposition methods for

monotone inclusions, Math. Program., B168 (2018), pp. 645–672.

[30] P. L. COMBETTES AND J.-C. PESQUET, A Douglas-Rachford splitting approach to nonsmooth convex variational

signal recovery, IEEE J. Select. Topics Signal Process., 1 (2007), pp. 564–574.

[31] P. L. COMBETTES AND J.-C. PESQUET, Proximal splitting methods in signal processing, in: Fixed-Point Al-

gorithms for Inverse Problems in Science and Engineering, H. H. Bauschke et al., eds., Springer, New

York, 2011, pp. 185–212.

[32] P. L. COMBETTES AND J.-C. PESQUET, Primal-dual splitting algorithm for solving inclusions with mixtures of

composite, Lipschitzian, and parallel-sum type monotone operators, Set-Valued Var. Anal., 20 (2012), pp.

307–330.

[33] P. L. COMBETTES, S. SALZO, AND S. VILLA, Consistent learning by composite proximal thresholding, Math.

Program., B167 (2018), pp. 99–127.

[34] P. L. COMBETTES AND B. C. VŨ, Variable metric forward-backward splitting with applications to monotone

inclusions in duality, Optimization, 63 (2014), pp. 1289–1318.

[35] P. L. COMBETTES AND V. R. WAJS, Signal recovery by proximal forward-backward splitting, Multiscale Model.

Simul., 4 (2005), pp. 1168–1200.

[36] L. CONDAT, A primal-dual splitting method for convex optimization involving Lipschitzian, proximable and

linear composite terms, J. Optim. Theory Appl., 158 (2013), pp. 460–479.

[37] I. DAUBECHIES, M. DEFRISE, AND C. DE MOL, An iterative thresholding algorithm for linear inverse problems

with a sparsity constraint, Comm. Pure Appl. Math., 57 (2004), pp. 1413–1457.

[38] C. DE MOL AND M. DEFRISE, A note on wavelet-based inversion algorithms, Contemp. Math., 313 (2002),

pp. 85–96.

[39] M. GOLDBURG AND R. J. MARKS II, Signal synthesis in the presence of an inconsistent set of constraints, IEEE

Trans. Circuits Syst., 32 (1985), pp. 647–663.

[40] B. HE AND X. YUAN, Convergence analysis of primal-dual algorithms for a saddle-point problem: From con-

traction perspective, SIAM J. Imaging Sci., 5 (2012), pp. 119–149.

[41] M. HINTERMÜLLER AND G. STADLER, An infeasible primal-dual algorithm for total bounded variation-based

inf-convolution-type image restoration, SIAM J. Sci. Comput., 28 (2006), pp. 1–23.

[42] P. J. HUBER, Robust Statistics, 1st ed., Wiley, New York, 1981.

[43] P. R. JOHNSTONE AND J. ECKSTEIN, Projective splitting with forward steps: Asynchronous and block-iterative

operator splitting, arxiv, 2018. https://arxiv.org/pdf/1803.07043.pdf

[44] S. L. KEELING, Total variation based convex filters for medical imaging, Appl. Math. Comput., 139 (2003),

pp. 101–119.

[45] D. KERMISCH, Image reconstruction from phase information only, J. Opt. Soc. Amer., 60 (1970), pp. 11–17.

[46] A. LEVI AND H. STARK, Signal reconstruction from phase by projection onto convex sets, J. Opt. Soc. Amer.,

73 (1983), pp. 810–822.

[47] Y. LIU, Z. LIANG, AND J. MA, Total variation-Stokes strategy for sparse-view X-ray CT image reconstruction,

IEEE Trans. Med. Imaging, 33 (2014), pp. 749–763.

30

https://arxiv.org/pdf/1803.07043.pdf

[48] C. LOUCHET AND L. MOISAN, Posterior expectation of the total variation model: Properties and experiments,

SIAM J. Imaging Sci., 6 (2013), pp. 2640–2684.

[49] B. MARTINET, Détermination approchée d’un point fixe d’une application pseudo-contractante. Cas de

l’application prox, C. R. Acad. Sci. Paris, A274 (1972), pp. 163–165.

[50] B. S. MORDUKHOVICH, N. M. NAM, AND J. SALINAS, Solving a generalized Heron problem by means of convex

analysis, Amer. Math. Monthly, 119 (2012), pp. 87–99.

[51] J. J. MOREAU, Fonctions convexes duales et points proximaux dans un espace hilbertien, C. R. Acad. Sci. Paris

Sér. A, 255 (1962), pp. 2897–2899.

[52] D. O’CONNOR AND L. VANDENBERGHE, Primal-dual decomposition by operator splitting and applications to

image deblurring, SIAM J. Imaging Sci., 7 (2014), pp. 1724–1754.

[53] N. PAPADAKIS, G. PEYRÉ, AND E. OUDET, Optimal transport with proximal splitting, SIAM J. Imaging Sci., 7

(2014), pp. 212–238.

[54] H. RAGUET AND L. LANDRIEU, Preconditioning of a generalized forward-backward splitting and application to

optimization on graphs, SIAM J. Imaging Sci., 8 (2015), pp. 2706–2739.

[55] C. SCHNÖRR, Unique reconstruction of piecewise-smooth images by minimizing strictly convex nonquadratic

functionals, J. Math. Imaging Vision, 4 (1994), pp. 189–198.

[56] M. I. SEZAN AND H. STARK, Image restoration by convex projections in the presence of noise, Appl. Opt., 22

(1983), pp. 2781–2789.

[57] I. STEINWART, Consistency of support vector machines and other regularized kernel classifiers, IEEE Trans.

Inform. Theory, 51 (2005), pp. 128–142.

[58] M. TOFIGHI, O. YORULMAZ, K. KÖSE, D. C. YILDIRIM, R. ÇETIN-ATALAY, AND A. E. ÇETIN, Phase and TV

based convex sets for blind deconvolution of microscopic images, IEEE J. Selected Topics Signal Process.,

10 (2016), pp. 81–91.

[59] V. N. VAPNIK, The Nature of Statistical Learning Theory, 2nd ed., Springer, New York, 2000.

[60] B. C. VŨ, A splitting algorithm for dual monotone inclusions involving cocoercive operators, Adv. Comput.

Math., 38 (2013), pp. 667–681.

[61] B. C. VŨ, A variable metric extension of the forward-backward-forward algorithm for monotone operators,

Numer. Funct. Anal. Optim., 34 (2013), pp. 1–16.

[62] D. C. YOULA, Generalized image restoration by the method of alternating orthogonal projections, IEEE Trans.

Circuits Syst., 25 (1978), pp. 694–702.

[63] D. C. YOULA AND V. VELASCO, Extensions of a result on the synthesis of signals in the presence of inconsistent

constraints, IEEE Trans. Circuits Syst., 33 (1986), pp. 465–468.

[64] D. C. YOULA AND H. WEBB, Image restoration by the method of convex projections: Part 1 – theory, IEEE

Trans. Med. Imaging, 1 (1982), pp. 81–94.

[65] T. ZHANG, Statistical behavior and consistency of classification methods based on convex risk minimization,

Ann. Statist., 32 (2004), pp. 56–85.

31

	Introduction
	Proximity operators of smooth convex functions
	Functions involving distances
	Integral functions
	Functionals involving orthonormal decompositions
	Function involving explicit infimal convolutions

	Splitting algorithms
	Applications and numerical illustrations
	Sparse image deconvolution
	Multiview image reconstruction from partial diffraction data
	Image interpolation
	Inconsistent convex feasibility problems
	Mathematical model
	Application to image reconstruction from phase

