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A Variational Inequality Model for the Construction of Signals from Inconsistent Nonlinear
Equations∗

Patrick L. Combettes† and Zev C. Woodstock‡

Abstract. Building up on classical linear formulations, we posit that a broad class of problems in signal synthesis
and in signal recovery are reducible to the basic task of finding a point in a closed convex subset of a
Hilbert space that satisfies a number of nonlinear equations involving firmly nonexpansive operators. We
investigate this formalism in the case when, due to inaccurate modeling or perturbations, the nonlinear
equations are inconsistent. A relaxed formulation of the original problem is proposed in the form of a
variational inequality. The properties of the relaxed problem are investigated, and a provenly convergent
block-iterative algorithm, whereby only blocks of the underlying firmly nonexpansive operators are
activated at a given iteration, is devised to solve it. Numerical experiments illustrate robust recoveries
in several signal and image processing applications.

Key words. Firmly nonexpansive operator, nonlinear equality constraint, nonlinear signal recovery, proximal point,
variational inequality.

1. Introduction. Signal construction encompasses forward problems such as image syn-
thesis, holography, filter design, time-frequency distribution synthesis, and radiation therapy
planning, as well as inverse problems such as density estimation, signal denoising, image in-
terpolation, signal extrapolation, audio declipping, image reconstruction, or deconvolution;
see, e.g., [4, 16, 19, 29, 31, 32, 45, 47, 48, 51, 58]. Essential components in the mathematical
modeling of signal construction problems are equations tying the ideal solution x in a space
H to given prescriptions in a space G, say Wx = p, where W is an operator mapping H to
G. The prescription p can be a design specification in forward problems, or an observation in
inverse problems.

In 1978, Youla [60] elegantly brought to light the simple geometry that underlies many
classical problems in signal construction by reducing them to the following formulation: Given
closed vector subspaces C and D in a real Hilbert space H, and a point p ∈ D,

(1.1) find x ∈ C such that projDx = p,

where projD denotes the projection operator onto D. In the context of signal recovery, the
original signal of interest x is known to lie in C, and some observation p of it is available in
the form of its projection onto D. A natural nonlinear extension of this setting is obtained by
considering nonempty closed convex sets C in H and D in a real Hilbert space G, a bounded
linear operator L : H → G, and a point p ∈ D, and setting as an objective to

(1.2) find x ∈ C such that projD(Lx) = p.
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An early instance of this model appears in [1], where C is a set of bandlimited signals and p is
an observation of N clipped samples of the original signal. Thus, L : H → RN is the sampling
operator and D =

{
y ∈ RN | ‖y‖∞ 6 ρ

}
for some ρ ∈ ]0,+∞[. A key property of projectors

onto closed convex sets is their firm nonexpansiveness. Recall that an operator F : G → G is
firmly nonexpansive if [6]

(1.3) (∀x ∈ G)(∀y ∈ G) 〈x− y | Fx− Fy〉 > ‖Fx− Fy‖2.

In [26, 27], it was shown that many nonlinear observation processes found in signal process-
ing, machine learning, and inference problems can be represented through such operators.
This prompts us to consider the following formulation, whereby the prescriptions are mod-
eled via Wiener systems (see Figure 1.1).
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Figure 1.1. Illustration of Problem 1.1 with m prescriptions (pi)16i6m. The ith prescription pi is the output
produced when the ideal signal x is input to a Wiener system Wi = Fi ◦ Li, i.e., the concatenation of a linear system
Li and a nonlinear system Fi [49]. In the proposed model, Fi is a firmly nonexpansive operator.

Problem 1.1. Let I be a nonempty finite set and let C be a nonempty closed convex sub-
set of a real Hilbert space H. For every i ∈ I, let Gi be a real Hilbert space, let pi ∈ Gi, let
Li : H → Gi be a nonzero bounded linear operator, and let Fi : Gi → Gi be a firmly nonexpan-
sive operator. The task is to

(1.4) find x ∈ C such that (∀i ∈ I) Fi(Lix) = pi.

The work of [26, 27] assumes that the prescription equations in Problem 1.1 are exact
and hence that a solution exists. In many instances, however, the prescription operators may
be imperfectly known or the model may be corrupted by perturbations, so that Problem 1.1
may not have solutions, e.g., [17, 18, 31]. A dramatic consequence of this lack of feasibility
is that the algorithms proposed [26, 27] are known to diverge in such situations. To deal ro-
bustly with possibly inconsistent equations, one must therefore come up with an appropriate
relaxed formulation of Problem 1.1, i.e., one that seeks a point in C that satisfies the non-
linear equations in an approximate sense, and coincides with the original problem (1.4) if it
happens to be consistent. To guide our design of a relaxed problem, let us consider a classical
instantiation of Problem 1.1.

Example 1.2. Specialize Problem 1.1 by setting, for every i ∈ I,

(1.5) pi = 0 and Fi = Id− projDi
, where Di is a nonempty closed convex subset of Gi,
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and note that the operators (Fi)i∈I are firmly nonexpansive [6, Corollary 4.18]. In this con-
text, (1.4) reduces to the convex feasibility problem [15, 19, 62]

(1.6) find x ∈ C such that (∀i ∈ I) Lix ∈ Di.

Let (ωi)i∈I be real numbers in ]0, 1] such that
∑

i∈I ωi = 1 and, for every i ∈ I, let dDi be the
distance function to Di. As seen in [23] (see also [16, 17, 18, 22, 32, 61] for special cases), a
relaxation of (1.6) when it may be inconsistent is the least-squares problem

(1.7) minimize
x∈C

f(x), where f : x 7→ 1

2

∑
i∈I

ωid
2
Di

(Lix) =
1

2

∑
i∈I

ωi‖Lix− projDi
(Lix)‖2.

An important property of this formulation is that f is a smooth convex function since [6,
Corollary 12.31] asserts that

(1.8) (∀i ∈ I) ∇
d2Di
◦ Li
2

= L∗i ◦ (Id− projDi
) ◦ Li = L∗i ◦ Fi ◦ Li − L∗i pi.

It can therefore be solved by the projection-gradient algorithm [6, Corollary 28.10]. Let us
also note that (1.7) is a valid relaxation of (1.6). Indeed, if the latter has solutions, then f
vanishes on C at those points only, and (1.7) is therefore equivalent to (1.6). Historically, the
first instance of the above relaxation process seems to be Legendre’s least-squares methods
[37]. There, H = RN = C and, for every i ∈ I, Gi = R, Di = {βi}, and Li = 〈· | ai〉, where
βi ∈ R and 0 6= ai ∈ RN . Set b = (βi)i∈I , let A be the matrix with rows (ai)i∈I , and let
(∀i ∈ I) ωi = 1/card I. Then (1.6) consists of solving the linear system Ax = b and (1.7) of
minimizing the function x 7→ ‖Ax− b‖2.

In general, there is no suitable relaxation of Problem 1.1 in the form of a tractable convex
minimization problem such as (1.7). For instance, in Example 1.2, we can rewrite (1.7) as

(1.9) minimize
x∈C

f(x), where f : x 7→ 1

2

∑
i∈I

ωi‖Fi(Lix)− pi‖2.

However, beyond the special case (1.5), f is typically a nonconvex and nondifferentiable
function [4, 43, 64], which makes it impossible to guarantee the construction of solutions.
Another plausible formulation that captures (1.7) would be to introduce in Problem 1.1 the
closed convex sets (∀i ∈ I) Di =

{
y ∈ Gi | Fiyi = pi

}
. However, the resulting minimization

problem (1.7) is intractable because we typically do not know how to evaluate the operators
(projDi

)i∈I , and therefore cannot evaluate f and its gradient.
Our strategy to relax (1.4) is to forgo the optimization approach in favor of the broader

framework of variational inequalities. To motivate this approach, let us go back to Exam-
ple 1.2. Then it follows from Lemma 2.4 below and (1.8) that (1.7) is equivalent to finding
x ∈ C such that (∀y ∈ C)

∑
i∈I ωi〈Li(y − x) | Fi(Lix)− pi〉 > 0. We shall show that this

variational inequality constitutes an appropriate relaxed formulation of Problem 1.1 in the
presence of general firmly nonexpansive operators (Fi)i∈I , and that it can be solved itera-
tively through an efficient block-iterative fixed point algorithm. Here is a precise formulation
of our relaxed problem.
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Problem 1.3. Let I be a nonempty finite set, let (ωi)i∈I be real numbers in ]0, 1] such that∑
i∈I ωi = 1, and let C be a nonempty closed convex subset of a real Hilbert space H. For

every i ∈ I, let Gi be a real Hilbert space, let pi ∈ Gi, let Li : H → Gi be a nonzero bounded
linear operator, and let Fi : Gi → Gi be a firmly nonexpansive operator. The task is to

(1.10) find x ∈ C such that (∀y ∈ C)
∑
i∈I

ωi〈Li(y − x) | Fi(Lix)− pi〉 > 0.

The paper is organized as follows. Section 2 provides the notation and the necessary
background, as well as preliminary results. It covers in particular the basics of monotone
operator theory, which will play an essential role in the paper. In Section 3, we illustrate
the flexibility and the breadth the proposed firmly nonexpansive Wiener model. In Section 4,
we analyze various properties of Problem 1.3, in particular as a relaxation of Problem 1.1.
We also provide in that section a block-iterative algorithm to solve Problem 1.3. Section 5 is
devoted to numerical experiments in the area of signal and image processing.

2. Notation, background, and preliminary results.

2.1. Notation. Our notation follows [6], to which one can refer for background on mono-
tone operators and convex analysis. Let H be a real Hilbert space with scalar product 〈· | ·〉,
associated norm ‖ · ‖, and identity operator Id. The family of all subsets of H is denoted by
2H. The Hilbert direct sum of a family of real Hilbert spaces (Hi)i∈I is denoted by

⊕
i∈I Hi.

Let T : H → H. Then T is cocoercive if there exists β ∈ ]0,+∞[ such that

(2.1) (∀x ∈ H)(∀y ∈ H) 〈x− y | Tx− Ty〉 > β‖Tx− Ty‖2,

and firmly nonexpansive if β = 1 above. The set of fixed points of T is FixT ={
x ∈ H | Tx = x

}
.

Let A : H → 2H. The graph of A is graA =
{

(x, x∗) ∈ H ×H | x∗ ∈ Ax
}

, the domain of
A is domA =

{
x ∈ H | Ax 6= ∅

}
, the range of A is ranA =

{
x∗ ∈ H | (∃x ∈ H) x∗ ∈ Ax

}
,

the set of zeros of A is zerA =
{
x ∈ H | 0 ∈ Ax

}
, the inverse of A is A−1 : H → 2H : x∗ 7→{

x ∈ H | x∗ ∈ Ax
}

, and the resolvent of A is JA = (Id +A)−1. Further, A is monotone if

(2.2)
(
∀(x, x∗) ∈ graA

)(
∀(y, y∗) ∈ graA

)
〈x− y | x∗ − y∗〉 > 0,

and maximally monotone if, for every (x, x∗) ∈ H ×H,

(2.3) (x, x∗) ∈ graA ⇔
(
∀(y, y∗) ∈ graA

)
〈x− y | x∗ − y∗〉 > 0.

If A is maximally monotone, then JA is a single-valued firmly nonexpansive operator defined
on H. If A is monotone and satisfies

(2.4) (∀(x, x∗) ∈ domA× ranA) sup
{
〈x− y | y∗ − x∗〉 | (y, y∗) ∈ graA

}
< +∞,

then it is 3∗ monotone.
Γ0(H) is the class of all lower semicontinuous convex functions from H to ]−∞,+∞]

which are proper in the sense that they are not identically +∞. Let f ∈ Γ0(H). The domain
of f is dom f =

{
x ∈ H | f(x) < +∞

}
, the conjugate of f is the function

(2.5) Γ0(H) 3 f∗ : x∗ 7→ sup
x∈H

(
〈x | x∗〉 − f(x)

)
,
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and the subdifferential of f is the maximally monotone operator

(2.6) ∂f : H → 2H : x 7→
{
x∗ ∈ H | (∀y ∈ H) 〈y − x | x∗〉+ f(x) 6 f(y)

}
.

The Moreau envelope of f is

(2.7) f̃ : H → R : x 7→ inf
y∈H

(
f(y) +

‖x− y‖2

2

)
.

For every x ∈ H, the infimum in (2.7) is achieved at a unique point, which is denoted by
proxfx. This defines the proximity operator proxf = J∂f of f .

Let C be a nonempty closed and convex subset of H. The distance from x ∈ H to C is
dC(x) = infy∈C ‖x− y‖, the indicator function of C is

(2.8) ιC : H → ]−∞,+∞] : x 7→

{
0, if x ∈ C;

+∞, if x /∈ C,

the normal cone to C at x ∈ H is

(2.9) NCx = ∂ιC(x) =

{{
x∗ ∈ H | (∀y ∈ C) 〈y − x | x∗〉 6 0

}
, if x ∈ C;

∅, otherwise,

and the projection operator onto C is projC = proxιC = JNC
.

The following facts will also come into play.

Lemma 2.1. Let A : H → 2H be maximally monotone, let µ ∈ ]0,+∞[, and let γ ∈ ]0, 1/µ[.
Set B = A − µId and β = 1 − γµ. Then JγB : H → H is β-cocoercive. Furthermore, JγB =
Jβ−1γA ◦ (β−1Id).

Proof. Let x and q be in H. Since β−1γA is maximally monotone, its resolvent is single-
valued with domain H. Therefore,

q ∈ JγBx⇔ x− q ∈ γBq
⇔ x− βq ∈ γAq
⇔ β−1x− q ∈ β−1γAq
⇔ q = Jβ−1γA

(
β−1x

)
,(2.10)

which shows that JγB = Jβ−1γA ◦ (β−1Id) is single-valued with domain H. Finally, since M =
βγA is maximally monotone, it follows from [6, Corollary 23.26] that JγB = Jβ−2M ◦ (β−1Id)
is β-cocoercive.

Lemma 2.2 ([6, Proposition 24.68]). LetH be the real Hilbert space of N×M matrices under
the Frobenius norm, and set s = min{N,M}. Denote the singular value decomposition of x ∈ H
by x = Ux diag (σ1(x), . . . , σs(x))V >x . Let φ ∈ Γ0(R) be even, and set

(2.11) F : H → H : x 7→ Ux diag
(

proxφ
(
σ1(x)

)
, . . . , proxφ

(
σs(x)

))
V >x .

Then F is firmly nonexpansive.
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2.2. Variational inequalities. The following notion of a variational inequality was formu-
lated in [12] (see Figure 2.1).

Definition 2.3. Let C be a nonempty closed convex subset of H and let B : H → H be a
monotone operator. The associated variational inequality problem is to

(2.12) find x ∈ C such that (∀y ∈ C) 〈y − x | Bx〉 > 0.

x y

CBx

Figure 2.1. Illustration of the variational inequality principle. The point x solves (2.12) because it lies in C and,
for every y ∈ C, the angle between y − x and Bx is acute.

Variational inequalities are used in various areas of mathematics and its applications [8,
30, 35, 65]. They are also central in constrained minimization problems.

Lemma 2.4. [6, Proposition 27.8] Let f : H → R be a differentiable convex function, let C
be a nonempty closed convex subset of H, and let x ∈ H. Then x minimizes f over C if and only
if it satisfies the variational inequality

(2.13) x ∈ C and (∀y ∈ C) 〈y − x | ∇f(x)〉 > 0.

2.3. Composite sums of monotone operators. We shall require the following Brézis–Haraux-
type theorem, which remains valid in general reflexive Banach spaces (see [10, Théorème 3]
for the special case of the sum of two monotone operators).

Lemma 2.5. Let H be a real Hilbert space and let (Gi)i∈I be a finite family of real Hilbert
spaces. Let A : H → 2H be a 3∗ monotone operator and, for every i ∈ I, let Bi : Gi → 2Gi

be a 3∗ monotone operator and let Li : H → Gi be a bounded linear operator. Suppose that
A+

∑
i∈I L

∗
i ◦Bi ◦ Li is maximally monotone. Then

(2.14)

int
(
ranA+

∑
i∈I L

∗
i (ranBi)

)
= int ran

(
A+

∑
i∈I L

∗
i ◦Bi ◦ Li

)
ranA+

∑
i∈I L

∗
i (ranBi) = ran

(
A+

∑
i∈I L

∗
i ◦Bi ◦ Li

)
.

Proof. Clearly, ran (A +
∑

i∈I L
∗
i ◦ Bi ◦ Li) ⊂ (ranA +

∑
i∈I L

∗
i (ranBi)). It is therefore

enough to show that

(2.15)

{
int
(
ranA+

∑
i∈I L

∗
i (ranBi)

)
⊂ ran

(
A+

∑
i∈I L

∗
i ◦Bi ◦ Li

)
ranA+

∑
i∈I L

∗
i (ranBi) ⊂ ran

(
A+

∑
i∈I L

∗
i ◦Bi ◦ Li

)
.
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Without loss of generality, set I = {1, . . . ,m} and introduce the Hilbert direct sum H =
H ⊕ G1 ⊕ · · · ⊕ Gm. Furthermore, introduce the bounded linear operator L : H → H : x 7→
(x, L1x, . . . , Lmx) and the operator M : H → 2H : (x, y1, . . . , ym) 7→ Ax × B1y1 × · · · ×
Bmym, which is 3∗ monotone since A and (Bi)i∈I are. Note also that, since L∗ : H →
H : (x, y1, . . . , ym) 7→ x+

∑
i∈I L

∗
i yi, the operator

(2.16) L∗ ◦M ◦L = A+
∑
i∈I

L∗i ◦Bi ◦ Li

is maximally monotone. We can therefore apply [42, Theorem 5] to obtain

(2.17)

{
intL∗(ranM) ⊂ ran (L∗ ◦M ◦L)

L∗(ranM) ⊂ ran (L∗ ◦M ◦L),

which is precisely (2.15).

We consider below a monotone inclusion problem involving several operators.

Problem 2.6. Let (ωi)i∈I be a finite family of real numbers in ]0, 1] such that
∑

i∈I ωi = 1,
let A0 : H → 2H be maximally monotone and, for every i ∈ I, let βi ∈ ]0,+∞[ and let
Ai : H → H be βi-cocoercive. The task is to find x ∈ H such that 0 ∈ A0x+

∑
i∈I ωiAix.

Proposition 2.7. [24, Proposition 4.9] Consider the setting of Problem 2.6 under the as-
sumption that it has a solution. Let K be a strictly positive integer and let (In)n∈N be a sequence
of nonempty subsets of I such that (∀n ∈ N)

⋃K−1
k=0 In+k = I. Let γ ∈ ]0, 2 min16i6m βi[, let

x0 ∈ H, and let (∀i ∈ I) ti,−1 ∈ H. Iterate

(2.18)

for n = 0, 1, . . .

for every i ∈ In⌊
ti,n = xn − γAixn

for every i ∈ I r In⌊
ti,n = ti,n−1

xn+1 = JγA0

(∑
i∈I

ωiti,n

)
.

Then (xn)n∈N converges weakly to a solution to Problem 2.6.

3. Firmly nonexpansive Wiener models. The proposed Wiener model (see Figure 1.1) in-
volves a linear operator followed by a firmly nonexpansive operator acting on a real Hilbert
space G. Typical examples of linear transformations in the context of signal construction
include the Fourier transform, the Radon transform, wavelet decompositions, frame decom-
positions, audio effects, or blurring operators. We show that firmly nonexpansive operators
model many useful nonlinearities in this context. Key examples based on those of [27] are
recalled and new ones are proposed. Following [27], we call p ∈ G a proximal point of y ∈ G
relative to a firmly nonexpansive operator F : G → G if Fy = p.
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3.1. Projection operators. As seen in Section 2.1, the projection operator onto a nonempty
closed convex set is firmly nonexpansive.

Example 3.1. For every j ∈ {1, . . . ,m}, let Gj be a real Hilbert space and let Dj ⊂ Gj be
nonempty closed and convex. Suppose that G =

⊕
16j6m Gj . The operator

(3.1) F : (yj)16j6m 7→ (projDj
yj)16j6m,

which is also the projection onto the closed convex set D =×16j6m Dj , is the hard clipper of
[27, Example 2.11]. If we specialize to the case when, for every j ∈ {1, . . . ,m}, Gj = R, we
obtain the standard hard clipping operators of [1, 31, 55].

Example 3.2. Let K ⊂ G be a nonempty closed convex cone. The operator F = projK
is used as a distortion model when K is the positive orthant [53, Section 10.4.1]. An-
other instance of a conic projection operator arises in isotonic regression [5], where K ={

(ξi)16i6N ∈ RN | ξ1 6 · · · 6 ξN
}

.

Example 3.3. Compression schemes such as downsampling project a high-dimensional ob-
ject of interest onto a closed convex subset of a low-dimensional subspace of G [41].

3.2. Proximity operators. As seen in Section 2.1, the proximity operator of a function in
Γ0(G) is firmly nonexpansive. The following construction will be particularly useful.

Example 3.4. For every j ∈ {1, . . . ,m}, let Gj be a real Hilbert space and let gj ∈ Γ0(Gj).
Suppose that G =

⊕
16j6m Gj and set F : G → G : (yj)16j6m 7→ (proxgiyj)16j6m. Then [6,

Proposition 24.11] asserts that

(3.2) F = proxg, where g : G → ]−∞,+∞] : (yj)16j6m 7→
m∑
j=1

gj(yj).

Example 3.5. In Example 3.4 suppose that, for every j ∈ {1, . . . ,m}, gj = φj ◦ ‖ · ‖, where
φj is an even function in Γ0(R) such that φj(0) = 0 and φj 6= ι{0}. Set (∀j ∈ {1, . . . ,m})
ρj = max ∂φj(0). Then we derive from [11, Proposition 2.1] that

(3.3) F : G → G : (yj)16j6m 7→
((

proxφj‖yj‖
)
byjcρj

)
16j6m

,

where byjcρj =

{
yj/‖yj‖, if ‖yj‖ > ρj ;

0, if ‖yj‖ 6 ρj .

Example 3.6. Consider the special case of Example 3.5 in which, for some j ∈ {1, . . . ,m},
φj is not differentiable at the origin, which implies that ρj > 0. Then proxgj acts as a thresh-
older with respect to the jth variable in the sense that, if ‖yj‖ 6 ρj , then the jth coordi-
nate of Fy is zero. For instance, suppose that, for every j ∈ {1, . . . ,m}, φj = ρj | · |, hence
∂φj(0) = [−ρj , ρj ] and gj = ρj‖ · ‖. Then Fy = p is acquired though the group-shrinkage
operation [63]

(3.4) p =

((
1− ρj

max{‖yj‖, ρj}

)
yj

)
16j6m

.
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Example 3.7. In contrast to the hard clipping operations of Example 3.1, soft clipping
operators are not projection operators in general, but many turn out to be proximity operators
[27] (see Figure 3.1). For instance, consider the setting of Example 3.5 with

(3.5) (∀j ∈ {1, . . . ,m}) φj : η 7→

−|η| − ln(1− |η|)− η2

2
, if |η| < 1;

+∞, if |η| > 1.

Then we obtain the soft clipping operator

(3.6) F : (yj)16j6m 7→
(

yj
1 + ‖yj‖

)
16j6m

used in [39]. Soft clipping operators model sensors in signal processing [4, 39, 53] and
activation functions in neural networks [25].

−4 −3 −2 −1 1 2 3 4

1

−1

Figure 3.1. Proximal soft clipping operators on R with saturation at ±1: η 7→ sign(η)(1 − exp(−|η|)) [53,
Section 10.6.3] (blue), η 7→ 2 arctan(η)/π [25] (red), and η 7→ η/(1 + |η|) [39] (green).

3.3. General firmly nonexpansive operators. Not all firmly nonexpansive operators are prox-
imity operators [21].

Example 3.8. Let (Rj)16j6m be nonexpansive operators on G. Then the operator

(3.7) F =
Id +R1 ◦ · · · ◦Rm

2

is firmly nonexpansive [6, Proposition 4.4] but it is not a proximity operator [21, Exam-
ple 3.5]. A concrete instance of (3.7) is found in audio signal processing. Consider a distortion
p ∈ G of a linearly degraded audio signal Lx ∈ G modeled by

(3.8) F (Lx) = p,

where L produces effects such as echo or reverberation [53, Chapter 11], and F comprises
several simpler operations (Rj)16j6m which turn out to be firmly nonexpansive (see, e.g.,
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Example 3.2, [27], and [53, Section 10.6.2]). These simpler distortion operators are then
used in series and blended with a proportion of the input signal [53, Section 10.9], so that
the overall process is described by (3.7) (see Figure 3.2). More generally F remains firmly
nonexpansive when R1 ◦ · · · ◦Rm is replaced by any nonexpansive operator.

1/2

Input

1/2

+
Output

R1R2

Figure 3.2. The distortion operator F in Example 3.8 for m = 2.

3.4. Proxification. In some instances, a prescription q ∈ G may be given by an equation of
the form Qy = q, where Q : G → G is not firmly nonexpansive. In this section, we provide con-
structive examples of proxification, by which we mean the replacement of the equality Qy = q
with an equivalent equality Fy = p, where p ∈ G and F : G → G is firmly nonexpansive.

Definition 3.9. Let Q : G → G and let q ∈ ranQ. Then (Q, q) is proxifiable if there exists a
firmly nonexpansive operator F : G → G and p ∈ ranF such that (∀y ∈ G) Qy = q ⇔ Fy = p.
In this case (F, p) is a proxification of (Q, q).

We begin with a necessary condition describing when this technique is possible.

Proposition 3.10. Let Q : G → G and q ∈ ranQ be such that (Q, q) is proxifiable. Then

(3.9) Q−1
(
{q}
)

=
{
y ∈ G | Qy = q

}
is closed and convex.

Proof. The proxification assumption means that there exists a firmly nonexpansive oper-
ator F : G → G and p ∈ ranF such that Q−1({q}) = F−1({p}). Now set T = Id − F + p.
Then it follows from [6, Proposition 4.4] that T is firmly nonexpansive, and therefore from
[6, Corollary 4.24] that Q−1({q}) = F−1({p}) = FixT is closed and convex.

Interestingly, condition (3.9) is also assumed in various nonlinear recovery problems
[45, 46, 56]. However, the solution techniques of these papers require the ability to project
onto Q−1({q}) – a capability which rarely occurs when dimG > 1. The numerical approach
proposed in Section 4 will circumvent this requirement and lead to provenly convergent
algorithms which instead rely on evaluating the associated firmly nonexpansive operator
F : G → G.

Example 3.11 ([27, Proposition 2.14]). For every j ∈ {1, . . . ,m}, let Gj be a real Hilbert
space, let Dj be a nonempty closed convex subset of Gj , let γj ∈ ]0,+∞[, and set

(3.10) Qj : Gj → Gj : yj 7→

{
yj , if dDj

(yj) > γj ;

projDj
yj , if dDj

(yj) 6 γj
10



and

(3.11) Sj : Gj → Gj : yj 7→

yj +
γj

dDj
(yj)

(projDj
yj − yj), if yj 6∈ Dj ;

yj , if yj ∈ Dj .

Suppose that G =
⊕

16j6m Gj , set Q : G → G : (yj)16j6m 7→ (Qjyj)16j6m, and let q ∈ ranQ.
Even though Q is discontinuous, (Q, q) is proxifiable. Indeed, set S : G → G : (yj)16j6m 7→
(Sjyj)16j6m, F : G → G : (yj)16j6m 7→ (Sj(Qjyj))16j6m, and p = Sq. Then (F, p) is a prox-
ification of (Q, q). In particular if, for every j ∈ {1, . . . ,m}, Dj = {0}, then Q is the block
thresholding estimation operator of [34, Section 2.3].

Example 3.12. Consider Example 3.11 with, for every j ∈ {1, . . . ,m}, Gj = R, Dj = {0},
and γj = γ ∈ ]0,+∞[. Then each operator Qj in (3.10) reduces to the hard thresholder

(3.12) hardγ : η 7→

{
η, if |η| > γ;

0, if |η| 6 γ,

Sj : η 7→ η − γ sign(η), and

(3.13) Sj ◦ hardγ = softγ : η 7→ sign(η) max{|η| − γ, 0}

is the soft thresholder on [−γ, γ]. Furthermore, it follows from Example 3.11 that (F, p) is
a proxification of (Q, q). The resulting transformation Q is used for signal compression in
[28, 54], and as a sensing model in [9].

Next, we combine Example 3.12 with Lemma 2.2 to address low rank matrix approxi-
mation. Note the properties of φ in Lemma 2.2 imply that proxφ0 = 0. Therefore, firmly
nonexpansive operators of the form (2.11) cannot increase the rank of a matrix.

Example 3.13. Let G be the real Hilbert space of N × M matrices under the Frobenius
norm, set s = min{N,M}, and let us denote the singular value decomposition of y ∈ G
by y = Uy diag (σ1(y), . . . , σs(y))V >y . Let ρ ∈ ]0,+∞[, let hardρ be given by (3.12), set
S : R→ R : η 7→ η − ρ sign(η), and set

(3.14)

Q : G → G : y 7→ Uy diag
(

hardρ
(
σ1(y)

)
, . . . , hardρ

(
σs(y)

))
V >y

S : G → G : y 7→ Uy diag
(

S
(
σ1(y)

)
, . . . ,S

(
σs(y)

))
V >y .

Let q ∈ ranQ, and set F = S ◦ Q and p = Sq. Since softρ = proxρ| · | and ρ| · | is even, it
follows from Example 3.12 and Lemma 2.2 that (F, p) is a proxification of (Q, q). The operator
Q is used in image compression to produce low rank approximations [3, 36, 44, 59], and the
associated firmly nonexpansive operator F soft-thresholds singular values at level ρ.

Remark 3.14. In the setting of Example 3.13, consider the compression technique per-
formed by the nonconvex projection operator R : G → G [13], which truncates singular values
at a given rank r ∈ {1, . . . , s−1}, i.e., R : y 7→ Uydiag

(
σ1(y), . . . , σr(y), 0, . . . , 0

)
V >y . Let y ∈ G

and set q = Ry. Then, for every ρ ∈ ]σr+1(y), σr(y)[, Qy = q. Therefore, knowledge of the
low rank approximation q to y can be exploited in our framework by proxifying (Q, q) using
Example 3.13. Note that ρ can be estimated from q since one has access to σr(q) = σr(y).
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Our last example illustrates how proxification can be used to handle a prescription arising
from an extension of the notion of a proximity operator for nonconvex functions.

Example 3.15. Let µ ∈ ]0,+∞[, let γ ∈ ]0, 1/µ[, set β = 1− γµ, and let g : G → ]−∞,+∞]
be proper, lower semicontinuous, and µ-weakly convex in the sense that g + µ‖ · ‖2/2 is con-
vex. For every y ∈ G, g + ‖y − ·‖2/(2γ) is a strongly convex function in Γ0(G) and, by [6,
Corollary 11.17], it therefore admits a unique minimizer Qγgy, which defines the operator
Qγg : G → G. Now let q ∈ ranQγg and set A = ∂(g + µ‖ · ‖2/2), B = A− µId, F = βQγg, and
p = βq. Then A is maximally monotone but in general, since g is not convex, Qγg is not firmly
nonexpansive. However,(

∀(y, p) ∈ G × G
)

Qγgy = p⇔ p ∈ zer
(
∂
(
γg +

γµ

2
‖ · ‖2 − γµ

2
‖ · ‖2 +

1

2
‖y − ·‖2

))
⇔ p ∈ zer (γA+ βId− y) = zer (Id + γB − y)

⇔ JγBy = p,(3.15)

so Lemma 2.1 implies that Qγg = JγB is β-cocoercive. Thus, (F, p) is a proxification of
(Qγg, q). Operators of the form Qγg are used for shrinkage in [7, 38, 50] in the same spirit
as in Example 3.6. For instance, for G = R and ρ ∈ ]0,+∞[, the penalty g = ln(ρ + | · |) of
[38, 50] is ρ−2-weakly convex and yields

(3.16) Qγg : y 7→



1

2

(
y − ρ+

√
|y + ρ|2 − 4γ

)
, if y >

γ

ρ
;

0, if |y| 6 γ

ρ
;

1

2

(
y + ρ−

√
|y − ρ|2 − 4γ

)
, if y < −γ

ρ
.

3.5. Operators arising from monotone equilibria. The property that the object of interest is
a zero of the sum of two monotone operators can be modeled in our framework as follows.

Example 3.16. Let A : G → 2G be maximally monotone, let β ∈ ]0,+∞[, and let B : G → G
be β-cocoercive. Let γ ∈ ]0, 2β[ and set

(3.17) F =

(
1− γ

4β

)(
Id− JγA ◦ (Id− γB)

)
and p = 0.

Then F is firmly nonexpansive and, for every y ∈ G, Fy = p ⇔ y ∈ zer (A + B). Indeed,
set R = JγA ◦ (Id − γB). By [6, Proposition 26.1(iv)], R is (2 − γ/2β)−1-averaged and
zerF = FixR = zer (A+B). It follows from [6, Proposition 4.39] that Id−R is (1− γ/(4β))-
cocoercive, which makes F firmly nonexpansive.

Example 3.17. Let f ∈ Γ0(G), let β ∈ ]0,+∞[, and let g : G → R be a convex and differen-
tiable function such that ∇g is β−1-Lipschitzian. Consider the task of enforcing the property

(3.18) y ∈ Argmin (f + g).

Set A = ∂f and B = ∇g. Then B is β-cocoercive [6, Corollary 18.17], and (3.18) holds if
and only if y ∈ zer (A + B). Therefore, Example 3.16 yields a proximal point representation
(F, p) of (3.18).
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4. Analysis and numerical solution of Problem 1.3. We first show that Problem 1.3 is an
appropriate relaxation of Problem 1.1.

Proposition 4.1. Suppose that the set of solutions to Problem 1.1 is nonempty. Then it coin-
cides with the set of solutions to Problem 1.3.

Proof. Let x be a solution to Problem 1.1. Then it is clear that x solves Problem 1.3. Now
let x be a solution to Problem 1.3. Then x ∈ C and

(4.1) (∀y ∈ C)
∑
i∈I

ωi〈Li(x− y) | Fi(Lix)− pi〉 6 0.

Therefore, since x ∈ C and, for every i ∈ I, Fi(Lix) = pi, we obtain

(4.2)
∑
i∈I

ωi〈Lix− Lix | Fi(Lix)− Fi(Lix)〉 6 0

and, by firm nonexpansiveness of the operators (Fi)i∈I ,

(4.3)
∑
i∈I

ωi‖Fi(Lix)− Fi(Lix)‖2 6
∑
i∈I

ωi〈Lix− Lix | Fi(Lix)− Fi(Lix)〉 6 0.

We conclude that (∀i ∈ I) Fi(Lix) = Fi(Lix) = pi.

Remark 4.2. Consider the setting of Problem 1.3 and set G =
⊕

i∈I Gi, L : H → : G : x 7→
(Lix)i∈I , F : G → G : (yi)i∈I 7→ (Fiyi)i∈I , and p = (pi)i∈I . Note that

(4.4) Problem 1.1 admits a solution if and only if p ∈ F
(
L(C)

)
.

Thus, the quantity dF (L(C))(p) provides a measure of inconsistency of Problem 1.1. We can
actually use a solution to Problem 1.3 to estimate it. Indeed, suppose that x1 and x2 are
solutions to (1.10). Then (1.3) yields∑

i∈I
ωi‖Fi(Lix1)− Fi(Lix2)‖2 6

∑
i∈I

ωi〈Lix1 − Lix2 | Fi(Lix1)− Fi(Lix2)〉

=
∑
i∈I

ωi〈Li(x1 − x2) | Fi(Lix1)− pi〉

+
∑
i∈I

ωi〈Li(x2 − x1) | Fi(Lix2)− pi〉

6 0.(4.5)

Hence, for every i ∈ I, there exists a unique pi ∈ Gi such that every solution x to Problem 1.3
satisfies

(4.6) Fi(Lix) = pi.

In turn, if x is any solution to Problem 1.3, then

(4.7) dF (L(C))(p) = inf
x∈C
‖p− F (Lx)‖ 6 ‖p− F (Lx)‖ =

√∑
i∈I
‖pi − pi‖2.
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Next, we turn to the existence of solutions.

Proposition 4.3. Problem 1.3 admits a solution in each of the following instances:
(i)

∑
i∈I ωiL

∗
i pi ∈ ran (NC +

∑
i∈I ωiL

∗
i ◦ Fi ◦ Li).

(ii) C is bounded.
(iii) ranNC +

∑
i∈I ωiL

∗
i (ranFi) = H.

(iv) For some i ∈ I, L∗i is surjective and one of the following holds:
a) L∗i (ranFi) = H.
b) Fi is surjective.
c) ‖Fi(y)‖ → +∞ as ‖y‖ → +∞.
d) ran (Id− Fi) is bounded.
e) There exists a continuous convex function gi : Gi → R such that Fi = proxgi .

Proof. Set A = NC and (∀i ∈ I) Bi = ωiFi. Then the operators (Bi)i∈I are cocoercive.
Now define

(4.8) M = A+
∑
i∈I

L∗i ◦Bi ◦ Li.

It follows from [6, Proposition 4.12] that B =
∑

i∈I L
∗
i ◦ Bi ◦ Li is cocoercive and hence

maximally monotone by [6, Example 20.31], with domB = H. On the other hand, [6,
Example 20.26] asserts that A is maximally monotone. We therefore derive from [6, Corol-
lary 25.5(i)] that

(4.9) M is maximally monotone.

(i): Let x ∈ H. In view of (2.9), x solves Problem 1.3 if and only if

(4.10) −
∑
i∈I

ωiL
∗
i

(
Fi(Lix)− pi

)
∈ NCx,

that is,
∑

i∈I ωiL
∗
i pi ∈Mx.

(ii): Since domM = domA = C is bounded, it follows from (4.9) and [6, Corollary 21.25]
that M is surjective, so (i) holds.

(iii): It follows from [6, Example 25.14] that A is 3∗ monotone and from [6, Exam-
ple 25.20(i)] that the operators (Bi)i∈I are likewise. Hence, in view of (4.9) we invoke
Lemma 2.5 to get

(4.11) int ranM = int ran
(
A+

∑
i∈I

L∗i ◦Bi ◦ Li
)

= int
(

ranA+
∑
i∈I

L∗i (ranBi)
)

= H.

So M is surjective and (i) holds.
(iv)b)⇒(iv)a)⇒(iii): Clear.
(iv)c)⇒(iv)b): Since Fi is maximally monotone by [6, Example 20.30], this follows from

[6, Corollary 21.24].
(iv)d)⇒(iv)c): Set ρ = supy∈Gi ‖y−Fiy‖. Then ‖Fiy‖ > ‖y‖−‖y−Fiy‖ > ‖y‖−ρ→ +∞

as ‖y‖ → +∞.
(iv)e)⇒(iv)b): We derive from [6, Proposition 16.27] that Gi = int dom gi ⊂ dom ∂gi =

dom (Id + ∂gi) = ran (Id + ∂gi)
−1 = ran proxgi .
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Example 4.4. A simple instance when Problem 1.1 has no solution, while the relaxed Prob-
lem 1.3 does, is the following. Take disjoint nonempty closed convex subsets C and D of
H such that C is bounded, and let I = {1}, G1 = H, L1 = Id, F1 = Id − projD, and
p1 = 0. Then the solution set of Problem 1.1 is C ∩ D = ∅, while that of Problem 1.3 is
Fix (projC ◦ projD) 6= ∅ [33].

We have described in Example 1.2 an instance of the relaxed Problem 1.3 which is in
fact a minimization problem. The next proposition describes a general setting in which a
minimization problem underlies Problem 1.3. It involves the Moreau envelope of (2.7).

Proposition 4.5. Consider the setting of Problem 1.3 and suppose that, for every i ∈ I, there
exists gi ∈ Γ0(Gi) such that Fi = proxgi . Then the objective of Problem 1.3 is to

(4.12) minimize
x∈C

f(x), where f : x 7→
∑
i∈I

ωi

(
g̃∗i (Lix)− 〈Lix | pi〉

)
.

Proof. We derive from [6, Proposition 24.4] that (∀i ∈ I) ∇g̃∗i = proxgi . In turn, f is
differentiable and

(4.13) (∀x ∈ H) ∇f(x) =
∑
i∈I

ωiL
∗
i

(
proxgi(Lix)− pi

)
=
∑
i∈I

ωiL
∗
i

(
Fi(Lix)− pi

)
.

Consequently, (1.10) is equivalent to finding a solution to (2.13), i.e., by Lemma 2.4, to
minimizing f over C.

Next, we present a block-iterative algorithm for solving Problem 1.3.

Proposition 4.6. Consider the setting of Problem 1.3 under the assumption that it has a solu-
tion. Let K be a strictly positive integer and let (In)n∈N be a sequence of nonempty subsets of I
such that

(4.14) (∀n ∈ N)

K−1⋃
k=0

In+k = I.

Let x0 ∈ H, let γ ∈ ]0, 2[, and, for every i ∈ I, let ti,−1 ∈ H and set γi = γ/‖Li‖2. Iterate

(4.15)

for n = 0, 1, . . .

for every i ∈ In⌊
ti,n = xn − γiL∗i

(
Fi(Lixn)− pi

)
for every i ∈ I r In⌊
ti,n = ti,n−1

xn+1 = projC

(
m∑
i=1

ωiti,n

)
.

Then (xn)n∈N converges weakly to a solution to Problem 1.3.

Proof. Set A0 = NC and (∀i ∈ I) Ai = ‖Li‖−2(L∗i ◦Fi ◦Li−L∗i pi). For every i ∈ I, since Fi
is firmly nonexpansive, it follows from [6, Proposition 4.12] that Ai is firmly nonexpansive,
i.e., cocoercive with βi = 1. Thus, (4.15) is a special case of (2.18), and the conclusion follows
from Proposition 2.7.
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An attractive feature of (4.15) is its ability to activate only a subblock of operators (Fi)i∈In
at iteration n, as opposed to all of them as in classical algorithms dealing with inconsistent
common fixed point problems [16, 17, 18, 20, 22]. This flexibility is of the utmost relevance
for very-large-scale applications. It will also be seen in Section 5 to lead to more efficient
implementations. Condition (4.14) regulates the frequency of activation of the operators.
Since K can be chosen arbitrarily, it is actually quite mild.

5. Numerical experiments. In this section, we illustrate the ability of the proposed frame-
work to efficiently model and solve various signal and image recovery problems with incon-
sistent nonlinear prescriptions. Each instance will use the block-iterative algorithm (4.15)
which was shown in Proposition 4.6 to produce an exact solution of Problem 1.3 from any
initial point in H. Here, we implement it with x0 = 0.

Remark 5.1. In the modeling of signal construction problems as minimization problems,
it is common practice to add a function g to the objective in order to promote desirable
properties in the solutions. Several functions are thus averaged and contribute collectively to
defining solutions. A prominent example is the promotion of sparsity through the addition of a
penalty such as the `1 norm in RN [14, 57]. In the more general variational inequality setting
of Problem 1.3, this can be mimicked by adding the prescription Fy = 0, where F = Id−proxg,
i.e., by Moreau’s decomposition, F = proxg∗ [6, Remark 14.4]. Note that exact satisfaction
of the equality Fy = 0 would just mean that one minimizes g since Fix proxg = Argmin g.
In general, when incorporated to Problem 1.3, the pair (F, p) = (Id − proxg, 0) is intended
to promote the properties g would in a standard minimization problem. We investigate in
Sections 5.3 and 5.4 this technique to encourage sparsity in RN through the incorporation of
the operator F = projB∞(0;ρ) = Id − proxρ‖·‖1 , where B∞(0; ρ) is the `∞ ball of RN centered
at the origin and with radius ρ ∈ ]0,+∞[.

5.1. Image recovery from phase. The goal is to recover the original image x ∈ H = RN
(N = 2562) shown in Figure 5.1(a) from the following:

• Bounds on pixel values: x ∈ C = [0, 255]N .
• The degraded image p1 ∈ G1 = H shown in Figure 5.1(b), which is modeled as follows.

The image x is blurred by L1 : H → G1, which performs discrete convolution with a
15× 15 Gaussian kernel with standard deviation of 3.5, then corrupted by an additive
noise w1 ∈ G1. The blurred image-to-noise ratio is 20 log10(‖L1x‖/‖w1‖) = 24.0 dB.
Pixel values beyond 60 are then clipped. Altogether, p1 = projD1

(L1x + w1), where
D1 = [0, 60]N . This process models a low-quality image acquired by a device which
saturates at photon counts beyond a certain threshold. We therefore use F1 = projD1

in (1.10).
• An approximation ρ2 = 138 of the mean pixel value of x. To enforce this information,

following Example 1.2, we set G2 = H, L2 = Id, p2 = 0, and

(5.1) F2 : (ηk)16k6N 7→
(∑N

k=1 ηk
N

− ρ2
)
1.

• The phase θ ∈ [−π, π]N of the 2-D discrete Fourier transform of a noise-corrupted
version of x, i.e., θ = ∠DFT (x + w3), where w3 ∈ H yields an image-to-noise ratio
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20 log10(‖x‖/‖w3‖) = 49.0 dB. To model this information, we set G3 = H, L3 = Id,
p3 = 0, and, following Example 1.2, we employ

(5.2) F3 : y 7→ y − IDFT
(∣∣DFT y

∣∣max
{

cos
(
∠(DFT y)− θ

)
, 0
}

exp(ıθ)

)
.

Due to the noise present in p1 and θ, and the inexact estimation ρ2 of the pixel mean, this in-
stance of Problem 1.1 (I = {1, 2, 3}) is inconsistent. We thus arrive at the relaxed Problem 1.3
by setting ω1 = ω2 = ω3 = 1/3. By Proposition 4.3(ii), since C is bounded, Problem 1.3
is guaranteed to possess a solution. The solution shown in Figure 5.1(c) is computed using
algorithm (4.15) with γ = 1.9 and (∀n ∈ N) In = I. This experiment illustrates a nonlin-
ear recovery scenario with inconsistent measurements which nonetheless produces realistic
solutions obtained by exploiting all available information.

(a) (b) (c)

Figure 5.1. Experiment of Section 5.1: (a) Original image x. (b) Degraded image p1. (c) Recovered image.

5.2. Signal recovery. The goal is to recover the original signal x ∈ H = C = RN (N =
1024) shown in Figure 5.2(a) from the following:

• A piecewise constant approximation p1 of x, given by p1 = projD1
(x + w1), where

w1 ∈ G1 = H represents noise and D1 is the subspace of signals in G1 which are
constant by blocks along each of the 16 sets of 64 consecutive indices in {1, . . . , N}
(see Figure 5.2(b)). The signal-to-noise ratio is 20 log10(‖x‖/‖w1‖) = −2.3 dB. We
model this observation by setting L1 = Id and F1 = projD1

.
• A bound ρ2 = 0.025 on the magnitude of the finite differences of x. To enforce this

information, following Example 1.2, we set G2 = RN−1, L2 : H → G2 : (ξi)16i6N 7→
(ξi+1 − ξi)16i6N−1, p2 = 0, and F2 = Id − projD2

, where D2 =
{
y ∈ G2 | ‖y‖∞ 6 ρ2

}
,

that is, using (3.13),

(5.3) F2 : (ηk)16k6N−1 7→
(

softγ (ηk)
)
16k6N−1.

• A collection of m = 1200 noisy thresholded scalar observations r3 = (χj)j∈J ∈ Rm of
x, where J = {3, . . . ,m+ 2}. The true data formation model is

(5.4) (∀j ∈ J) χj = R(〈x | ej〉) + νj ,
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where (ej)j∈J is a dictionary of random vectors in RN with zero-mean i.i.d. entries,
the noise vector w3 = (νj)j∈J yields a signal-to-noise ratio of 20 log10(‖r3‖/‖w3‖) =
17.8 dB, and R is the thresholding operator of the type found in [2, 52] (ρ = 0.05),
namely

(5.5) R : R→ R : η 7→

{
sign(η) 4

√
η4 − ρ4, if |η| > ρ;

0, if |η| 6 ρ.

We assume that R is misspecified and that the presence of noise is unknown, so that
the data acquisition process is incorrectly modeled as

(5.6) (∀j ∈ J) χj = Q(〈x | ej〉),

where

(5.7) Q : R→ R : η 7→

{
sign(η)

√
η2 − ρ2, if |η| > ρ;

0, if |η| 6 ρ.

Note that Q is not Lipschitzian. Nonetheless, with

(5.8) S : R→ R : η 7→ sign(η)
(√

η2 + ρ2 − ρ
)
,

it is straightforward to verify that S ◦ Q = softρ and that, for every j ∈ J , (Fj , pj) =
( softρ , Sχj) is a proxification of (Q,χj). Also, for every j ∈ J , we set Gj = R and
Lj = 〈· | ej〉.

We thus consider the instantiation of Problem 1.3 in which I = {1, 2} ∪ J and, for every
i ∈ I, ωi = 1/(card I). Since (ej)j∈J is overcomplete and, for every j ∈ J , Fj is surjective,
it follows that H =

{∑
j∈J ωjηjej | ηj ∈ ranFj

}
=
∑

j∈J ωjL
∗
j (ranFj) ⊂

∑
i∈I ωiL

∗
i (ranFi),

so Problem 1.3 is guaranteed to possess a solution by Proposition 4.3(iii). Algorithm (4.15)
produces the signal shown in Figure 5.2(c) with γ = 1.9 and the following activation strategy.
At every iteration, F1 and F2 are activated, while we partition J into four blocks of 300
elements and cyclically activate one block per iteration, i.e.,

(5.9) (∀n ∈ N)(∀j ∈ {0, 1, 2, 3}) I4n+j = {1, 2, 3 + 300j, . . . , 2 + 300(j + 1)},

which satisfies condition (4.14) with K = 4. The results show that, even when the data are
noisy and poorly modeled, Problem 1.3 produces quite robust recoveries. The execution time
savings resulting from the use of (5.9) compared to the full activation strategy (i.e., In = I for
every n ∈ N) are displayed in Figure 5.3. Note that in very-large-scale scenarios in which all
data cannot be simultaneously loaded into memory, activation strategies such as (5.9) make
algorithm (4.15) implementable.
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Figure 5.2. Experiment of Section 5.2: (a): Original signal x. (b): Piecewise constant approximation p1. (c):
Recovered signal.
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Figure 5.3. Experiment of Section 5.2: Relative error 20 log10(‖xn − x∞‖/‖x0 − x∞‖) (dB) versus execution
time (seconds) for full activation (red) and cyclic activation (5.9) (green).

(a) (b) (c)

Figure 5.4. Experiment of Section 5.3: (a) Original image x. (b) Degraded image q1. (c) Recovered image.
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Figure 5.5. Experiment of Section 5.3: Recovered image with logarithmic thresholding instead of soft thresholding.

5.3. Sparse image restoration. The goal is to recover the original image x ∈ H = RN
(N = 2562) shown in Figure 5.4(a) from the following:

• Bounds on pixel values: x ∈ C = [0, 255]N .
• The low rank approximation q1 ∈ G1 = H displayed in Figure 5.4(b) of a blurred

noisy version of x modeled as follows. The blurring operator L1 : H → G1 ap-
plies a discrete convolution with a uniform 7 × 7 kernel, and the operators Q and
S are as in Example 3.13, with threshold ρ = 500. Then q1 = Q(L1x + w1) is
a rank-85 compression, where w1 ∈ G1 induces a blurred image-to-noise ratio of
20 log10(‖L1x‖/‖w1‖) = 17.6 dB. By Example 3.13, we obtain a proxification of (Q, q1)
with (F1, p1) = (S ◦Q,Sq1).
• x is sparse. To promote this property in the solutions to (1.10), following Remark 5.1,

we set G2 = H, L2 = Id, p2 = 0, ρ2 = 1.5, and F2 = projB∞(0;ρ2)
.

We therefore arrive at an instance of Problem 1.3 with I = {1, 2} and ω1 = ω2 = 1/2. Since C
is bounded, Proposition 4.3(ii) guarantees that a solution exists. Algorithm (4.15) with γ = 1
yields the recovery in Figure 5.4(c). Even though computing F1 requires only one singular
value decomposition (not two, as (3.14) may suggest), it is the most numerically expensive
operator in this problem. Therefore, we choose to activate F1 only every 5 iterations, i.e.,

(5.10) In =

{
{2}, if n 6≡ 0 mod 5;

{1, 2}, if n ≡ 0 mod 5.

Figure 5.6 displays the time savings resulting from the use of (5.10) compared to full activa-
tion (both activation strategies yield visually indistinguishable recoveries). Notice that, while
the observation in Figure 5.4(b) is virtually illegible, many of the words in the recovery of
Figure 5.4(c) can be discerned.

Finally, we examine the use of the non-firmly nonexpansive sparsity-promoting operator of
Example 3.15. Specifically, Qγg is given by (3.16), which is induced by the logarithmic penalty
with parameters ρ = ρ2 and γ = 0.05/ρ22. This implies that 0.95Qγg is firmly nonexpansive
and hence that Id− 0.95Qγg is likewise. Figure 5.5 displays the result when F2 is replaced by
componentwise applications of Id−0.95Qγg. In this experiment, the `1 penalty-based operator
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F2 yields a sharper recovery in Figure 5.4(c) than the recovery in Figure 5.5, which is induced
by the logarithmic penalty.
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Figure 5.6. Experiment of Section 5.3: Relative error 20 log10(‖xn − x∞‖/‖x0 − x∞‖) (dB) versus execution
time (seconds) for full activation (red) and block activation (5.10) (green).

5.4. Source separation. This experiment incorporates nonlinear compression to a problem
in astronomy, which seeks to separate a background image x1 ∈ RN (N = 6002) of stars from
a galaxy image x2 ∈ RN [40]. The goal is to construct the image pair (x1, x2) ∈ H = RN ×RN
given the following:

• Bounds on pixel values: (x1, x2) ∈ C = [0, 255]N × [0, 255]N .
• The low rank approximation q1 ∈ G1 = RN shown in Figure 5.7(b) of the origi-

nal superposition x1 + x2 shown in Figure 5.7(a), which is modeled as follows. Set
L1 : H → G1 : (x1, x2) 7→ x1+x2, and let Q and S be as in Example 3.13 with ρ = 1500.
The resulting rank-22 approximation of x1 + x2 is given by q1 = Q(L1(x1, x2)). It fol-
lows from Example 3.13 that (F1, p1) = (S ◦Q,Sq1) is a proxification of (Q, q1).
• x1 is sparse, and x2 admits a sparse representation relative to the 2-D discrete co-

sine transform L : RN → RN [40]. To encourage these properties, as discussed in
Remark 5.1, we set G2 = H, L2 : (x1, x2) 7→ (x1, Lx2), p2 = 0, and F2 : (y1, y2) 7→
(projB∞(0;10)y1, projB∞(0;45)y2). In view of Example 3.1, F2 is firmly nonexpansive.

Thus, we arrive at an instance of Problem 1.3 with I = {1, 2} and ω1 = ω2 = 1/2. By
Proposition 4.3(ii) this problem is guaranteed to possess a solution since C is bounded. Al-
gorithm (4.15) with γ = 1 provides the solution shown in Figure 5.7(c)–(d). To improve
algorithmic performance, we adopt the activation strategy (5.10); see Figure 5.8 for time sav-
ings compared to the full activation strategy. As can be seen from Figure 5.7, this approach
produces effective recoveries. Even though this problem involves a discontinuous observation
process, we can nonetheless solve it with algorithm (4.15), which exploits all of the informa-
tion at hand.
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(a) (b)

(c) (d)

Figure 5.7. Experiment of Section 5.4: (a) Original image x1 + x2. (b) Low-rank compression of x1 + x2. (c)
Recovered background (stars). (d) Recovered foreground (galaxy).
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Figure 5.8. Experiment of Section 5.4: Relative error 20 log10(‖xn − x∞‖/‖x0 − x∞‖) (dB) versus execution
time (seconds) for full activation (red) and block activation (5.10) (green).
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