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ITERATING BREGMAN RETRACTIONS∗
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Abstract. The notion of a Bregman retraction of a closed convex set in Euclidean space is
introduced. Bregman retractions include backward Bregman projections, forward Bregman projec-
tions, as well as their convex combinations, and are thus quite flexible. The main result on iterating
Bregman retractions unifies several convergence results on projection methods for solving convex
feasibility problems. It is also used to construct new sequential and parallel algorithms.
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PII. XXXXX

1. Standing assumptions, problem statement, and motivation. We as-
sume throughout this paper that

(1.1) X is a Euclidean space with scalar product 〈·, ·〉 and induced norm ‖ · ‖

and that

(1.2)
f : X → ]−∞,+∞] is a proper closed convex Legendre function
such that dom f∗ is open,

where f∗ denotes the conjugate of f . Recall that a function is Legendre if it is both
essentially smooth and essentially strictly convex (see, e.g., [31] for basic facts and
notions from convex analysis). In addition, we assume that

(1.3)
(Ci)i∈I are finitely many closed convex sets in X
such that (int dom f) ∩

⋂
i∈I Ci 6= Ø.

Our aim is to study algorithms for solving the fundamental convex feasibility problem
(see [4], [14], [17], [20], and [27] for further information and references)

(1.4) find x ∈
⋂
i∈I

Ci.

Assumption (1.2) guarantees that we capture a large class of functions (see Ex-
ample 2.1 below) for which the corresponding Bregman distance
(1.5)

Df : X ×X → [0,+∞] : (x, y) 7→

{
f(x)− f(y)− 〈x− y,∇f(y)〉 , if y ∈ int dom f ;
+∞, otherwise,
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enjoys useful properties (Proposition 2.2). This type of directed distance was first
introduced by Bregman in [8]; see [17] for a historical account. Now fix a closed
convex set C in X such that C∩ int dom f 6= Ø and a point y ∈ int dom f . Then there
is a unique point in C ∩ int dom f , called the backward Bregman projection (or simply
the Bregman projection) of y onto C and denoted by

←−
PCy, which satisfies (Fact 2.3)

(1.6) (∀c ∈ C) Df (
←−
PCy, y) ≤ Df (c, y).

Moreover, if f allows forward Bregman projections (Definition 2.4), then there is
analogously a unique point in C ∩ int dom f , called the forward Bregman projection
of y onto C and denoted by

−→
PCy, which satisfies (Fact 2.6)

(1.7) (∀c ∈ C) Df (y,
−→
PCy) ≤ Df (y, c).

If f = 1
2‖ · ‖

2, then both
←−
PCy and

−→
PCy coincide with the orthogonal projection of y

onto C; however, the backward and forward Bregman projections differ generally, due
to the asymmetry of Df .

With backward and forward Bregman projections in place, we now describe three
projection methods for solving (1.4). To this end, fix an index selector map i : N =
{0, 1, 2, . . . } → I that takes on each value in I infinitely often, and a starting point
y0 ∈ int dom f . The method of backward Bregman projections generates a sequence
(yn)n∈N by

(1.8) (∀n ∈ N) yn+1 =
←−
PCi(n+1)yn.

Analogously, if f allows forward Bregman projections, then the update rule for the
method of forward Bregman projections is

(1.9) (∀n ∈ N) yn+1 =
−→
PCi(n+1)yn.

Well-known cyclic versions arise if I = {1, . . . , N} and i(n) = n modN , where the
range of the mod function is assumed to be {1, . . . , N}. The sequence (yn)n∈N gener-
ated by (1.8) (or by (1.9), if f allows forward Bregman projections) is known to solve
(1.4) asymptotically: indeed, (yn)n∈N converges to some point in

⋂
i∈I Ci, see [5] and

[16] (or [7], respectively).
The third algorithm is due to Byrne and Censor [12], who adapted Csiszár and

Tusnády’s classical alternating minimization procedure [22] to a product space setting
(see also Section 5). Their algorithm assumes two constraints, I = {1, 2}, and a se-
quence (yn)n∈N is generated using alternating backward-forward Bregman projections:

(1.10) (∀n ∈ N) yn+1 =
(←−
PC2 ◦

−→
PC1

)
yn.

They show that, under appropriate conditions, (yn)n∈N converges to some point in
C1 ∩ C2, see [12, Theorem 1].

The striking resemblance in the update rules of the three preceding algorithms
motivates this paper. Our objective is to provide a unified convergence analysis of
these algorithms using the notion of a Bregman retraction, which encompasses both
backward and forward Bregman projections. The main theorem not only recovers
known convergence results but also provides a theoretical basis for the application of
new sequential and parallel methods.
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It is instructive to contrast our Bregman retraction-based framework with Cen-
sor and Reich’s [16] framework, which is built on paracontractions (Definition 3.11).
While backward Bregman projections are both Bregman retractions and paracontrac-
tions, the two notions differ in general; actually, Examples 3.12 and 3.13 show that
neither framework contains the other.

The key advantage of the Bregman retraction-based framework presented here is
its applicability: the conditions on f are mild and easy to check. Moreover, simple
constraint qualifications guarantee that Bregman retractions — in the form of back-
ward Bregman projections (and forward Bregman projections, if f allows them) —
always exist.

The paper is organized as follows. Background material on Bregman distances
and associated projections is included in Section 2. In Section 3, Bregman retractions
are introduced, analyzed, and illustrated by examples. The main result is proved in
Section 4 and applications are presented in Section 5.

2. Preliminary results. Below is a selection of functions satisfying our assump-
tions (see [5] for additional examples).

Example 2.1. [5] Suppose X = RJ and, for every x ∈ X, write x = (ξj)J
j=1.

Then the following functions satisfy (1.2) (here and elsewhere, we use the convention
0 · ln(0) = 0):

(i) f : x 7→ 1
2‖x‖

2 = 1
2

∑J
j=1 |ξj |2, with dom f = RJ (energy);

(ii) f : x 7→
∑J

j=1 ξj ln(ξj)− ξj , with dom f = [0,+∞[J (negative entropy);
(iii) f : x 7→

∑J
j=1 ξj ln(ξj)+(1− ξj) ln(1− ξj), with dom f = [0, 1]J (Fermi-Dirac

entropy);
(iv) f : x 7→ −

∑J
j=1 ln(ξj), with dom f = ]0,+∞[J (Burg entropy);

(v) f : x 7→ −
∑J

j=1

√
ξj , with dom f = [0,+∞[J .

The assumptions imposed on f in (1.2) guarantee the following very useful prop-
erties of Df .

Proposition 2.2. Let Df be defined as in (1.5). Then
(i) Df is continuous on (int dom f)2.
(ii) If x ∈ dom f and y ∈ int dom f , then Df (x, y) ≥ 0, and Df (x, y) = 0 ⇔

x = y.
(iii) If (xn)n∈N and (yn)n∈N are two sequences in int dom f converging to x ∈

int dom f and y ∈ int dom f , respectively, then Df (xn, yn)→ 0 ⇔ x = y.
(iv) If x ∈ int dom f and (yn)n∈N is a sequence in int dom f such that the sequence(

Df (x, yn)
)
n∈N is bounded, then (yn)n∈N is bounded and all its cluster points

belong to int dom f .
(v) If x ∈ int dom f and (yn)n∈N is a sequence in int dom f such that Df (x, yn)→

0, then yn → x.
Proof. (i): This follows from the definition of Df and the continuity of f (re-

spectively ∇f) on int dom f ; see [31, Theorem 10.1] (respectively [31, Theorem 25.5]).
(ii): [5, Theorem 3.7.(iv)]. (iii): This is a consequence of (i) and (ii). (iv): [5, Theo-
rem 3.7.(vi) and Theorem 3.8.(ii)]. (v): (See also [7, Fact 2.18].) By (iv), (yn)n∈N is
bounded and has all its cluster points in int dom f . Pick an arbitrary cluster point of
(yn)n∈N, say ykn → y ∈ int dom f . Then Df (x, ykn)→ 0 and thus x = y by (iii).

We now turn to backward and forward Bregman projections.
Fact 2.3 (backward Bregman projection). Suppose C is a closed convex set in

X such that C ∩ int dom f 6= Ø. Then, for every y ∈ int dom f , there exists a unique
point

←−
PCy ∈ C ∩ dom f such that Df (

←−
PCy, y) ≤ Df (c, y), for all c ∈ C. The point
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←−
PCy is called the backward Bregman projection (or simply the Bregman projection)
of y onto C, and it is characterized by

(2.1)
←−
PC ∈ C ∩ int dom f and (∀c ∈ C)

〈
c−
←−
PCy,∇f(y)−∇f(

←−
PCy)

〉
≤ 0;

equivalently, by

(2.2)
←−
PC ∈ C ∩ int dom f and (∀c ∈ C) Df (c, y) ≥ Df (c,

←−
PCy) + Df (

←−
PCy, y).

Finally, the operator
←−
PC is continuous on int dom f .

Proof. Under the present assumptions on f , the claims follow from [5, Theo-
rem 3.14 and Proposition 3.16], except for the continuity of

←−
PC , which we derive

now. Suppose (xn)n∈N is a sequence in int dom f converging to x̄ ∈ int dom f . Set
(cn)n∈N = (

←−
PCxn)n∈N and c̄ =

←−
PC x̄. We must show that (cn)n∈N converges to c̄.

Using Proposition 2.2.(i) and (2.2), we have

(2.3) Df (c̄, x̄)← Df (c̄, xn) ≥ Df (c̄, cn) + Df (cn, xn) ≥ Df (c̄, cn).

Hence
(
Df (c̄, cn)

)
n∈N is bounded. By Proposition 2.2.(iv), (cn)n∈N is bounded and

all its cluster points belong to C ∩ int dom f . Let ĉ be such a cluster point, say
ckn
→ ĉ ∈ int dom f . Using the definition of c̄, Proposition 2.2.(i), and (2.2), we

deduce Df (ĉ, x̄) ≥ Df (c̄, x̄) ← Df (c̄, xkn) ≥ Df (c̄, ckn) + Df (ckn , xkn) → Df (c̄, ĉ) +
Df (ĉ, x̄) ≥ Df (ĉ, x̄); thus Df (c̄, ĉ) = 0 and hence, by Proposition 2.2.(ii), c̄ = ĉ.

Definition 2.4. The function f allows forward Bregman projections if it satisfies
the following additional properties:

(i) ∇2f exists and is continuous on int dom f ;
(ii) Df is convex on (int dom f)2;
(iii) For every x ∈ int dom f , Df (x, ·) is strictly convex on int dom f .
Remark 2.5. The function f allows forward Bregman projections if and only if

it satisfies the standing assumptions of [7], which allows us to apply the results of [7].
This equivalence follows from [7, Remark 2.1] and

(2.4) Df is convex on (int dom f)2 ⇔ Df is convex on X2.

We now verify (2.4). The implication “⇐” is clear. To establish “⇒”, let us fix
(y1, y2) ∈ (int dom f)2, (x1, x2) ∈ (dom f)2, and (λ1, λ2) ∈ ]0, 1[2 such that λ1 + λ2 =
1. For ε ∈ ]0, 1[ and i ∈ {1, 2}, set xi,ε = (1−ε)xi+εyi ∈ int dom f . Then Df (λ1x1,ε+
λ2x2,ε, λ1y1 +λ2y2) ≤ λ1Df (x1,ε, y1)+λ2Df (x2,ε, y2). Now take y ∈ int dom f . Since
f is closed and convex, so is Df (·, y). Hence, as ε ↓ 0+, the line segment continuity
property of Df (·, y) [31, Corollary 7.5.1] results in Df (λ1x1 + λ2x2, λ1y1 + λ2y2) ≤
λ1Df (x1, y1)+λ2Df (x2, y2). Thus Df is convex on dom f× int dom f = dom Df and,
thereby, on X2.

Fact 2.6 (forward Bregman projection). Suppose f allows forward Bregman
projections and C is a closed convex set in X such that C ∩ int dom f 6= Ø. Then,
for every y ∈ int dom f , there exists a unique point

−→
PCy ∈ C ∩ dom f such that

Df (y,
−→
PCy) ≤ Df (y, c), for all c ∈ C. The point

−→
PCy is called the forward Bregman

projection of y onto C and it is characterized by

(2.5)
←−
PCy ∈ C ∩ int dom f and (∀c ∈ C)

〈
c−
−→
PCy,∇2f(

−→
PCy)(y −

−→
PCy)

〉
≤ 0;
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equivalently, by
(2.6)
←−
PCy ∈ C ∩ int dom f and (∀c ∈ C) Df (c, y) ≥ Df (c,

−→
PCy) + DDf

(
(c, c), (y,

−→
PCy)

)
.

Finally, the operator
−→
PC is continuous on int dom f .

Proof. This follows from [7, Lemma 2.9, Lemma 3.5, Lemma 3.6, and Corol-
lary 3.7].

The key requirement in Definition 2.4 is the convexity of Df , which is studied
separately in [6]. Not every Legendre function allows forward Bregman projections,
but the most important ones from Example 2.1 do:

Example 2.7 (functions allowing forward Bregman projections). [7, Exam-
ple 2.16] Let X = RJ . Then the energy, the negative entropy, and the Fermi-Dirac
entropy allow forward Bregman projections.

The following example shows that backward and forward Bregman projections
are different notions.

Example 2.8 (entropic averaging in R2). Let f : R2 → ]−∞,+∞] : (ξ1, ξ2) 7→∑2
i=1 ξi ln(ξi)−ξi be the negative entropy on R2, and let ∆ = {(ξ1, ξ2) ∈ R2 : ξ1 = ξ2}.

Then dom f = [0,+∞[2 and clearly ∆ ∩ int dom f 6= Ø. Using (2.1) and (2.5), it is
straightforward to verify that, for every (ξ1, ξ2) ∈ int dom f = ]0,+∞[2,

(2.7)
←−
P∆(ξ1, ξ2) =

(√
ξ1ξ2,

√
ξ1ξ2

)
and

−→
P∆(ξ1, ξ2) =

(
1
2 (ξ1 + ξ2), 1

2 (ξ1 + ξ2)
)
.

These formulae can also be deduced from Example 3.16 below.
We close this section with a characterization of convergence for Bregman mono-

tone sequences. Note that when f = 1
2‖ · ‖

2, Bregman monotonicity reverts to the
standard notion of Fejér monotonicity, which is discussed in detail in [4] and [21].

Proposition 2.9 (Bregman monotonicity). Suppose C is a closed convex set
in X such that C ∩ int dom f 6= Ø. Suppose further (yn)n∈N is a sequence which is
Bregman monotone with respect to C ∩ int dom f , i.e., it lies in int dom f and

(2.8) (∀c ∈ C ∩ int dom f)(∀n ∈ N) Df (c, yn+1) ≤ Df (c, yn).

Then: (yn)n∈N converges to some point in C∩int dom f ⇔ all cluster points of (yn)n∈N
are in C.

Proof. The implication “⇒” is clear. “⇐”: pick c ∈ C ∩ int dom f . Then the
sequence

(
Df (c, yn)

)
n∈N is decreasing and nonnegative, hence bounded. By Propo-

sition 2.2.(iv), (yn)n∈N is bounded and all its cluster points lie in int dom f . Let
{c, ĉ} ⊂ C ∩ int dom f be two cluster points of (yn)n∈N, say ykn

→ c and yln → ĉ.
By Proposition 2.2.(iii), Df (c, ykn) → 0. Since (yn)n∈N is Bregman monotone, we
have Df (c, yn)→ 0 and, in particular, Df (c, yln)→ 0. Using Proposition 2.2.(v), we
conclude c = ĉ.

3. Bregman retractions.

3.1. Properties and examples.
Definition 3.1 (Bregman retraction). Suppose C is a closed convex set in X

such that C ∩ int dom f 6= Ø and µ is a function from dom µ = (C ∩ int dom f) ×
int dom f to [0,+∞[. Then R : dom R = int dom f → C ∩ int dom f is a Bregman
retraction of C with modulus µ, if the following two properties hold for every c ∈
C ∩ int dom f and every x ∈ int dom f :

(i) Df (c, x) ≥ Df (c,Rx) + µ(c, x).
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(ii) If (xn)n∈N is a sequence in int dom f and y is a point in int dom f such that
xn → x, Rxn → y, and µ(c, xn)→ 0, then x = y.

Proposition 3.2 (basic properties of Bregman retractions). Suppose C is a
closed convex set in X such that C ∩ int dom f 6= Ø. Suppose further R is a Bregman
retraction of C with modulus µ. Then the following holds true for every c ∈ C ∩
int dom f and every x ∈ int dom f :

(i) Suppose (xn)n∈N is a sequence in int dom f and y is a point in int dom f such
that xn → x and Rxn → y. Then µ(c, xn)→ 0 ⇔ x = y.

(ii) µ(c, x) = 0 ⇔ x = Rx ⇔ x ∈ C.
Proof. (i): the implication “⇒” is clear by Definition 3.1.(ii). If x = y, then

(use Proposition 2.2.(i) and Definition 3.1.(i)) 0 = Df (c, x)−Df (c, x)← Df (c, xn)−
Df (c,Rxn) ≥ µ(c, xn) ≥ 0. Hence µ(c, xn) → 0 and “⇐” is verified. (ii): The
first equivalence is a special case of (i), while the implication x = Rx ⇒ x ∈ C is
clear. Now assume x ∈ C. Then Definition 3.1.(i) with c = x yields 0 = Df (x, x) ≥
Df (x,Rx) + µ(x, x) ≥ Df (x, Rx) ≥ 0. Hence Df (x, Rx) = 0 and thus x = Rx by
Proposition 2.2.(ii).

Every nonempty closed convex set in X possesses a Bregman retraction with
respect to the energy:

Example 3.3 (orthogonal projection). Suppose f = 1
2‖ ·‖

2 and C is a nonempty
closed convex set in X. Then its orthogonal projection PC is a Bregman retraction
with modulus µ : (c, x) 7→ 1

2‖x− PCx‖2.
Proof. This will turn out to be a special case of Example 3.6 or 3.7.
However, the next example shows that there exist Bregman retractions that are

not projections.
Example 3.4. Let f = 1

2‖ · ‖
2 and C = {x ∈ X : ‖x‖ ≤ 1}. Fix ε ∈ ]0, 1[,

define λ : X → [0,+∞[ : x 7→ 1 + min
{
ε, ‖x − PCx‖

}
, and let R : X → C : x 7→(

1− λ(x)
)
x + λ(x)PCx, where PC is the orthogonal projection onto C. Then R is a

Bregman retraction of C with modulus µ : (c, x) 7→ 1
2

(
2− λ(x)

)
λ(x)‖x− PCx‖2.

Proof. Fix x ∈ X and c ∈ C. It follows from standard properties of orthogonal
projections (see, e.g., [4, Corollary 2.5]) that

(3.1) ‖x− c‖2 − ‖x−Rx‖2 ≥
(
2− λ(x)

)
λ(x)‖x− PCx‖2,

which corresponds to Definition 3.1.(i). Now assume (xn)n∈N converges to x. Since
PC , and hence λ, is continuous, we have PCxn → PCx and Rxn → Rx. Assume
further µ(c, xn)→ 0. Then xn−PCxn → 0 and thus Rxn = xn+λ(xn)(PCxn−xn)→
x. Hence Rx = x and therefore R is a Bregman retraction.

Remark 3.5. In passing, note that if C is a closed convex set in X such that
(int C)∩ int dom f 6= Ø and y ∈ int dom f rC, then both points

←−
PCy and

−→
PCy belong

to (bdry C) ∩ int dom f . Now let R and C as in Example 3.4. Since R maps points
outside C to the interior of C, there is no function f such that R is the backward or
forward Bregman projection onto C with respect to Df .

The following two examples contain Example 3.3 if we let f = 1
2‖ · ‖

2.
Example 3.6 (backward Bregman projection). Suppose C is a closed convex set

in X such that C ∩ int dom f 6= Ø. Then the backward Bregman projection
←−
PC is a

continuous Bregman retraction with modulus µ : (c, x) 7→ Df (
←−
PCx, x).

Proof. This follows from Fact 2.3 and Proposition 2.2.(iii).
Example 3.7 (forward Bregman projection). Suppose f allows forward Bregman

projections and C is a closed convex set in X such that C ∩ int dom f 6= Ø. Then the
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forward Bregman projection
−→
PC is a continuous Bregman retraction with modulus

(3.2) µ : (c, x) 7→ DDf

(
(c, c), (x,

−→
PCx)

)
=

Df (c, x)−Df (c,
−→
PCx) +

〈
c−
−→
PCx,∇2f(

−→
PCx)(x−

−→
PCx)

〉
.

Proof. See [7, Lemma 2.9] for the nonnegativity of DDf
and for the expression

of DDf
. Fact 2.6 states that

−→
PC is continuous and (2.6) verifies Definition 3.1.(i). It

remains to establish condition (ii) of Definition 3.1. So pick c ∈ C ∩ int dom f and
(xn)n∈N in int dom f such that xn → x ∈ int dom f ,

−→
PCxn → y ∈ int dom f , and

µ(c, xn) → 0. By [7, Lemma 2.9], DDf
is continuous on (int dom f)4 and therefore

µ(c, xn)→ DDf

(
(c, c), (x, y)

)
. Altogether, DDf

(
(c, c), (x, y)

)
= 0 and [7, Lemma 2.10]

implies x = y.
The following example is motivated by [30, Section 4.7].
Example 3.8. Let X = RJ , f be the negative entropy, and

(3.3) C =
{
x ∈ X : x ≥ 0 and 〈x,1〉 ≤ 1

}
, where 1 = (1, . . . , 1) ∈ X.

Let

(3.4) R : int dom f → C ∩ int dom f : x 7→

{
x, if x ∈ C;
x/〈x,1〉, otherwise.

Then R =
←−
PC =

−→
PC . Consequently, R is a continuous Bregman retraction of C.

Proof. Fix c ∈ C and x ∈ int dom f r C. Then, abusing notation slightly,

〈c−Rx,∇f(x)−∇f(Rx)〉 =
〈
c− x/〈x,1〉, ln(x)− ln

(
x/〈x,1〉

)〉
=

〈
c− x/〈x,1〉, ln

(
〈x,1〉

)
1
〉

= ln
(
〈x,1〉

)(
〈c,1〉 − 1

)
≤ 0.

By (2.1), we see that Rx =
←−
PCx. Similarly,〈

c−Rx,∇2f(Rx)(x−Rx)
〉

=
〈
c− x/〈x,1〉,

(
〈x,1〉 − 1

)
· 1

〉
=

(
〈x,1〉 − 1

)(
〈c,1〉 − 1

)
≤ 0.

Thus, using (2.5), Rx =
−→
PCx.

Remark 3.9. In [30, Section 4.7], it is observed that the orthogonal projection
of an arbitrary point in RJ onto C is hard to compute explicitly, and hence the use
of the following extension R̃ of R is suggested. Denoting the nonnegative part of a
vector x ∈ RJ by x+ (i.e., x+ is the orthogonal projection of x onto the nonnegative
orthant), the extension R̃ is defined by

(3.5) R̃ : X → C : x 7→

{
x+/〈x+,1〉, if 〈x+,1〉 > 1;
x+, otherwise.

It is important to note that for certain points x ∈ dom f rC and c ∈ C, the inequality
‖R̃x − c‖ = ‖Rx − c‖ ≤ ‖x − c‖ does not hold. Indeed, take X = R2, let c = (1, 0),
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consider the ray emanating from 0 that makes an angle of π/6 with [0,+∞[ ·c, and let
x be the orthogonal projection of c onto this ray. Then ‖R̃x−c‖ = ‖Rx−c‖ > ‖x−c‖
(and this example can be lifted to RJ , where J ≥ 3). Therefore, Example 3.8 shows
that an operator which is not a Bregman retraction with respect to the energy may
turn out to be a Bregman retraction with respect to some other function.

3.2. Comparison with Censor and Reich’s paracontractions. Let us first
recall the concept of a Bregman function, as defined in [15] or [17] (see also [5], [9],
[25], and [32] for more concise definitions).

Definition 3.10. Let S be a nonempty open convex subset of RJ , let g : S → R
be a continuous and strictly convex function, and let Dg be the corresponding Bregman
distance. Then g is a Bregman function with zone S if the following conditions hold:

(i) g is continuously differentiable on S;
(ii) For every x ∈ S the sets

(
{y ∈ S : Dg(x, y) ≤ η}

)
η∈R are bounded;

(iii) For every y ∈ S the sets
(
{x ∈ S : Dg(x, y) ≤ η}

)
η∈R are bounded;

(iv) If (yn)n∈N lies in S and yn → y, then Dg(y, yn)→ 0;
(v) If (xn)n∈N is a bounded sequence in S, (yn)n∈N lies in S, yn → y, and

Dg(xn, yn)→ 0, then xn → y.
The following notion is due to Censor and Reich.
Definition 3.11 ([16, Definition 3.2]). Suppose g is a Bregman function with

zone S ⊂ RJ and let T : S → RJ be an operator with domain S. A point x̄ ∈ RJ is
called an asymptotic fixed point of T if there exists a sequence (xn)n∈N in S such that
xn → x̄ and Txn → x̄. The set of asymptotic fixed points is denoted by F̂ (T ). The
operator T is a paracontraction if F̂ (T ) 6= Ø and the following two conditions hold.

(i)
(
∀c ∈ F̂ (T )

)(
∀x ∈ S

)
Dg(c, Tx) ≤ Dg(c, x).

(ii) If (xn)n∈N is a bounded sequence in S and c ∈ F̂ (T ) satisfies Dg(c, xn) −
Dg(c, Txn)→ 0, then Dg(Txn, xn)→ 0.

Example 3.12 (Bregman retraction 6⇒ paracontraction). Let f and ∆ be as in
Example 2.8, and set T =

−→
P∆. Then T is a continuous Bregman retraction but not a

paracontraction.
Proof. The first claim follows from Examples 2.7 and 3.7. We now show that T

is not a paracontraction. First, f is a Bregman function with zone S = int dom f =
]0,+∞[2. In addition,

(3.6) Df (x, y) = ξ1 ln(ξ1/η1)− ξ1 + η1 + ξ2 ln(ξ2/η2)− ξ2 + η2,

for x = (ξ1, ξ2) ∈ dom f = [0,+∞[2 and y = (η1, η2) ∈ int dom f = ]0,+∞[2. The set
of asymptotic fixed points of T is seen to be

(3.7) F̂ (T ) = ∆ ∩ dom f =
{
(ξ1, ξ2) ∈ R2 : ξ1 = ξ2 ≥ 0

}
6= Ø.

Fix c = (0, 0) ∈ F̂ (T ) and pick an arbitrary x = (ξ1, ξ2) ∈ int dom f r ∆. By
Example 2.8, Tx =

−→
P∆x = 1

2 (ξ1 + ξ2, ξ1 + ξ2). Hence,
(3.8)
Df (c, x)−Df (c, Tx) = Df (0, x)−Df (0, Tx) =

(
ξ1+ξ2

)
−

(
1
2 (ξ1+ξ2)+ 1

2 (ξ1+ξ2)
)

= 0.

However, since x 6∈ ∆, we have Tx =
−→
P∆x 6= x and so, by Proposition 2.2.(ii),

Df (Tx, x) > 0. Therefore Definition 3.11.(ii) fails and it follows that T is not a
paracontraction.
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Example 3.13 (paracontraction 6⇒ Bregman retraction). Let X = R and f =
1
2 | · |

2. Then f is a Bregman function with zone S = X and T : X → X : x 7→ 1
2x is

a paracontraction with F̂ (T ) = {0}. Now suppose that T is a Bregman retraction.
Then, by Proposition 3.2.(ii), the underlying set must be C = {0}. However, by
Definition 3.1, this is absurd since the range of T is not a subset of C. Therefore T is
not a Bregman retraction.

3.3. New Bregman retractions via averages and products.
Proposition 3.14 (averaged Bregman retractions). Suppose f allows forward

Bregman projections and C is a closed convex set in X such that C ∩ int dom f 6= Ø.
Suppose further R1 and R2 are two continuous Bregman retractions of C with moduli
µ1 and µ2. Fix λ1 > 0 and λ2 > 0 such that λ1 + λ2 = 1, and set R = λ1R1 + λ2R2.
Then R is a Bregman retraction of C with modulus µ = λ1µ1 + λ2µ2.

Proof. It is clear that the range of R is contained in C ∩ int dom f and that
dom R = int dom f . Fix c ∈ C ∩ int dom f and x ∈ int dom f . Since both R1 and R2

are Bregman retractions of C and since Df (c, ·) is convex on int dom f , we have

Df (c, x) = λ1Df (c, x) + λ2Df (c, x)

≥ λ1

(
Df (c,R1x) + µ1(c, x)

)
+ λ2

(
Df (c,R2x) + µ2(c, x)

)
=

(
λ1Df (c,R1x) + λ2Df (c,R2x)

)
+ µ(c, x)

≥ Df (c,Rx) + µ(c, x).

Hence condition (i) of Definition 3.1 holds. Next, assume (xn)n∈N is a sequence in
int dom f converging to x such that Rxn → y ∈ int dom f and µ(c, xn) → 0. Then
µ1(c, xn)→ 0 and µ2(c, xn)→ 0. On the other hand, since R1 and R2 are continuous
on int dom f , (R1xn, R2xn) → (R1x,R2x) and hence Rxn → Rx. Thus y = Rx.
Using condition (ii) of Definition 3.1 on each Ri, we also have x = R1x = R2x and
thus x = Rx. Altogether, x = y and condition (ii) of Definition 3.1 is verified as well.

Example 3.15 (averaged backward-forward Bregman projections). Suppose f
allows forward Bregman projections and C is a closed convex set in X such that
C∩ int dom f 6= Ø. Denote the Bregman retraction and its modulus from Example 3.6
(respectively Example 3.7) by R1 and µ1 (respectively R2 and µ2). Fix λ1 > 0 and
λ2 > 0 such that λ1 + λ2 = 1, and set R = λ1R1 + λ2R2. Then R is a Bregman
retraction of C with modulus µ = λ1µ1 + λ2µ2.

We conclude this section with a product space construction first introduced by
Pierra in [28] (see also [29]). The extension to a Bregman distance setting is due to
Censor and Elfving [13]. The product space technique will be extremely useful for
analyzing the parallel projection methods presented in Section 5.

Example 3.16 (product space setup). For convenience, let I = {1, . . . , N} in
(1.3). Denote the standard Euclidean product space XN by X and write x = (xi)i∈I ,
for x ∈ X. Let

(3.9) ∆ =
{
(x, . . . , x) ∈ X : x ∈ X

}
and C = C1 × · · · × CN .

Fix (λi)i∈I in ]0, 1] such that
∑

i∈I λi = 1, and set

(3.10) f : X→ ]−∞,+∞] : x 7→
∑

i∈Iλif(xi).

Then f is Legendre, dom f∗ is open, and ∆ ∩ C ∩ int dom f 6= Ø. In addition, if
x ∈ dom f and y ∈ int dom f , then Df (x,y) =

∑
i∈I λiDf (xi, yi). Moreover:
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(i) The operators
←−
P∆ and

←−
PC are continuous Bregman retractions of ∆ and C,

respectively, and

(3.11)

←−
P∆y = (z, . . . , z), where z = ∇f∗

(∑
i∈I λi∇f(yi)

)
,

←−
PCy =

(←−
PCi

yi

)
i∈I

.

(ii) Suppose f allows forward Bregman projections. Then so does f . The opera-
tors
−→
P∆ and

−→
PC are continuous Bregman retractions of ∆ and C, respectively,

and

(3.12)

−→
P∆y = (z, . . . , z), where z =

∑
i∈I λiyi,

−→
PCy =

(−→
PCiyi

)
i∈I

.

Proof. The fact that the operators
←−
P∆,

←−
PC (and

−→
P∆,

−→
PC provided they ex-

ist) are continuous Bregman retractions follows from Example 3.6 (and Example 3.7,
respectively). (i): See [5, Corollary 7.2] or [13, Lemmata 4.1 and 4.2]. (ii): Us-
ing Definition 2.4, it is straightforward to check that f allows forward Bregman
projections. Next, let z =

∑
i∈I λiyi and z = (z, . . . , z) ∈ X. Then z ∈ ∆.

Observe that ∇2f(z)y =
(
λi∇2f(z)yi

)
i∈I

and ∇2f(z)z =
(
λi∇2f(z)z

)
i∈I

. Hence
∇2f(z)(y − z) ∈ ∆⊥ = {x ∈ X :

∑
i∈I xi = 0}, because

∑
i∈I λi∇2f(z)yi =

∇2f(z)(
∑

i∈I λiyi) = ∇2f(z)z =
∑

i∈I λi∇2f(z)z. Thus, it follows from (2.5) that
z =
−→
P∆y. In view of the separability of Df and C, the formula for

−→
PC is clear.

Remark 3.17. The case when f is replaced by
∑

i∈Iλigi(xi), where (gi)i∈I is
a family of possibly different Bregman functions, was considered in [12] and [13].
This setup is too general to permit closed forms for

←−
P∆ or

−→
P∆. Furthermore, since

Bregman functions are not necessarily Legendre, the existence of Bregman projections
is not guaranteed and must therefore be imposed.

4. Main result. Going back to (1.4), we henceforth set

(4.1) C =
⋂

i∈ICi

and assume that (the existence of the Bregman retractions is guaranteed by (1.3) and
Example 3.6)

(4.2) (∀i ∈ I) Ri is a Bregman retraction of Ci with modulus µi.

We now formulate our main result.
Theorem 4.1 (method of Bregman retractions). Given an arbitrary starting

point y0 ∈ int dom f , generate a sequence by

(4.3) (∀n ∈ N) yn+1 = Ri(n+1)yn,

where i : N → I takes on each value in I infinitely often. Then the sequence (yn)n∈N
converges to a point in C ∩ int dom f .

Proof. We proceed in several steps.
Step 1: We have

(∀n ∈ N)(∀c ∈ Ci(n+1) ∩ int dom f) Df (c, yn) ≥ Df (c, yn+1) + µi(n+1)(c, yn).
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Indeed, yn+1 = Ri(n+1)yn and Ri(n+1) is a Bregman retraction of Ci(n+1).
Step 2: (yn)n∈N is Bregman monotone with respect to C ∩ int dom f .

This is clear from Step 1.
Step 3: (yn)n∈N is bounded and all its cluster points belong to int dom f .

Fix c ∈ C ∩ int dom f . In view of Step 2, the sequence
(
Df (c, yn)

)
n∈N is decreasing

and hence bounded. Now apply Proposition 2.2.(iv).
Next, let us consider an arbitrary cluster point of (yn)n∈N, say ykn → y.
Step 4: y ∈ int dom f and Df (y, ykn)→ 0.

This follows from Step 3 and Proposition 2.2.(i).
Because I is finite, after passing to a further subsequence and relabelling if nec-

essary, we assume that i(kn) ≡ iin. Since Ciin is closed, we have y ∈ Ciin .
We now define Iin = {i ∈ I : y ∈ Ci} and Iout = {i ∈ I : y 6∈ Ci}.
Step 5: Iout = Ø.

Suppose to the contrary that Iout 6= Ø. After passing to a further subsequence and
relabelling if necessary, we assume that {i(kn), i(kn + 1), . . . , i(kn+1 − 1)} = I — this
is possible, by our assumptions on the index selector i. For each n ∈ N, let

(4.4) mn = min
{
kn ≤ k ≤ kn+1 − 1 : i(k) ∈ Iout

}
− 1.

The current assumptions imply that each mn is a well-defined integer in [kn, kn+1−2]
satisfying y ∈

⋂
kn≤k≤mn

Ci(k). Repeated use of Step 1 thus yields

(4.5) (∀n ∈ N) Df (y, ymn) ≤ Df (y, ykn).

Using Step 4 and Proposition 2.2.(v), we deduce ymn
→ y. After passing to a further

subsequence and relabelling if necessary, we assume that i(mn + 1) ≡ iout and that
ymn+1 = Rioutymn → z ∈ Ciout ∩ int dom f (using Step 3 again). Now fix c ∈
C ∩ int dom f . Step 1 implies that

(
µi(n+1)(c, yn)

)
n∈N is summable; in particular,

(4.6) µiout(c, ymn
) = µi(mn+1)(c, ymn

)→ 0.

Since Riout is a Bregman retraction, we obtain y = z ∈ Ciout . But this in turn implies
iout ∈ Iin, which is the desired contradiction.

Last step: We have shown that (yn)n∈N is Bregman monotone with respect to
C ∩ int dom f (Step 2 ), and that all its cluster points lie in C ∩ int dom f (Step 4 and
Step 5 ). Therefore, by Proposition 2.9, the entire sequence (yn)n∈N converges to some
point in C ∩ int dom f .

Remark 4.2. The proof of Theorem 4.1 is guided by the proof of [7, Theorem 4.1]
and similar convergence results on iterating operators under such general control; see
[5], [16], and [26]. The present proof clearly shows when properties of the Bregman
distance are used, as opposed to those of the modulus. This distinction is blurred
in other proofs, because the implicit surrogates for the modulus depend on Df : see
the roles of Df

(←−
PCr(n+1)yn, yn

)
, DDf

(
(c, c), (yn,

−→
PCr(n+1)yn)

)
, Df

(
Tsz(t), z(t)

)
, and

Dk
h(xk+1, xk) in the proofs of [5, Theorem 8.1], [7, Theorem 4.1], and [16, Theo-

rem 3.1], [26, Theorem 4.1], respectively.
Remark 4.3 (Bregman retractions must correspond to the same Bregman dis-

tance). It is natural to ask whether it is possible to use iterates of Bregman retractions
coming from possibly different underlying Bregman distances to solve convex feasibil-
ity problems. Unfortunately, this approach is not successful in general. To see this,
let X = R2 and set RC =

←−
PC =

−→
PC , where f is the negative entropy and C is as
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in Example 3.8 (with J = 2). Further, let L be the straight line through the points
(0, 53

56 ) and ( 1
4 , 7

8 ) and let RL be the orthogonal projection, i.e., the backward or for-
ward Bregman projection with respect to the energy. Then, although L ∩ intC 6= Ø,
iterating the map T = RL ◦RC may not lead to a point in C ∩ L: indeed, ( 1

4 , 7
8 ) is a

fixed point of T outside C.

5. Applications. Continuing to work under Assumptions (4.1) and (4.2), we
now discuss various sequential and parallel algorithms derived from Theorem 4.1.

5.1. Sequential algorithms.
Application 5.1 (sequential Bregman projections). For each i ∈ I, let Ri =

←−
PCi . Then Theorem 4.1 coincides with [5, Theorem 8.1.(ii)]; see also [16, Theo-
rem 3.2]. For cyclic Bregman projections, see Bregman’s classical [8].

Application 5.2 (new method of mixed backward-forward Bregman projec-
tions). Suppose f allows forward Bregman projections. For each i ∈ I, let either
Ri =

←−
PCi

or Ri =
−→
PCi

. Then Theorem 4.1 yields a convergence result on iterating a
mixture of backward and forward Bregman projections. Note: If desired, it is possible
to use both

←−
PCi and

−→
PCi for a given set Ci infinitely often, by counting this set twice.

The following three algorithms are special instances of Application 5.2.
Application 5.3 (sequential forward Bregman projections). Suppose f allows

forward Bregman projections and let Ri =
−→
PCi , for every i ∈ I. Then Theorem 4.1

reduces to [7, Theorem 4.1].
Application 5.4 (sequential orthogonal projections). Suppose f = 1

2‖ · ‖
2,

and let each Ri be the orthogonal projection PCi
. Then Theorem 4.1 turns into a

convergence result on (chaotic or random) iterations of orthogonal projections; see
also [2], [19], and references therein.

Application 5.5 (alternating backward-forward Bregman projections). Sup-
pose f allows forward Bregman projections and let I = {1, 2}, R1 =

−→
PC1 , and

R2 =
←−
PC2 . Then the method of Bregman retractions (4.3) corresponds to an alternat-

ing backward-forward Bregman projection method, which can be viewed as Csiszár
and Tusnády’s alternating minimization procedure [22] applied to Df (this covers the
Expectation-Maximization method for a specific Poisson model; see [22] and [24]).

5.2. Parallel algorithms. Various parallel algorithms arise by specializing Ap-
plication 5.2 to the product space setting of Example 3.16. Using Example 3.16 and its
notation, we deduce that the sequence (Tnx0)n∈N, where x0 ∈∆ and T =

←−
P∆ ◦

←−
PC,

converges to some point in ∆ ∩ C ∩ int dom f . The same holds true when T ∈{−→
P∆ ◦

←−
PC,
←−
P∆ ◦

−→
PC,
−→
P∆ ◦

−→
PC

}
provided that f allows forward Bregman projections.

Translating back to the original space X, we obtain the following four parallel
algorithms.

Application 5.6 (parallel projections à la Censor and Elfving). Given x0 ∈
int dom f , the sequence generated by

(5.1) (∀n ∈ N) xn+1 = ∇f∗
(∑

i∈I λi∇f(
←−
PCi

xn)
)

converges to a point in C ∩ int dom f . This method, which amounts to iterating←−
P∆ ◦

←−
PC in X, was first suggested implicitly in [13]; see also [5] and Remark 3.17.

Application 5.7 (parallel projections à la Byrne and Censor I). Suppose f
allows forward Bregman projections. Given x0 ∈ int dom f , the sequence generated
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by

(5.2) (∀n ∈ N) xn+1 =
∑

i∈Iλi
←−
PCi

xn

converges to a point in C ∩ int dom f . This method, which amounts to iterating−→
P∆ ◦

←−
PC in X, can be found implicitly in [11, Section 4.1] (see also Remark 3.17).

Application 5.8 (parallel projections à la Byrne and Censor II). Suppose f
allows forward Bregman projections. Given x0 ∈ int dom f , the sequence generated
by

(5.3) (∀n ∈ N) xn+1 = ∇f∗
(∑

i∈Iλi∇f(
−→
PCixn)

)
converges to a point in C ∩ int dom f . This method, which amounts to iterating←−
P∆ ◦

−→
PC in X, can be found implicitly in [11, Section 4.2] (see also Remark 3.17).

Application 5.9 (new parallel method). Suppose f allows forward Bregman
projections. Given x0 ∈ int dom f , the sequence generated by

(5.4) (∀n ∈ N) xn+1 =
∑

i∈Iλi
−→
PCixn

converges to a point in C ∩ int dom f . This corresponds to iterating
−→
P∆ ◦

−→
PC in X.

The negative entropy and the energy lead to concrete examples:
Application 5.10 (averaged entropic projections à la Butnariu, Censor, and

Reich). Let f be the negative entropy. Given x0 ∈ int dom f , the sequence generated
by

(5.5) (∀n ∈ N) xn+1 =
∑

i∈Iλi
←−
PCi

xn

converges to a point in C∩int dom f . Convergence is guaranteed by [10, Theorem 3.3],
which holds true in more general settings, or by Application 5.7.

We conclude with a classical method which can be obtained from Application 5.6,
5.7, 5.8, or 5.9 by setting f = 1

2‖ · ‖
2.

Application 5.11 (parallel orthogonal projections à la Auslender). For each
i ∈ I, let PCi

be the orthogonal projection onto Ci. Given x0 ∈ X, the sequence
generated by

(5.6) (∀n ∈ N) xn+1 =
∑

i∈I λiPCixn

converges to some point in C [1] (see also [3], [18], and [23] for the case when C = Ø).
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