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PROXIMAL THRESHOLDING ALGORITHM FOR MINIMIZATION

OVER ORTHONORMAL BASES∗
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Abstract. The notion of soft thresholding plays a central role in problems from various areas
of applied mathematics, in which the ideal solution is known to possess a sparse decomposition in
some orthonormal basis. Using convex-analytical tools, we extend this notion to that of proximal
thresholding and investigate its properties, providing in particular several characterizations of such
thresholders. We then propose a versatile convex variational formulation for optimization over or-
thonormal bases that covers a wide range of problems, and establish the strong convergence of a
proximal thresholding algorithm to solve it. Numerical applications to signal recovery are demon-
strated.
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PII. XXXX

1. Problem formulation. Throughout this paper, H is a separable infinite-
dimensional real Hilbert space with scalar product 〈· | ·〉, norm ‖ · ‖, and distance d.
Moreover, Γ0(H) denotes the class of proper lower semicontinuous convex functions
from H to ]−∞,+∞], and (ek)k∈N is an orthonormal basis of H.

The standard denoising problem in signal theory consists of recovering the original
form of a signal x ∈ H from an observation z = x+ v, where v ∈ H is the realization
of a noise process. In many instances, x is known to admit a sparse representation
with respect to (ek)k∈N and an estimate x of x can be constructed by removing the
coefficients of small magnitude in the representation (〈z | ek〉)k∈N of z with respect
to (ek)k∈N. A popular method consists of performing a so-called soft thresholding of
each coefficient 〈z | ek〉 at some predetermined level ωk ∈ ]0,+∞[, namely

(1.1) x =
∑

k∈N

soft[−ωk,ωk] (〈z | ek〉)ek,

where (see Fig. 2.1)

(1.2) soft[−ωk,ωk] : ξ 7→ sign(ξ)max{|ξ| − ωk, 0}.

This approach has received considerable attention in various areas of applied mathe-
matics ranging from nonlinear approximation theory to statistics, and from harmonic
analysis to image processing; see for instance [2, 7, 9, 21, 23, 29, 33] and the references
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Pierre et Marie Curie – Paris 6, 75005 Paris, France (plc@math.jussieu.fr).
‡Institut Gaspard Monge and UMR CNRS 8049, Université de Marne la Vallée, 77454 Marne la
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therein. From an optimization point of view (see Remark 2.8), the vector x exhibited
in (1.1) is the solution to the variational problem

(1.3) minimize
x∈H

1

2
‖x− z‖2 +

∑

k∈N

ωk |〈x | ek〉| .

Attempts have been made to extend this formulation to the more general inverse
problems in which the observation assumes the form z = Tx+v, where T is a nonzero
bounded linear operator from H to some real Hilbert space G, and where v ∈ G is the
realization of a noise process. Thus, the variational problem

(1.4) minimize
x∈H

1

2
‖Tx− z‖2 +

∑

k∈N

ωk |〈x | ek〉|

has been considered and, since it admits no closed-form solution, the soft thresholding
algorithm

(1.5) x0 ∈ H and (∀n ∈ N) xn+1 =
∑

k∈N

soft[−ωk,ωk]

(
〈xn + T ∗(z − Txn) | ek〉

)
ek

has been proposed to solve it [5, 19, 20, 24] (see also [36] and the references therein
for related work). The strong convergence of this algorithm was formally established
in [18].

Proposition 1.1. [18, Theorem 3.1] Suppose that infk∈N ωk > 0 and that ‖T ‖ <
1. Then the sequence (xn)n∈N generated by (1.5) converges strongly to a solution to
(1.4).

In [16], (1.4) was analyzed in a broader framework and the following extension
of Proposition 1.1 was obtained by bringing into play tools from convex analysis
and recent results from constructive fixed point theory (Proposition 1.2 reduces to
Proposition 1.1 when ‖T ‖ < 1, γn ≡ 1, and λn ≡ 1).

Proposition 1.2. [16, Corollary 5.19] Let (γn)n∈N be a sequence in ]0,+∞[ and
let (λn)n∈N be a sequence in ]0, 1]. Suppose that the following hold: infk∈N ωk > 0,
infn∈N γn > 0, supn∈N γn < 2/‖T ‖2, and infn∈N λn > 0. Then the sequence (xn)n∈N

generated by the algorithm

(1.6) x0 ∈ H and (∀n ∈ N) xn+1 = xn+

λn

(
∑

k∈N

soft[−γnωk,γnωk]

(
〈xn + γnT

∗(z − Txn) | ek〉
)
ek − xn

)

converges strongly to a solution to (1.4).
In denoising and approximation problems, various theoretical, physical, and

heuristic considerations have led researchers to consider alternative thresholding
strategies in (1.1); see, e.g., [1, 33, 34, 35, 39]. However, the questions of whether
alternative thresholding rules can be used in algorithms akin to (1.6) and of identify-
ing the underlying variational problems remain open. These questions are significant
because the current theory of iterative thresholding, as described by Proposition 1.2,
can tackle only variational problems of the form (1.4), which offers limited flexibility in
the penalization of the coefficients (〈x | ek〉)k∈N and which is furthermore restricted
to standard linear inverse problems. The aim of the present paper is to bring out
general answers to these questions. Our analysis will revolve around the following
variational formulation, where σΩ denotes the support function of a set Ω (see (2.2)).



PROXIMAL THRESHOLDING ALGORITHM 3

Problem 1.3. Let Φ ∈ Γ0(H), let K ⊂ N, let L = N r K, let (Ωk)k∈K be
a sequence of closed intervals in R, and let (ψk)k∈N be a sequence in Γ0(R). The
objective is to

(1.7) minimize
x∈H

Φ(x) +
∑

k∈N

ψk(〈x | ek〉) +
∑

k∈K

σΩk
(〈x | ek〉),

under the following standing assumptions:
(i) the function Φ is differentiable on H, inf Φ(H) > −∞, and ∇Φ is 1/β-

Lipschitz continuous for some β ∈ ]0,+∞[ ;
(ii) for every k ∈ N, ψk ≥ ψk(0) = 0;
(iii) the functions (ψk)k∈N are differentiable at 0;
(iv) if L 6= ∅, the functions (ψk)k∈L are finite and twice differentiable on Rr{0},

and

(1.8) (∀ρ ∈ ]0,+∞[)(∃ θ ∈ ]0,+∞[) inf
k∈L

inf
0<|ξ|≤ρ

ψ′′
k (ξ) ≥ θ;

(v) if L 6= ∅, the function ΥL : ℓ2(L) → ]−∞,+∞] : (ξk)k∈L 7→
∑
k∈L

ψk(ξk) is
coercive;

(vi) (∃ω ∈ ]0,+∞[) [−ω, ω] ⊂
⋂
k∈K

Ωk.
Let us note that Problem 1.3 reduces to (1.4) when Φ: x 7→ ‖Tx− z‖2/2, K = N,

and, for every k ∈ N, Ωk = [−ωk, ωk] and ψk = 0. It will be shown (Proposition 4.1)
that Problem 1.3 admits at least one solution. While assumption (i) on Φ may seem
offhand to be rather restrictive, it will be seen in Section 5.1 to cover important
scenarios. In addition, it makes it possible to employ a forward-backward splitting
strategy to solve (1.7), which consists essentially of alternating a forward (explicit)
gradient step on Φ with a backward (implicit) proximal step on

(1.9) Ψ: H → ]−∞,+∞] : x 7→
∑

k∈N

ψk(〈x | ek〉) +
∑

k∈K

σΩk
(〈x | ek〉).

Our main convergence result (Theorem 4.5) will establish the strong convergence of an
inexact forward-backward splitting algorithm (Algorithm 4.3) for solving Problem 1.3.
Another contribution of this paper will be to show (Remark 3.4) that, under our
standing assumptions, the function displayed in (1.9) is quite general in the sense
that the operators on H that perform nonexpansive (as required by our convergence
analysis) and increasing (as imposed by practical considerations) thresholdings on the
closed intervals (Ωk)k∈K of the coefficients (〈x | ek〉)k∈K of a point x ∈ H are precisely
those of the form proxΨ, i.e., the proximity operator of Ψ. Furthermore, we show
(Proposition 3.6 and Lemma 2.3) that such an operator, which provides the proximal
step of our algorithm, can be conveniently decomposed as

(1.10) proxΨ : H → H : x 7→
∑

k∈K

proxψk

(
softΩk

〈x | ek〉
)
ek +

∑

k∈L

proxψk
〈x | ek〉 ek,

where we define the soft thresholder relative to a nonempty closed interval Ω ⊂ R as

(1.11) softΩ : R → R : ξ 7→






ξ − ω, if ξ < ω;

0, if ξ ∈ Ω;

ξ − ω, if ξ > ω,

with

{
ω = inf Ω,

ω = sup Ω.
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The remainder of the paper is organized as follows. In Section 2, we provide a
brief account of the theory of proximity operators, which play a central role in our
analysis. In Section 3, we introduce and study the notion of a proximal thresholder.
Our algorithm is presented in Section 4 and its strong convergence to a solution to
Problem 1.3 is demonstrated. Signal recovery applications are discussed in Section 5,
where numerical results are presented.

2. Proximity operators. Let us first introduce some basic notation (for a de-
tailed account of convex analysis, see [41]). Let C be a subset of H. The indicator
function of C is

(2.1) ιC : H → {0,+∞} : x 7→

{
0, if x ∈ C;

+∞, if x /∈ C,

its support function is

(2.2) σC : H → [−∞,+∞] : u 7→ sup
x∈C

〈x | u〉,

and its distance function is dC : H → [0,+∞] : x 7→ inf ‖C − x‖. If C is nonempty,
closed, and convex then, for every x ∈ H, there exists a unique point PCx ∈ C,
called the projection of x onto C, such that ‖x− PCx‖ = dC(x). A function f : H →
[−∞,+∞] is proper if −∞ /∈ f(H) 6= {+∞}, and coercive if lim‖x‖→+∞ f(x) =

+∞. The domain of f : H → [−∞,+∞] is dom f =
{
x ∈ H

∣∣ f(x) < +∞
}
, its

set of global minimizers is denoted by Argmin f , and its conjugate is the function
f∗ : H → [−∞,+∞] : u 7→ supx∈H 〈x | u〉 − f(x); if f is proper, its subdifferential is
the set-valued operator

(2.3) ∂f : H → 2H : x 7→
{
u ∈ H

∣∣ (∀y ∈ dom f) 〈y − x | u〉 + f(x) ≤ f(y)
}
.

If f : H → ]−∞,+∞] is convex and Gâteaux differentiable at x ∈ dom f with gradient
∇f(x), then ∂f(x) = {∇f(x)}.

Example 2.1. Let Ω ⊂ R be a nonempty closed interval, let ω = inf Ω, let
ω = sup Ω, and let ξ ∈ R. Then the following hold.

(i) σΩ(ξ) =






ωξ, if ξ < 0;

0, if ξ = 0;

ωξ, if ξ > 0.

(ii) ∂σΩ(ξ) =






{ω} ∩ R, if ξ < 0;

Ω, if ξ = 0;

{ω} ∩ R, if ξ > 0.

The infimal convolution of two functions f, g : H → ]−∞,+∞] is denoted by f � g.
Finally, an operator R : H → H is nonexpansive if (∀(x, y) ∈ H2) ‖Rx−Ry‖ ≤ ‖x−y‖
and firmly nonexpansive if (∀(x, y) ∈ H2) ‖Rx−Ry‖2 ≤ 〈x− y | Rx−Ry〉.

Proximity operators (sometimes called “proximal mappings”) were introduced by
Moreau [30] and their use in signal theory goes back to [11] (see also [8, 16] for recent
developments). We briefly recall some essential facts below and refer the reader to
[16] and [31] for more details. Let f ∈ Γ0(H). The proximity operator of f is the
operator proxf : H → H which maps every x ∈ H to the unique minimizer of the
function y 7→ f(y) + ‖x− y‖2/2. It is characterized by

(2.4) (∀x ∈ H)(∀p ∈ H) p = proxf x ⇔ x− p ∈ ∂f(p).

Lemma 2.2. Let f ∈ Γ0(H). Then the following hold.
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(i) (∀x ∈ H)
[
x ∈ Argmin f ⇔ 0 ∈ ∂f(x) ⇔ proxf x = x

]
.

(ii) proxf∗ = Id − proxf .
(iii) proxf is firmly nonexpansive.
(iv) If f is even, then proxf is odd.
The next result provides a key decomposition property with respect to the or-

thonormal basis (ek)k∈N.
Lemma 2.3. [16, Example 2.19] Set

(2.5) f : H → ]−∞,+∞] : x 7→
∑

k∈N

φk(〈x | ek〉),

where (φk)k∈N are functions in Γ0(R) that satisfy (∀k ∈ N) φk ≥ φk(0) = 0. Then
f ∈ Γ0(H) and (∀x ∈ H) proxf x =

∑
k∈N

proxφk
〈x | ek〉 ek.

The remainder of this section is dedicated to proximity operators on the real line,
the importance of which is underscored by Lemma 2.3.

Proposition 2.4. Let ̺ be a function defined from R to R. Then ̺ is the prox-
imity operator of a function in Γ0(R) if and only if it is nonexpansive and increasing.

Proof. Let ξ and η be real numbers. First, suppose that ̺ = proxφ, where
φ ∈ Γ0(R). Then it follows from Lemma 2.2(iii) that ̺ is nonexpansive and that
0 ≤ |̺(ξ)− ̺(η)|2 ≤ (ξ − η)(̺(ξ) − ̺(η)), which shows that ̺ is increasing since ξ − η
and ̺(ξ) − ̺(η) have the same sign. Conversely, suppose that ̺ is nonexpansive and
increasing and, without loss of generality, that ξ ≤ η. Then, 0 ≤ ̺(ξ)−̺(η) ≤ ξ−η and
therefore |̺(ξ)−̺(η)|2 ≤ (ξ−η)(̺(ξ)−̺(η)). Thus, ̺ is firmly nonexpansive. However,
every firmly nonexpansive operator R : H → H is of the form R = (Id +A)−1, where
A : H → 2H is a maximal monotone operator [6]. Since the only maximal monotone
operators in R are subdifferentials of functions in Γ0(R) [32, Section 24], we must
have ̺ = (Id +∂φ)−1 = proxφ for some φ ∈ Γ0(R).

Corollary 2.5. Suppose that 0 is a minimizer of φ ∈ Γ0(R). Then

(2.6) (∀ξ ∈ R)





0 ≤ proxφ ξ ≤ ξ, if ξ > 0;

proxφ ξ = 0, if ξ = 0;

ξ ≤ proxφ ξ ≤ 0, if ξ < 0.

This is true in particular when φ is even, in which case proxφ is an odd operator.
Proof. Since 0 ∈ Argminφ, Lemma 2.2(i) yields proxφ 0 = 0. In turn, since

proxφ is nonexpansive by Lemma 2.2(iii), we have (∀ξ ∈ R) | proxφ ξ| = | proxφ ξ −
proxφ 0| ≤ |ξ − 0| = |ξ|. Altogether, since Proposition 2.4 asserts that proxφ is
increasing, we obtain (2.6). Finally, if φ is even, its convexity yields (∀ξ ∈ domφ)
φ(0) = φ

(
(ξ − ξ)/2

)
≤
(
φ(ξ) + φ(−ξ)

)
/2 = φ(ξ). Therefore 0 ∈ Argminφ, while the

oddness of proxφ follows from Lemma 2.2(iv).
Let us now provide some elementary examples (Example 2.6 is illustrated in

Fig. 2.1 in the case when Ω = [−1, 1]).
Example 2.6. Let Ω ⊂ R be a nonempty closed interval, let ω = inf Ω, let

ω = sup Ω, and let ξ ∈ R. Then the following hold.

(i) proxιΩ ξ = PΩ ξ =





ω, if ξ < ω;

ξ, if ξ ∈ Ω;

ω, if ξ > ω.

(ii) proxσΩ
ξ = softΩ ξ, where softΩ is the soft thresholder defined in (1.11).

Proof. (i) is clear and, since σ∗
Ω = ιΩ, (ii) follows from (i) and Lemma 2.2(ii).
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Fig. 2.1. Graphs of proxφ = soft[−1,1] (solid line) and proxφ∗ = P[−1,1] (dashed line), where
φ = | · | and φ∗ = ι[−1,1] (see Example 2.6).

Example 2.7. [8, Examples 4.2 and 4.4] Let p ∈ [1,+∞[, let ω ∈ ]0,+∞[, let
φ : R → R : η 7→ ω|η|p, let ξ ∈ R, and set π = proxφ ξ. Then the following hold.

(i) π = soft[−ω,ω] (ξ) = sign(ξ)max{|ξ| − ω, 0}, if p = 1;

(ii) π = ξ +
4ω

3 · 21/3

(
(ρ − ξ)1/3 − (ρ + ξ)1/3

)
, where ρ =

√
ξ2 + 256ω3/729, if

p = 4/3;
(iii) π = ξ + 9ω2 sign(ξ)

(
1 −

√
1 + 16|ξ|/(9ω2)

)
/8, if p = 3/2;

(iv) π = ξ/(1 + 2ω), if p = 2;
(v) π = sign(ξ)

(√
1 + 12ω|ξ| − 1

)
/(6ω), if p = 3;

(vi) π =

(
ρ+ ξ

8ω

)1/3

−

(
ρ− ξ

8ω

)1/3

, where ρ =
√
ξ2 + 1/(27ω), if p = 4.

Remark 2.8. The variational problem described in (1.3) is equivalent to mini-
mizing over H the function x 7→ f(x) + ‖z − x‖2/2, where f : H → ]−∞,+∞] : x 7→∑

k∈N
ωk |〈x | ek〉|. In view of Lemma 2.3 and Example 2.7(i), its solution is proxf z =∑

k∈N
soft[−ωk,ωk] (〈z | ek〉)ek, as displayed in (1.1).

Proposition 2.9. Let ψ be a function in Γ0(R), and let ρ and θ be real numbers
in ]0,+∞[ such that:

(i) ψ ≥ ψ(0) = 0;
(ii) ψ is differentiable at 0;
(iii) ψ is twice differentiable on [−ρ, ρ] r {0} and inf0<|ξ|≤ρ ψ

′′(ξ) ≥ θ.

Then (∀ξ ∈ [−ρ, ρ])(∀η ∈ [−ρ, ρ]) | proxψ ξ − proxψ η| ≤ |ξ − η|/(1 + θ).

Proof. Set R = [−ρ, ρ] r {0} and ϕ : R → R : ζ 7→ ζ + ψ′(ζ). We first infer from
(iii) that

(2.7) (∀ζ ∈ R) ϕ′(ζ) = 1 + ψ′′(ζ) ≥ 1 + θ.

Moreover, (2.4) yields (∀ζ ∈ R) proxψ ζ = ϕ−1(ζ). Note also that, in the light of
(2.4), (ii), and (i), we have (∀ζ ∈ R) proxψ ζ = 0 ⇔ ζ ∈ ∂ψ(0) = {ψ′(0)} = {0}.
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Hence, proxψ vanishes only at 0 and we derive from Lemma 2.2(iii) that

(2.8) (∀ζ ∈ R) 0 < |ϕ−1(ζ)| = | proxψ ζ − proxψ 0| ≤ |ζ − 0| ≤ ρ.

In turn, we deduce from (2.7) that

(2.9) sup
ζ∈R

prox′ψ ζ =
1

inf
ζ∈R

ϕ′
(
ϕ−1(ζ)

) ≤
1

inf
ζ∈R

ϕ′(ζ)
≤

1

1 + θ
.

Now fix ξ and η in R. First, let us assume that either ξ < η < 0 or 0 < ξ < η. Then,
since proxψ is increasing by Proposition 2.4, it follows from the mean value theorem
and (2.9) that there exists µ ∈ ]ξ, η[ such that

(2.10) 0 ≤ proxψ η − proxψ ξ = (η − ξ) prox′ψ µ ≤ (η − ξ) sup
ζ∈R

prox′ψ ζ ≤
η − ξ

1 + θ
.

Next, let us assume that ξ < 0 < η. Then the mean value theorem asserts that there
exist µ ∈ ]ξ, 0[ and ν ∈ ]0, η[ such that

(2.11) proxψ 0 − proxψ ξ = −ξ prox′ψ µ and proxψ η − proxψ 0 = η prox′ψ ν.

Since proxψ is increasing and proxψ 0 = 0, we obtain

(2.12) 0 ≤ proxψ η− proxψ ξ = η prox′ψ ν − ξ prox′ψ µ ≤ (η− ξ) sup
ζ∈R

prox′ψ ζ ≤
η − ξ

1 + θ
.

Altogether, we have shown that, for every ξ and η in R, | proxψ ξ − proxψ η| ≤
|ξ − η|/(1 + θ). We conclude by observing that, due to the continuity of proxψ
(Lemma 2.2(iii)), this inequality holds for every ξ and η in [−ρ, ρ].

3. Proximal thresholding. The standard soft thresholder of (1.2), which was
extended to closed intervals in (1.11), was seen in Example 2.6(ii) to be a proximity
operator. As such, it possesses attractive properties (see Lemma 2.2(i)&(iii)) that
prove extremely useful in the convergence analysis of iterative methods [13]. This
remark motivates the following definition.

Definition 3.1. Let R : H → H and let Ω be a nonempty closed convex subset
of H. Then R is a proximal thresholder on Ω if there exists a function f ∈ Γ0(H)
such that

(3.1) R = proxf and (∀x ∈ H) Rx = 0 ⇔ x ∈ Ω.

The next proposition provides characterizations of proximal thresholders.
Proposition 3.2. Let f ∈ Γ0(H) and let Ω be a nonempty closed convex subset

of H. Then the following are equivalent.
(i) proxf is a proximal thresholder on Ω.
(ii) ∂f(0) = Ω.
(iii) (∀x ∈ H)

[
proxf∗ x = x ⇔ x ∈ Ω

]
.

(iv) Argmin f∗ = Ω.
In particular, (i)–(iv) hold when

(v) f = g + σΩ, where g ∈ Γ0(H) is Gâteaux differentiable at 0 and ∇g(0) = 0.
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Proof. (i)⇔(ii): Fix x ∈ H. Then it follows from (2.4) that
[
proxf x = 0 ⇔

x ∈ Ω
]
⇔
[
x ∈ ∂f(0) ⇔ x ∈ Ω

]
⇔ ∂f(0) = Ω. (i)⇔(iii): Fix x ∈ H. Then it follows

from Lemma 2.2(ii) that
[
proxf x = 0 ⇔ x ∈ Ω

]
⇔
[
x − proxf∗ x = 0 ⇔ x ∈ Ω

]
.

(iii)⇔(iv): Since f ∈ Γ0(H), f∗ ∈ Γ0(H) and we can apply Lemma 2.2(i) to f∗.
(v)⇒(ii): Since (v) implies that 0 ∈ core dom g, we have 0 ∈ (core dom g) ∩ domσΩ

and it follows from [41, Theorem 2.8.3] that

(3.2) ∂f(0) = ∂(g + σΩ)(0) = ∂g(0) + ∂σΩ(0) = ∂g(0) + Ω,

where the last equality results from the observation that, for every u ∈ H, Fenchel’s
identity yields u ∈ ∂σΩ(0) ⇔ 0 = 〈0 | u〉 = σΩ(0) + σ∗

Ω(u) ⇔ 0 = σ∗
Ω(u) = ιΩ(u) ⇔

u ∈ Ω. However, since ∂g(0) = {∇g(0)} = {0}, we obtain ∂f(0) = Ω, and (ii) is
therefore satisfied.

The following theorem is a significant refinement of a result of Proposition 3.2 in
the case when H = R, that characterizes all the functions φ ∈ Γ0(R) for which proxφ
is a proximal thresholder.

Theorem 3.3. Let φ ∈ Γ0(R) and let Ω ⊂ R be a nonempty closed interval.
Then the following are equivalent.

(i) proxφ is a proximal thresholder on Ω.
(ii) φ = ψ + σΩ, where ψ ∈ Γ0(R) is differentiable at 0 and ψ′(0) = 0.
Proof. In view of Proposition 3.2, it is enough to show that ∂φ(0) = Ω ⇒ (ii). So

let us assume that ∂φ(0) = Ω, and set ω = inf Ω and ω = sup Ω. Since ∂φ(0) 6= ∅,
we deduce from (2.3) that 0 ∈ domφ and that

(3.3) (∀ξ ∈ R) σΩ(ξ) = sup
ν∈Ω

(ξ − 0)ν ≤ φ(ξ) − φ(0).

Consequently,

(3.4) domφ ⊂ domσΩ.

Thus, in the case when Ω = R, Example 2.1(i) yields domφ = domσΩ = {0} and we
obtain φ = φ(0) + ι{0} = φ(0) + σΩ, hence (ii) with ψ ≡ φ(0). We henceforth assume
that Ω 6= R and set

(3.5) (∀ξ ∈ R) ϕ(ξ) =





φ(ξ) − φ(0) − ω ξ, if ξ > 0 and ω < +∞;

φ(ξ) − φ(0) − ω ξ, if ξ < 0 and ω > −∞;

0, otherwise.

Then Example 2.1(i) and (3.3) yield

(3.6) ϕ ≥ 0 = ϕ(0),

which also shows that ϕ is proper. In addition, we derive from Example 2.1(i) and
(3.5) the following three possible expressions for ϕ.

(a) If ω > −∞ and ω < +∞, then σΩ is a finite continuous function and

(3.7) (∀ξ ∈ R) ϕ(ξ) = φ(ξ) − φ(0) − σΩ(ξ).

(b) If ω = −∞ and ω < +∞, then

(3.8) (∀ξ ∈ R) ϕ(ξ) =

{
φ(ξ) − φ(0) − ω ξ, if ξ > 0;

0, otherwise.
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(c) If ω > −∞ and ω = +∞, then

(3.9) (∀ξ ∈ R) ϕ(ξ) =

{
φ(ξ) − φ(0) − ω ξ, if ξ < 0;

0, otherwise.

Let us show that ϕ is lower semicontinuous. In case (a), this follows at once from the
lower semicontinuity of φ and the continuity of σΩ. In cases (b) and (c), ϕ is clearly
lower semicontinuous at every point ξ 6= 0 and, by (3.6), at 0 as well. Next, let us
establish the convexity of ϕ. To this end, we set

(3.10) (∀ξ ∈ R) ϕ(ξ) =

{
φ(ξ) − φ(0) − ω ξ, if ξ > 0 and ω < +∞;

0, otherwise,

and

(3.11) (∀ξ ∈ R) ϕ(ξ) =

{
φ(ξ) − φ(0) − ω ξ, if ξ < 0 and ω > −∞;

0, otherwise.

By inspecting (3.5), (3.10), and (3.11) we learn that ϕ coincides with ϕ on [0,+∞[
and with ϕ on ]−∞, 0]. Hence, (3.6) yields

(3.12) ϕ ≥ 0 and ϕ ≥ 0,

and

(3.13) ϕ = max{ϕ,ϕ}.

Furthermore, since φ is convex, so are the functions ξ 7→ φ(ξ) − φ(0) − ω ξ and
ξ 7→ φ(ξ)−φ(0)−ω ξ, when ω < +∞ and ω > −∞, respectively. Therefore, it follows
from (3.10), (3.11), and (3.12) that ϕ and ϕ are convex, and hence from (3.13) that ϕ
is convex. We have thus shown that ϕ ∈ Γ0(R). We now claim that, for every ξ ∈ R,

(3.14) φ(ξ) = ϕ(ξ) + φ(0) + σΩ(ξ).

We can establish this identity with the help of Example 2.1(i). In case (a), (3.14)
follows at once from (3.7) since σΩ is finite. In case (b), (3.14) follows from (3.8)
when ξ ≥ 0, and from (3.3) when ξ < 0 since, in this case, σΩ(ξ) = +∞. Likewise,
in case (c), (3.14) follows from (3.9) when ξ ≤ 0, and from (3.3) when ξ > 0 since, in
this case, σΩ(ξ) = +∞. Next, let us show that

(3.15) 0 ∈ int(domφ− domσΩ).

In case (a), we have Ω = [ω, ω ]. Therefore domσΩ = R and (3.15) trivially holds.
In case (b), we have Ω = ]−∞, ω] and, therefore, domσΩ = [0,+∞[. This implies,
via (3.4), that domφ ⊂ [0,+∞[. Therefore, there exists ν ∈ domφ ∩ ]0,+∞[ since
otherwise we would have domφ = {0}, which, in view of (2.3), would contradict
the current working assumption that ∂φ(0) = Ω 6= R. By convexity of φ, it follows
that [0, ν] ⊂ domφ and, therefore, that ]−∞, ν] ⊂ domφ − domσΩ. We thus obtain
(3.15) in case (b); case (c) can be handled analogously. We can now appeal to [32,
Theorem 23.8] to derive from (3.14), (3.15), and Example 2.1(ii) that

(3.16) Ω = ∂φ(0) = ∂ϕ(0) + ∂σΩ(0) = ∂ϕ(0) + Ω.

Now fix ν ∈ ∂ϕ(0). Then (3.16) yields ν + Ω ⊂ Ω. There are three possible cases to
study.
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Fig. 3.1. Graph of proxφ, where φ is as in (3.17) with ω = 1.

• In case (a), ν + Ω ⊂ Ω ⇔ [ν + ω, ν + ω] ⊂ [ω, ω] ⇒ ν = 0.
• In case (b), ν + Ω ⊂ Ω ⇔ ]−∞, ν + ω] ⊂ ]−∞, ω] ⇒ ν ≤ 0. On the other

hand, it follows from (2.3) and (3.8) that (∀ξ ∈ ]−∞, 0[) ξν ≤ ϕ(ξ) = 0,
hence ν ≥ 0. Altogether, ν = 0.

• In case (c), ν + Ω ⊂ Ω ⇔ [ν + ω,+∞[ ⊂ [ω,+∞[ ⇒ ν ≥ 0. Since (2.3) and
(3.9) imply that (∀ξ ∈ ]0,+∞[) ξν ≤ ϕ(ξ) = 0, we obtain ν ≤ 0 and conclude
that ν = 0.

We have thus shown in all cases that ν = 0 and, therefore, that ∂ϕ(0) = {0}. In turn,
upon invoking [32, Theorem 25.1], we conclude that ϕ is differentiable at 0 and that
ϕ′(0) = 0. Altogether, we obtain (ii) by setting ψ = ϕ+ φ(0).

Remark 3.4. A standard requirement for thresholders on R is that they be in-
creasing functions [1, 33, 34, 39]. On the other hand, nonexpansivity is a key property
to establish the convergence of iterative methods [13] and, in particular, in Proposi-
tion 1.1 [18] and Proposition 1.2 [16]. As seen in Proposition 2.4 and Definition 3.1,
the increasing and nonexpansive functions ̺ : R → R that vanish only on a closed
interval Ω ⊂ R coincide with the proximal thresholders on Ω. Hence, appealing to
Theorem 3.3 and Lemma 2.3, we conclude that the operators that perform a compo-
nentwise increasing and nonexpansive thresholding on (Ωk)k∈K of those coefficients
of the decomposition in (ek)k∈N indexed by K are precisely the operators of the form
proxΨ, where Ψ is as in (1.9).

Example 3.5. Let ω ∈ ]0,+∞[ and set

(3.17) φ : R → ]−∞,+∞] : ξ 7→

{
ln(ω) − ln(ω − |ξ|), if |ξ| < ω;

+∞, otherwise.

The proximity operator associated with this function arises in certain Bayesian for-
mulations involving the triangular probability density function with support [−ω, ω]
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[8]. Let us set

(3.18) ψ : R → ]−∞,+∞] : ξ 7→

{
ln(ω) − ln(ω − |ξ|) − |ξ|/ω, if |ξ| < ω;

+∞, otherwise

and Ω = [−1/ω, 1/ω]. Then ψ ∈ Γ0(R) is differentiable at 0, ψ′(0) = 0, and φ =
ψ + σΩ. Therefore, Theorem 3.3 asserts that proxφ is a proximal thresholder on
[−1/ω, 1/ω]. Actually (see Fig. 3.1), for every ξ ∈ R, we have [8, Example 4.12]

(3.19) proxφ ξ =





sign(ξ)

|ξ| + ω −

√∣∣|ξ| − ω
∣∣2 + 4

2
, if |ξ| > 1/ω;

0 otherwise.

Next, we provide a convenient decomposition rule for implementing proximal
thresholders.

Proposition 3.6. Let φ = ψ + σΩ, where ψ ∈ Γ0(R) and Ω ⊂ R is a nonempty
closed interval. Suppose that ψ is differentiable at 0 with ψ′(0) = 0. Then proxφ =
proxψ ◦ softΩ .

Proof. Fix ξ and π in R. We have 0 ∈ domσΩ and, since ψ is differentiable at 0,
0 ∈ int domψ. It therefore follows from (2.4) and [32, Theorem 23.8] that

π = proxφ ξ ⇔ ξ − π ∈ ∂φ(π) = ∂ψ(π) + ∂σΩ(π)

⇔ (∃ ν ∈ ∂ψ(π)) ξ − (π + ν) ∈ ∂σΩ(π).(3.20)

Let us observe that, if ν ∈ ∂ψ(π), then, since 0 ∈ Argminψ, (2.3) implies that
(0 − π)ν + ψ(π) ≤ ψ(0) ≤ ψ(π) < +∞ and, in turn, that πν ≥ 0. This shows that,
if ν ∈ ∂ψ(π) and π 6= 0, then either π > 0 and ν ≥ 0, or π < 0 and ν ≤ 0; in turn,
Lemma 2.1(ii) yields ∂σΩ(π) = ∂σΩ(π + ν). Consequently, if π 6= 0, we derive from
(3.20) and Example 2.6(ii) that

π = proxφ ξ ⇒ (∃ ν ∈ ∂ψ(π)) ξ − (π + ν) ∈ ∂σΩ(π + ν)

⇔ (∃ ν ∈ ∂ψ(π)) π + ν = proxσΩ
ξ = softΩ ξ

⇔ softΩ ξ − π ∈ ∂ψ(π)

⇔ π = proxψ
(
softΩ ξ

)
.(3.21)

On the other hand, if π = 0, since ∂ψ(0) = {ψ′(0)} = {0}, we derive from (3.20),
Example 2.1(ii), (1.11), and Lemma 2.2(i) that

(3.22) π = proxφ ξ ⇒ ξ ∈ ∂σΩ(0) = Ω ⇒ softΩ ξ = 0 ⇒ proxψ
(
softΩ ξ

)
= 0 = π.

The proof is now complete.
In view of Proposition 3.6 and (1.11), the computation of the proximal thresholder

proxψ+σΩ
reduces to that of proxψ . By duality, we obtain a decomposition formula

for those proximal operators that coincide with the identity on a closed interval Ω.
Proposition 3.7. Let φ = ψ� ιΩ, where ψ ∈ Γ0(R) and Ω ⊂ R is a nonempty

closed interval. Suppose that ψ∗ is differentiable at 0 with ψ∗′(0) = 0. Then the
following hold.

(i) proxφ = PΩ + proxψ ◦ softΩ .
(ii) (∀ξ ∈ R) proxφ ξ = ξ ⇔ ξ ∈ Ω.
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Fig. 3.2. Graphs of the proximal thresholder proxφ (solid line) and its dual proxφ∗ (dashed line),
where φ = τ | · |p + | · |. Top: τ = 0.05 and p = 4; Bottom: τ = 0.9 and p = 4/3. Explicit expressions
for these thresholders are provided by Example 2.7(ii)&(vi), Proposition 3.6, and Lemma 2.2(ii).

Proof. It follows from [32, Theorem 16.4] that

(3.23) φ∗ = ψ∗ + ι∗Ω = ψ∗ + σΩ.

Note also that, since ψ ∈ Γ0(R), we have ψ∗ ∈ Γ0(R) [32, Theorem 12.2]. (i): Fix
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ξ ∈ R. Then, by Lemma 2.2(ii), (3.23), Proposition 3.6, and Example 2.6,

proxφ ξ = ξ − proxφ∗ ξ(3.24)

= ξ − proxψ∗+σΩ
ξ

= ξ − proxψ∗

(
proxσΩ

ξ
)

= ξ − proxσΩ
ξ + proxψ

(
proxσΩ

ξ
)

= proxσ∗

Ω
ξ + proxψ

(
proxσΩ

ξ
)

= proxιΩ ξ + proxψ
(
proxσΩ

ξ
)

= PΩξ + proxψ
(
softΩ ξ

)
.(3.25)

(ii): It follows from (3.23) and Theorem 3.3 that proxφ∗ is a proximal thresholder on
Ω. Hence, we derive from (3.24) and (3.1) that (∀ξ ∈ R) proxφ ξ = ξ ⇔ proxφ∗ ξ = 0
⇔ ξ ∈ Ω.

Examples of proximal thresholders (see Proposition 3.6) and their duals (see
Proposition 3.7) are provided in Figs. 3.2 and 3.3 (see also Fig. 2.1) in the case
when Ω = [−1, 1].

4. Iterative proximal thresholding. Let us start with some basic properties
of Problem 1.3.

Proposition 4.1. Problem 1.3 possesses at least one solution.

Proof. Let Ψ be as in (1.9). We infer from the assumptions of Problem 1.3 and
Lemma 2.3 that Ψ ∈ Γ0(H) and, in turn, that Φ + Ψ ∈ Γ0(H). Hence, it suffices
to show that Φ + Ψ is coercive [41, Theorem 2.5.1(ii)], i.e., since inf Φ(H) > −∞ by
assumption (i) in Problem 1.3, that Ψ is coercive. For this purpose, let x = (ξk)k∈N

denote a generic element in ℓ2(N), and let

(4.1) Υ: ℓ2(N) → ]−∞,+∞] : x 7→
∑

k∈N

ψk(ξk) +
∑

k∈K

σΩk
(ξk).

Then, by Parseval’s identity, it is enough to show that Υ is coercive. To this end, set
xK = (ξk)k∈K and xL = (ξk)k∈L, and denote by ‖ · ‖K and ‖ · ‖L the standard norms on
ℓ2(K) and ℓ2(L), respectively. Using (4.1), assumptions (ii) and (vi) in Problem 1.3,
and Example 2.1(i), we obtain

(∀ x ∈ ℓ2(N)) Υ(x) ≥
∑

k∈K

σΩk
(ξk) +

∑

k∈L

ψk(ξk)

≥ ω
∑

k∈K

|ξk| + ΥL(xL)

≥ ω‖xK‖K + ΥL(xL),(4.2)

where ΥL is defined in Problem 1.3(v). Now suppose that ‖x‖ =
√
‖xK‖2

K
+ ‖xL‖2

L
→

+∞. Then (4.2) and assumption (v) in Problem 1.3 yield Υ(x) → +∞, as desired.

Proposition 4.2. Let Ψ be as in (1.9), let x ∈ H, and let γ ∈ ]0,+∞[. Then x
is a solution to Problem 1.3 if and only if x = proxγΨ(x− γ∇Φ(x)).

Proof. Since Problem 1.3 is equivalent to minimizing Φ + Ψ, this is a standard
characterization, see for instance [16, Proposition 3.1(iii)].

Our algorithm for solving Problem 1.3 will be the following.



14 PATRICK L. COMBETTES AND JEAN-CHRISTOPHE PESQUET

−5 −4 −3 −2 −1 1 2 3 4 5

−3

−2

−1

1

2

3

−5 −4 −3 −2 −1 1 2 3 4 5

−3

−2

−1

1

2

3

Fig. 3.3. Graphs of the proximal thresholder proxφ (solid line) and its dual proxφ∗ (dashed

line), where φ = ψ + | · |. Top: ψ = ι[−2,2]; Bottom: ψ : ξ 7→ ξ2/2, if |ξ| ≤ 1; |ξ| − 1/2, if |ξ| > 1,
is the Huber function [27]. The closed-form expressions of these thresholders are obtained via [8,
Example 4.5], Proposition 3.6, and Lemma 2.2(ii).

Algorithm 4.3. Fix x0 ∈ H and set, for every n ∈ N,

xn+1 = xn + λn

(
∑

k∈K

(
αn,k + proxγnψk

(
softγnΩk

〈xn − γn(∇Φ(xn) + bn) | ek〉
))
ek

+
∑

k∈L

(
αn,k + proxγnψk

〈xn − γn(∇Φ(xn) + bn) | ek〉
)
ek − xn

)
,(4.3)

where:

(i) (γn)n∈N is a sequence in ]0,+∞[ such that infn∈N γn > 0 and supn∈N γn < 2β;
(ii) (λn)n∈N is a sequence in ]0, 1] such that infn∈N λn > 0;



PROXIMAL THRESHOLDING ALGORITHM 15

(iii) for every n ∈ N, (αn,k)k∈N is a sequence in ℓ2(N) such that

∑

n∈N

√∑

k∈N

|αn,k|2 < +∞;

(iv) (bn)n∈N is a sequence in H such that
∑
n∈N

‖bn‖ < +∞.
Remark 4.4. Let us highlight some features of Algorithm 4.3.
• The set K contains the indices of those coefficients of the decomposition in

(ek)k∈N that are thresholded.
• The terms αn,k and bn stand for some numerical tolerance in the implemen-

tation of proxγnψk
and the computation of ∇Φ(xn), respectively.

• The parameters λn and γn provide added flexibility to the algorithm and can
be used to improve its convergence profile.

• The operator softγnΩk
is given explicitly in (1.11).

Our main convergence result can now be stated.
Theorem 4.5. Every sequence generated by Algorithm 4.3 converges strongly to

a solution to Problem 1.3.
Proof. Hereafter, (xn)n∈N is a sequence generated by Algorithm 4.3 and we define

(4.4) (∀k ∈ N) φk =

{
ψk + σΩk

, if k ∈ K;

ψk, if k ∈ L.

It follows from the assumptions on (ψk)k∈N in Problem 1.3 that (∀k ∈ N) ψ′
k(0) = 0.

Therefore, for every n in N, Theorem 3.3 implies that

(4.5) for every k in K, proxγnφk
is a proximal thresholder on γnΩk,

while Proposition 3.6 supplies
(4.6)
(∀k ∈ K) proxγnφk

= proxγnψk+γnσΩk
= proxγnψk+σ(γnΩk)

= proxγnψk
◦ softγnΩk

.

Thus, (4.3) can be rewritten as

(4.7) xn+1 = xn +λn

(
∑

k∈N

(
αn,k +proxγnφk

〈xn − γn(∇Φ(xn) + bn) | ek〉
)
ek− xn

)
.

Now let Ψ be as in (1.9), i.e., Ψ =
∑

k∈N
φk(〈· | ek〉), and set (∀n ∈ N) an =∑

k∈N
αn,kek. Then it follows from (4.4) and Lemma 2.3 that Ψ ∈ Γ0(H) and that

(4.7) can be rewritten as

(4.8) xn+1 = xn + λn

(
proxγnΨ

(
xn − γn(∇Φ(xn) + bn)

)
+ an − xn

)
.

Consequently, since Proposition 4.1 asserts that Φ + Ψ possesses a minimizer, we
derive from assumptions (i)–(iv) in Algorithm 4.3 and [16, Theorem 3.4] that

(4.9) (xn)n∈N converges weakly to a solution x to Problem 1.3

and that
(4.10)∑

n∈N

‖xn−proxγnΨ

(
xn−γn∇Φ(xn)

)
‖2 < +∞ and

∑

n∈N

‖∇Φ(xn)−∇Φ(x)‖2 < +∞.
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Hence, it follows from Lemma 2.2(iii) and assumption (i) in Algorithm 4.3 that

(4.11)
1

2

∑

n∈N

‖xn − proxγnΨ

(
xn − γn∇Φ(x)

)
‖2

≤
∑

n∈N

‖xn − proxγnΨ

(
xn − γn∇Φ(xn)

)
‖2

+
∑

n∈N

‖ proxγnΨ

(
xn − γn∇Φ(xn)

)
− proxγnΨ

(
xn − γn∇Φ(x)

)
‖2

≤
∑

n∈N

‖xn − proxγnΨ

(
xn − γn∇Φ(xn)

)
‖2 +

∑

n∈N

γ2
n‖∇Φ(xn) −∇Φ(x)‖2

≤
∑

n∈N

‖xn − proxγnΨ

(
xn − γn∇Φ(xn)

)
‖2 + 4β2

∑

n∈N

‖∇Φ(xn) −∇Φ(x)‖2

< +∞.

Now define

(4.12) (∀n ∈ N) vn = xn − x and hn = x− γn∇Φ(x).

On the one hand, we derive from (4.9) that

(4.13) (vn)n∈N converges weakly to 0

and, on the other hand, from (4.11) and Proposition 4.2 that

∑

n∈N

‖vn − proxγnΨ(vn + hn) + proxγnΨ hn‖
2 =

∑

n∈N

‖xn − proxγnΨ

(
xn − γn∇Φ(x)

)
‖2

< +∞.(4.14)

By Parseval’s identity, to establish that ‖vn‖ = ‖xn−x‖ → 0, we must show that

(4.15)
∑

k∈K

|νn,k|
2 → 0 and

∑

k∈L

|νn,k|
2 → 0,

where (∀n ∈ N)(∀k ∈ N) νn,k = 〈vn | ek〉. To this end, let us set, for every n ∈ N and
k ∈ N, ηn,k = 〈hn | ek〉 and observe that (4.14), Parseval’s identity, and Lemma 2.3
imply that

(4.16)
∑

k∈N

|νn,k − proxγnφk
(νn,k + ηn,k) + proxγnφk

ηn,k|
2 → 0.

In addition, let us set r = 2β∇Φ(x) and, for every k ∈ N, ξk = 〈x | ek〉 and ρk =
〈r | ek〉. Then we derive from (4.12) and assumption (i) in Algorithm 4.3 that

(4.17) (∀n ∈ N)(∀k ∈ N) |ηn,k|
2/2 ≤ |ξk|

2 + γ2
n |〈∇Φ(x) | ek〉|

2 ≤ |ξk|
2 + |ρk|

2.

To establish (4.15), let us first show that
∑

k∈K
|νn,k|

2 → 0. For this purpose,
set δ = γω, where γ = infn∈N γn and where ω is supplied by assumption (vi) in
Problem 1.3. Then it follows from assumption (i) in Algorithm 4.3 that δ > 0 and
that

(4.18) [−δ, δ] ⊂
⋂

n∈N

⋂

k∈K

γnΩk.



PROXIMAL THRESHOLDING ALGORITHM 17

On the other hand, (4.17) yields

(4.19)
∑

k∈K

sup
n∈N

|ηn,k|
2/2 ≤

∑

k∈N

(
|ξk|

2 + |ρk|
2
)

= ‖x‖2 + ‖r‖2 < +∞.

Hence, there exists a finite set K1 ⊂ K such that

(4.20) (∀n ∈ N)
∑

k∈K2

|ηn,k|
2 ≤ δ2/4, where K2 = K r K1.

In view of (4.13), we have
∑

k∈K1
|νn,k|

2 → 0. Let us now show that
∑

k∈K2
|νn,k|

2 →
0. Note that (4.18) and (4.20) yield

(4.21) (∀n ∈ N)(∀k ∈ K2) ηn,k ∈ [−δ/2, δ/2] ⊂ γnΩk.

Therefore, (4.5) implies that

(4.22) (∀n ∈ N)(∀k ∈ K2) proxγnφk
ηn,k = 0.

Let us define

(4.23) (∀n ∈ N) K21,n =
{
k ∈ K2

∣∣ νn,k + ηn,k ∈ γnΩk
}
.

Then, invoking (4.5) once again, we obtain

(4.24) (∀n ∈ N)(∀k ∈ K21,n) proxγnφk
(νn,k + ηn,k) = 0

which, combined with (4.22), yields

(∀n ∈ N)
∑

k∈K21,n

|νn,k|
2 =

∑

k∈K21,n

|νn,k − proxγnφk
(νn,k + ηn,k) + proxγnφk

ηn,k|
2

≤
∑

k∈N

|νn,k − proxγnφk
(νn,k + ηn,k) + proxγnφk

ηn,k|
2.(4.25)

Consequently, it results from (4.16) that
∑

k∈K21,n
|νn,k|

2 → 0. Next, let us set

(4.26) (∀n ∈ N) K22,n = K2 r K21,n

and show that
∑

k∈K22,n
|νn,k|

2 → 0. It follows from (4.26), (4.23), and (4.18) that

(4.27) (∀n ∈ N)(∀k ∈ K22,n) νn,k + ηn,k /∈ γnΩk ⊃ [−δ, δ].

Hence, appealing to (4.21), we obtain

(4.28) (∀n ∈ N)(∀k ∈ K22,n) |νn,k + ηn,k| ≥ δ ≥ |ηn,k| + δ/2.

Now take n ∈ N and k ∈ K22,n. We derive from (4.22) and Lemma 2.2(ii) that

(4.29) |νn,k − proxγnφk
(νn,k + ηn,k) + proxγnφk

ηn,k|

= |(νn,k + ηn,k) − proxγnφk
(νn,k + ηn,k) − ηn,k|

= | prox(γnφk)∗(νn,k + ηn,k) − ηn,k|.
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However, it results from (4.18), (4.5), and Proposition 3.2 that prox(γnφk)∗(±δ) = ±δ.
We consider two cases. First, if νn,k + ηn,k ≥ 0 then, since prox(γnφk)∗ is increasing
by Proposition 2.4, (4.28) yields νn,k + ηn,k ≥ δ and

(4.30) prox(γnφk)∗(νn,k + ηn,k) ≥ prox(γnφk)∗ δ = δ ≥ ηn,k + δ/2.

Likewise, if νn,k + ηn,k ≤ 0, then (4.28) yields νn,k + ηn,k ≤ −δ and

(4.31) prox(γnφk)∗(νn,k + ηn,k) ≤ prox(γnφk)∗(−δ) = −δ ≤ ηn,k − δ/2.

Altogether, we derive from (4.30) and (4.31) that

(4.32) (∀n ∈ N)(∀k ∈ K22,n) | prox(γnφk)∗(νn,k + ηn,k) − ηn,k| ≥ δ/2.

In turn, (4.29) yields
(4.33)

(∀n ∈ N)
∑

k∈K22,n

|νn,k − proxγnφk
(νn,k + ηn,k) + proxγnφk

ηn,k|
2 ≥ card(K22,n)δ

2/4.

However, it follows from (4.16) that, for n sufficiently large,

(4.34)
∑

k∈N

|νn,k − proxγnφk
(νn,k + ηn,k) + proxγnφk

ηn,k|
2 ≤ δ2/5.

Thus, for n sufficiently large, K22,n = ∅. We conclude from this first part of the proof
that

∑
k∈K

|νn,k|
2 → 0.

In order to obtain (4.15), we must now show that
∑
k∈L

|νn,k|
2 → 0. We infer

from (4.13) that (vn)n∈N is bounded, hence

(4.35) sup
n∈N

∑

k∈L

|νn,k|
2 ≤ sup

n∈N

‖vn‖
2 ≤ ρ2/4,

for some ρ ∈ ]0,+∞[. Now define

(4.36) L1 =
{
k ∈ L

∣∣ (∃n ∈ N) |ηn,k| ≥ ρ/2
}
.

Then we derive from (4.17) that

(4.37) (∀k ∈ L1)(∃n ∈ N) |ξk|
2 + |ρk|

2 ≥ |ηn,k|
2/2 ≥ ρ2/8.

Consequently, we have

(4.38) +∞ > ‖x‖2 + ‖r‖2 ≥
∑

k∈L1

(
|ξk|

2 + |ρk|
2
)
≥ (cardL1)ρ

2/8

and therefore card(L1) < +∞. In turn, it results from (4.13) that
∑

k∈L1
|νn,k|

2 → 0.

Hence, to obtain
∑

k∈L
|νn,k|

2 → 0, it remains to show that
∑

k∈L2
|νn,k|

2 → 0, where
L2 = L r L1. In view of (4.36) and (4.35), we have

(4.39) (∀n ∈ N)(∀k ∈ L2) |ηn,k| < ρ/2 and |νn,k + ηn,k| ≤ |νn,k| + |ηn,k| < ρ.

On the other hand, assumption (iv) in Problem 1.3 asserts that there exists θ ∈
]0,+∞[ such that

(4.40) inf
n∈N

inf
k∈L2

inf
0<|ξ|≤ρ

(γnψk)
′′(ξ) ≥ γ inf

k∈L2

inf
0<|ξ|≤ρ

ψ′′
k (ξ) ≥ γθ.
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It therefore follows from assumptions (ii) and (iii) in Problem 1.3, Proposition 2.9,
and (4.4) that

(∀n ∈ N)(∀k ∈ L2) |νn,k| ≤ |νn,k − proxγnψk
(νn,k + ηn,k) + proxγnψk

ηn,k|

+ | proxγnψk
(νn,k + ηn,k) − proxγnψk

ηn,k|

≤ |νn,k − proxγnψk
(νn,k + ηn,k) + proxγnψk

ηn,k|

+ |νn,k|/(1 + γθ)

= |νn,k − proxγnφk
(νn,k + ηn,k) + proxγnφk

ηn,k|

+ |νn,k|/(1 + γθ).(4.41)

Consequently, upon setting µ = 1 + 1/(γθ), we obtain

(4.42) (∀n ∈ N)(∀k ∈ L2) |νn,k| ≤ µ|νn,k − proxγnφk
(νn,k + ηn,k) + proxγnφk

ηn,k|.

In turn,

(4.43) (∀n ∈ N)
∑

k∈L2

|νn,k|
2 ≤ µ2

∑

k∈L2

|νn,k−proxγnφk
(νn,k+ηn,k)+proxγnφk

ηn,k|
2.

Hence, (4.16) forces
∑

k∈L2
|νn,k|

2 → 0, as desired.
Remark 4.6. An important aspect of Theorem 4.5 is that it provides a strong

convergence result. Indeed, in general, only weak convergence can be claimed for
forward-backward methods [16, 38] (see [3], [4], [16, Remark 5.12], and [25] for explicit
constructions in which strong convergence fails). In addition, the standard sufficient
conditions for strong convergence in this type of algorithm (see [13, Remark 6.6]
and [16, Theorem 3.4(iv)]) are not satisfied in Problem 1.3. Further aspects of the
relevance of strong convergence in proximal methods are discussed in [25, 26].

Remark 4.7. Let T be a nonzero bounded linear operator from H to a real
Hilbert space G, let z ∈ G, and let τ and ω be in ]0,+∞[. Specializing Theorem 4.5
to the case when Φ: x 7→ ‖Tx− z‖2/2 and either

(4.44) K = ∅ and (∀k ∈ L) ψk = τk|·|
p, where p ∈ ]1, 2] and τk ∈ [τ,+∞[ ,

or
(4.45)

L = ∅ and (∀k ∈ K) ψk = 0 and Ωk = [−ωk, ωk], where ωk ∈ [ω,+∞[ ,

yields [16, Corollary 5.19]. If we further impose λn ≡ 1, ‖T ‖ < 1, γn ≡ 1, αn,k ≡ 0,
and bn ≡ 0, we obtain [18, Theorem 3.1].

5. Applications to sparse signal recovery.

5.1. A special case of Problem 1.3. In (1.4), a single observation z of the
original signal x is available. In certain problems, q such noisy linear observations are
available, say zi = Tix + vi (1 ≤ i ≤ q), which leads to the weighted least-squares
data fidelity term x 7→

∑q
i=1 µi‖Tix − zi‖

2; see [12] and the references therein. Fur-
thermore, signal recovery problems are typically accompanied with convex constraints
that confine x to some closed convex subsets (Si)1≤i≤m of H. The violation of these
constraints can be penalized via the cost function x 7→

∑m
i=1 ϑid

2
Si

(x); see [10, 28]
and the references therein. On the other hand, power functions are frequently used
as cost functions in variational models for determining the coefficients of orthonormal
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basis decompositions, e.g., [1, 7, 8, 18]. Moreover, we aim at promoting sparsity of a
solution x ∈ H with respect to (ek)k∈N in the sense that, for every k in K, we wish to
set to 0 the coefficient 〈x | ek〉 if it lies in the interval Ωk. The following formulation
is consistent with these considerations.

Problem 5.1. For every i ∈ {1, . . . , q}, let µi ∈ ]0,+∞[, let Ti be a nonzero
bounded linear operator from H to a real Hilbert space Gi, and let zi ∈ Gi. For every
i ∈ {1, . . . ,m}, let ϑi ∈ ]0,+∞[ and let Si be a nonempty closed and convex subset of
H. Furthermore, let (pk,l)0≤l≤Lk

be distinct real numbers in ]1,+∞[, let (τk,l)0≤l≤Lk

be real numbers in [0,+∞[, and let lk ∈ {0, . . . , Lk} satisfy pk,lk = min0≤l≤Lk
pk,l,

where (Lk)k∈N is a sequence in N. Finally, let K ⊂ N, let L = N r K, and let (Ωk)k∈K

be a sequence of closed intervals in R. The objective is to

(5.1) minimize
x∈H

1

2

q∑

i=1

µi‖Tix− zi‖
2 +

1

2

m∑

i=1

ϑid
2
Si

(x)

+
∑

k∈N

Lk∑

l=0

τk,l|〈x | ek〉|
pk,l +

∑

k∈K

σΩk
(〈x | ek〉),

under the following assumptions:
(i) infk∈L τk,lk > 0;
(ii) infk∈L pk,lk > 1;
(iii) supk∈L pk,lk ≤ 2;
(iv) 0 ∈ int

⋂
k∈K

Ωk.
Proposition 5.2. Problem 5.1 is a special case of Problem 1.3.
Proof. First, we observe that (5.1) corresponds to (1.7) where

(5.2)

Φ: x 7→
1

2

q∑

i=1

µi‖Tix−zi‖
2 +

1

2

m∑

i=1

ϑid
2
Si

(x) and (∀k ∈ N) ψk : ξ 7→

Lk∑

l=0

τk,l|ξ|
pk,l .

Hence, Φ is a finite positive continuous convex function with Fréchet gradient

(5.3) ∇Φ: x 7→

q∑

i=1

µiT
∗
i (Tix− zi) +

m∑

i=1

ϑi(x− Pix),

where Pi is the projection operator onto Si. Therefore, since the operators
(Id −Pi)1≤i≤m are nonexpansive, it follows that assumption (i) in Problem 1.3 is
satisfied with 1/β =

∑q
i=1 µi‖Ti‖

2 +
∑m
i=1 ϑi. Moreover, the functions (ψk)k∈N are in

Γ0(R) and satisfy assumptions (ii) and (iii) in Problem 1.3.
Let us now turn to assumption (iv) in Problem 1.3. Fix ρ ∈ ]0,+∞[ and set

τ = infk∈L τk,lk , p = infk∈L pk,lk , and θ = τp(p− 1)min{1, 1/ρ}. Then it follows from
(i), (ii), and (iii) that θ > 0 and that

inf
k∈L

inf
0<|ξ|≤ρ

ψ′′
k (ξ) = inf

k∈L

inf
0<|ξ|≤ρ

Lk∑

l=0

τk,lpk,l(pk,l − 1)|ξ|pk,l−2

≥ inf
k∈L

τk,lkpk,lk(pk,lk − 1) inf
0<ξ≤ρ

ξpk,lk
−2

≥ τp(p− 1) inf
k∈L

inf
0<ξ≤ρ

ξpk,lk
−2

≥ τp(p− 1) inf
k∈L

(1/ρ)2−pk,lk

≥ θ,(5.4)
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Fig. 5.1. Original signal – first example.

which shows that (1.8) is satisfied.
It remains to check assumption (v) in Problem 1.3. To this end, let ‖ · ‖L denote

the standard norm on ℓ2(L), take x = (ξk)k∈L ∈ ℓ2(L) such that ‖x‖L ≥ 1, and set
(ηk)k∈L = x/‖x‖L. Then, for every k ∈ L, |ηk| ≤ 1 and, since pk,lk ∈ ]1, 2], we have
|ηk|

pk,lk ≥ |ηk|
2. Consequently,

(5.5)

ΥL(x) =
∑

k∈L

Lk∑

l=0

τk,l|ξk|
pk,l ≥

∑

k∈L

τk,lk |ξk|
pk,lk

≥ τ
∑

k∈L

|ξk|
pk,lk = τ

∑

k∈L

‖x‖
pk,lk

L
|ηk|

pk,lk

≥ τ
∑

k∈L

‖x‖
pk,lk

L
|ηk|

2 = τ
∑

k∈L

‖x‖
pk,lk

−2

L
|ξk|

2

≥ τ‖x‖−1
L

∑

k∈L

|ξk|
2 = τ‖x‖L.

We conclude that ΥL(x) → +∞ as ‖x‖L → +∞.

5.2. First example. Our first example concerns the simulated X-ray fluores-
cence spectrum x displayed in Fig. 5.1, which is often used to test restoration meth-
ods, e.g., [14, 37]. The measured signal z shown in Fig. 5.2 has undergone blurring by
the limited resolution of the spectrometer and further corruption by addition of noise.
In the underlying Hilbert space H = ℓ2(N), this process is modeled by z = Tx + v,
where T : H → H is the operator of convolution with a truncated Gaussian kernel.
The noise samples are uncorrelated and drawn from a Gaussian population with mean
zero and standard deviation 0.15. The original signal x has support {0, . . . , N − 1}
(N = 1024), takes on positive values, and possesses a sparse structure. These features
can be promoted in Problem 5.1 by letting (ek)k∈N be the canonical orthonormal basis
of H, and setting K = N, τk,l ≡ 0, and

(5.6) (∀k ∈ N) Ωk =

{
]−∞, ω] , if 0 ≤ k ≤ N − 1;

R, otherwise,

where the one-sided thresholding level is set to ω = 0.01. On the other hand, us-
ing the methodology described in [37], the above information about the noise can
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Fig. 5.2. Degraded signal – first example.
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Fig. 5.3. Signal restored by Algorithm 4.3 – first example.

be used to construct the constraint sets S1 =
{
x ∈ H

∣∣ ‖Tx− z‖ ≤ δ1
}

and S2 =⋂N−1
l=1

{
x ∈ H

∣∣ |T̂ x(l/N) − ẑ(l/N)| ≤ δ2
}
, where â : ν 7→

∑+∞
k=0 〈a | ek〉 exp(−ı2πkν)

designates the Fourier transform of a ∈ H. The bounds δ1 and δ2 have been deter-
mined so as to guarantee that x lies in S1 and in S2 with a 99 percent confidence level
(see [15] for details). Finally, we set q = 0, m = 2, and ϑ1 = ϑ2 = 1 in (5.1) (the
computation of the projectors P1 and P2 required in (5.3) is detailed in [37]). The
solution produced by Algorithm 4.3 is shown in Fig. 5.3. It is of much better quality
than the restorations obtained in [14] and [37] via alternative methods.

5.3. Second example. We provide a wavelet deconvolution example in H =
L

2(R). The original signal x is the classical “bumps” signal [40] displayed in Fig. 5.4.
The degraded version shown in Fig. 5.5 is z1 = T1x+v1, where T1 models convolution
with a uniform kernel and v1 is a realization of a zero-mean white Gaussian noise.

The basis (ek)k∈N is an orthonormal wavelet symlet basis with 8 vanishing mo-
ments [17]. Such wavelet bases are known to provide sparse representations for a
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Fig. 5.4. Original signal – second example.
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Fig. 5.5. Degraded signal – second example.

wide class of signals [22] such as this standard test signal. Note that there exists
a strong connection between Problem 5.1 and maximum a posteriori techniques for
estimating x in the presence of white Gaussian noise. In particular, setting q = 1,
m = 0, K = ∅ and Lk ≡ 0, and using suitably subband-adapted values of pk,0 and
τk,0 amounts to fitting an appropriate generalized Gaussian prior distribution to the
wavelet coefficients in each subband [1]. Such a statistical modeling is commonly used
in wavelet-based estimation, where values of pk,0 close to 2 may provide a good model
at coarse resolution levels, whereas values close to 1 should preferably be used at finer
resolutions.

The setting of the more general model we adopt here is the following: in Prob-
lem 5.1, K and L are the index sets of the detail and approximation coefficients [29],
respectively, and

• (∀k ∈ K) Ωk = [−0.0023, 0.0023], Lk = 1, (pk,0, pk,1) = (2, 4), (τk,0, τk,1) =
(0.0052, 0.0001).

• (∀k ∈ L) Lk = 0, pk,0 = 2, τk,0 = 0.00083.
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Fig. 5.6. Signal restored by Algorithm 4.3 – second example.
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Fig. 5.7. Signal restored by solving (1.4) – second example.

For each k, the integer Lk and the exponents (pk,l)0≤l≤Lk
are imposed, while the set

Ωk and the coefficients (τk,l)0≤l≤Lk
are chosen empirically. In addition, we set q = 1,

µ1 = 1, m = 1, ϑ1 = 1, and S1 =
{
x ∈ H

∣∣ x ≥ 0
}

(pointwise positivity constraint).
The solution x produced by Algorithm 4.3 is shown in Fig. 5.6. The estimation error
is ‖x−x‖ = 8.33. For comparison, the signal x̃ restored via (1.4) with Algorithm (1.5)
is displayed in Fig. 5.7. In Problem 5.1, this corresponds to q = 1, m = 0, K = N,
τk,l ≡ 0, Ωk ≡ [−2.9, 2.9] for the detail coefficients, and Ωk ≡ [−0.0062, 0.0062] for
the approximation coefficients. This setup yields a worse error of ‖x̃ − x‖ = 14.14
(the sets (Ωk)k∈N have been adjusted so as to mininize this error). The above results
have been obtained with a discrete implementation of the wavelet decomposition over
4 resolution levels using 2048 signal samples [29].
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