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SOLVING COUPLED COMPOSITE MONOTONE INCLUSIONS

BY SUCCESSIVE FEJÉR APPROXIMATIONS OF THEIR

KUHN–TUCKER SET∗

ABDULLAH ALOTAIBI†, PATRICK L. COMBETTES‡, and NASEER SHAHZAD§

Abstract. We propose a new class of primal-dual Fejér monotone algorithms for solving systems
of composite monotone inclusions. Our construction is inspired by a framework used by
Eckstein and Svaiter for the basic problem of finding a zero of the sum of two monotone
operators. At each iteration, points in the graph of the monotone operators present in
the model are used to construct a half-space containing the Kuhn–Tucker set associated
with the system. The primal-dual update is then obtained via a relaxed projection
of the current iterate onto this half-space. An important feature that distinguishes
the resulting splitting algorithms from existing ones is that they do not require prior
knowledge of bounds on the linear operators involved or the inversion of linear operators.
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1. Introduction. The first monotone operator splitting methods arose in the
late 1970s and were motivated by applications in mechanics and partial differential
equations [32, 35, 39]. In recent years, the field of monotone operator splitting al-
gorithms has benefited from a new impetus, fueled by emerging application areas
such as signal and image processing, statistics, optimal transport, machine learning,
and domain decomposition methods [3, 5, 24, 36, 41, 43, 46]. Three main algo-
rithms dominate the field explicitly or implicitly: the forward-backward method [38],
the Douglas–Rachford method [37], and the forward-backward-forward method [47].
These methods were originally designed to solve inclusions of the type 0 ∈ Ax+Bx,
where A and B are maximally monotone operators acting on a Hilbert space (via
product space reformulations, they can also be extended to problems involving sums
of more than two operators [9, 45]). Until recently, a significant challenge in the
field was to design splitting techniques for inclusions involving linearly composed
operators, say

(1.1) 0 ∈ Ax + L∗BLx,

where A and B are maximally monotone operators acting on Hilbert spaces H and
G, respectively, and L is a bounded linear operator from H to G. In the case when A
and B are subdifferentials, say A = ∂f and B = ∂g, where f : H → ]−∞,+∞] and
g : G → ]−∞,+∞] are lower semicontinuous convex functions satisfying a suitable
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constraint qualification, (1.1) corresponds to the minimization problem

(1.2) minimize
x∈H

f(x) + g(Lx).

The Fenchel–Rockafellar dual of this problem is

(1.3) minimize
v∗∈G

f∗(−L∗v∗) + g∗(v∗)

and the associated Kuhn–Tucker set is

(1.4) Z =
{

(x, v∗) ∈ H⊕ G
∣

∣ −L∗v∗ ∈ ∂f(x) and Lx ∈ ∂g∗(v∗)
}

.

The importance of this set is discussed extensively in [44], notably in connection
with the fact that Kuhn–Tucker points provide solutions to (1.2) and (1.3). To the
best of our knowledge, the first splitting method for composite problems of the form
(1.1) is that proposed in [16], which was developed around the following formulation.

Problem 1.1. Let H and G be real Hilbert spaces, and set K = H ⊕ G. Let
A : H → 2H and B : G → 2G be maximally monotone operators, and let L : H → G
be a bounded linear operator. Consider the inclusion problem

(1.5) find x ∈ H such that 0 ∈ Ax + L∗BLx,

the dual problem

(1.6) find v∗ ∈ G such that 0 ∈ −LA−1(−L∗v∗) +B−1v∗,

and the associated Kuhn–Tucker set

(1.7) Z =
{

(x, v∗) ∈ K
∣

∣ −L∗v∗ ∈ Ax and Lx ∈ B−1v∗
}

.

The problem is to find a point in Z. The sets of solutions to (1.5) and (1.6) are
denoted by P and D , respectively.

The Kuhn–Tucker set (1.7) is a natural extension of (1.4) to general monotone
operators. In [16], a point in Z was obtained by applying the forward-backward-
forward method to a suitably decomposed inclusion in H ⊕ G (the use of Douglas–
Rachford splitting was also discussed there). Subsequently, the idea of using tra-
ditional splitting techniques to find Kuhn–Tucker points was further exploited in
a variety of settings, e.g., [1, 12, 14, 23, 25, 26, 48]. Despite their broad range of
applicability, existing splitting methods suffer from two shortcomings that preclude
their use in certain settings. Thus, a shortcoming of splitting methods based on the
forward-backward-forward [16, 25] or the forward-backward algorithms [2, 26, 48] is
that they require knowledge of ‖L‖; this is also true for the Douglas–Rachford-based
method of [14]. On the other hand, a shortcoming of splitting methods based on the
Douglas–Rachford [16, Remark 2.9] or Spingarn [1] algorithms is that they require
the inversion of linear operators, as does [12, Algorithm 3]. In some applications,
however, ‖L‖ cannot be evaluated reliably and the inversion of linear operators is
not numerically feasible. As will be seen in Section 4, this issue becomes particularly
acute when dealing with systems of coupled monotone inclusions, which constitute
the main motivation for our investigation.

Our objective is to devise a new class of algorithms for solving Problem 1.1 that
alleviate the above-mentioned shortcomings of existing methods. Our approach is
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inspired by an original splitting framework proposed in [28] for solving the basic
inclusion (see also [29] for the extension to the sum of several operators)

(1.8) 0 ∈ Ax+Bx.

The main idea of [28] is to use points in the graphs of A and B to construct a
sequence of Fejér approximations to the so-called extended solution set

(1.9)
{

(x, v∗) ∈ H ⊕H
∣

∣ −v∗ ∈ Ax and v∗ ∈ Bx
}

and to iterate by projection onto these successive approximations. This extended
solution set is actually nothing but the specialization of the Kuhn–Tucker set (1.7)
to the case when G = H and L = Id . This construction led to novel splitting
methods for solving (1.8) that do not seem to derive from the traditional methods
mentioned above. In the present paper, we extend it significantly beyond (1.8) in
order to design new primal-dual splitting algorithms for Problem 1.1.

The paper is organized as follows. Preliminary results are established in Section 2
and algorithms for solving Problem 1.1 are developed in Section 3. These results are
then used in Section 4 to solve systems of composite monotone inclusions in duality.
Notation. The scalar product of a Hilbert space is denoted by 〈· | ·〉 and the asso-
ciated norm by ‖ · ‖. The symbols ⇀ and → denote, respectively, weak and strong
convergence, and Id denotes the identity operator. Let H and G be real Hilbert
spaces, let 2H be the power set of H, and let A : H → 2H. We denote by ranA =
{

u ∈ H
∣

∣ (∃x ∈ H) u ∈ Ax
}

the range of A, by graA =
{

(x, u) ∈ H ×H
∣

∣ u ∈ Ax
}

the graph of A, and by A−1 the inverse of A, which is defined through its graph
{

(u, x) ∈ H×H
∣

∣ (x, u) ∈ graA
}

. The resolvent of A is JA = (Id +A)−1. We say
that A is monotone if

(1.10) (∀(x, u) ∈ graA)(∀(y, v) ∈ graA) 〈x− y | u− v〉 > 0,

and maximally monotone if there does not exist any monotone operator B : H → 2H

such that graA ⊂ graB 6= graA. In this case, JA is firmly nonexpansive and defined
everywhere on H. The Hilbert direct sum of H and G is denoted by H ⊕ G. The
projection operator onto a nonempty closed convex subset C of H is denoted by PC .
The necessary background on convex analysis and monotone operators will be found
in [9].

2. Preliminary results. We first investigate some basic properties of Problem 1.1,
starting with the fact that Kuhn–Tucker points automatically provide primal and
dual solutions.

Proposition 2.1. In the setting of Problem 1.1, the following hold:

(i) Z is a closed convex subset of P × D .

(ii) P 6= ∅ ⇔ Z 6= ∅ ⇔ D 6= ∅.

Proof. This is [16, Proposition 2.8] (see also [42] for (ii)).
A fundamental concept in algorithmic nonlinear analysis is that of Fejér mono-

tonicity: a sequence (xn)n∈N in a Hilbert space H is said to be Fejér monotone with
respect to a set C ⊂ H if

(2.1) (∀z ∈ C)(∀n ∈ N) ‖xn+1 − z‖ 6 ‖xn − z‖.

Alternatively (see [8, Section 2]), (xn)n∈N is Fejér monotone with respect to C if,
for every n ∈ N, xn+1 is a relaxed projection of xn onto a closed affine half-space
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Hn containing C, i.e.,
(2.2)
(∀n ∈ N) xn+1 = xn + λn(PHn

xn − xn), where 0 6 λn 6 2 and C ⊂ Hn.

The half-spaces (Hn)n∈N in (2.2) are called Fejér approximations to C. The Fejér
monotonicity property (2.1) makes it possible to greatly simplify the analysis of the
asymptotic behavior of a broad class of algorithms; see [7, 9, 21, 22, 30, 31] for
background, examples, and historical notes.

In the following proposition, we consider the problem of constructing a Fejér
approximation to the Kuhn–Tucker set (1.7).

Proposition 2.2. In the setting of Problem 1.1, for every a = (a, a∗) ∈ graA and

every b = (b, b∗) ∈ graB, set

(2.3)

Ha,b =
{

x ∈ K

∣

∣

∣
〈x | s∗a,b〉 6 ηa,b

}

, where

{

s∗a,b = (a∗ + L∗b∗, b− La)

ηa,b = 〈a | a∗〉+ 〈b | b∗〉.

Then the following hold:

(i) Let a ∈ graA and b ∈ graB. Then s∗a,b = 0 ⇔ Ha,b = K ⇒ (a, b∗) ∈
Z and ηa,b = 0.

(ii) Let a ∈ graA and b ∈ graB. Then Z ⊂ Ha,b .

(iii) Z =
⋂

a∈graA

⋂

b∈graB Ha,b .

(iv) Let (a, a∗) ∈ graA, (b, b∗) ∈ graB, and (x, v∗) ∈ K. Set s∗ = a∗ + L∗b∗,
t = b − La, and σ =

√

‖s∗‖2 + ‖t‖2; if σ > 0, set ∆ = (〈x | s∗〉+ 〈t | v∗〉 −
〈a | a∗〉 − 〈b | b∗〉)/σ. Then

(2.4)

PHa,b
(x, v∗) =

{

(

x− (∆/σ)s∗, v∗ − (∆/σ)t
)

, if σ > 0 and ∆ > 0;

(x, v∗), otherwise.

Proof. (i): Suppose that s∗a,b = 0. Then −L∗b∗ = a∗ ∈ Aa and La = b ∈ B−1b∗.
Hence, (1.7) implies that (a, b∗) ∈ Z. In addition,

(2.5) ηa,b = 〈a | a∗〉+ 〈b | b∗〉 = 〈a | −L∗b∗〉+ 〈La | b∗〉 = −〈La | b∗〉+ 〈La | b∗〉 = 0

and therefore Ha,b = K. Conversely, Ha,b = K ⇒ s∗a,b = 0 and ηa,b = 0.
(ii): Suppose that x = (x, v∗) ∈ Z. Then (x,−L∗v∗) ∈ graA and, by mono-

tonicity of A,

(2.6) 〈a− x | a∗ + L∗v∗〉 > 0.

Likewise, since (Lx, v∗) ∈ graB, we have

(2.7) 〈b− Lx | b∗ − v∗〉 > 0.

Using (2.6) and (2.7), we obtain
〈

x | s∗a,b
〉

= 〈x | a∗ + L∗b∗〉+ 〈b − La | v∗〉
= 〈x | a∗ + L∗v∗〉+ 〈Lx | b∗ − v∗〉+ 〈b− Lx | v∗〉+ 〈x − a | L∗v∗〉
= 〈x− a | a∗ + L∗v∗〉+ 〈a | a∗〉+ 〈La | v∗〉

+ 〈Lx− b | b∗ − v∗〉+ 〈b | b∗〉 − 〈b | v∗〉+ 〈b − Lx | v∗〉+ 〈x− a | L∗v∗〉
6 〈a | a∗〉+ 〈La− b | v∗〉+ 〈b | b∗〉+ 〈b− Lx | v∗〉+ 〈x− a | L∗v∗〉
= 〈a | a∗〉+ 〈b | b∗〉
= ηa,b.(2.8)
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Thus, x ∈ Ha,b .
(iii): By (ii), Z ⊂

⋂

a∈graA

⋂

b∈graB Ha,b. Conversely, fix a ∈ graA and b ∈
graB, and let x = (x, v∗) ∈ Ha,b. Then

〈

x | s∗a,b
〉

6 ηa,b and therefore

〈(a, b∗)− (x, v∗) | (a∗, b)− (−L∗v∗, Lx)〉 = 〈(a− x, b∗ − v∗) | (a∗ + L∗v∗, b− Lx)〉
= 〈a− x | a∗ + L∗v∗〉+ 〈b− Lx | b∗ − v∗〉
= ηa,b − 〈x | s∗a,b〉
> 0.(2.9)

Now set M : K → 2K : (z, w∗) 7→ Az × B−1w∗. Then, since ((a, b∗), (a∗, b)) is an
arbitrary point in graM and since [9, Propositions 20.22 and 20.23] imply that M
is maximally monotone, we derive from (2.9) that ((x, v∗), (−L∗v∗, Lx)) ∈ graM ,
i.e., that x ∈ Z.

(iv): Let x ∈ K. As seen in (i), if s∗a,b = 0, then ηa,b = 0 and Ha,b = K. Hence
〈

x | s∗a,b
〉

= ηa,b and PHa,b
x = x. Otherwise, it follows from [9, Example 28.16] that

(2.10) PHa,b
x =











x−
〈

x | s∗a,b
〉

− ηa,b

‖s∗a,b‖2
s
∗
a,b , if

〈

x | s∗a,b
〉

> ηa,b ;

x, otherwise.

In view of (2.3), the proof is complete.
Remark 2.3.

(i) The fact that Z is closed and convex (Proposition 2.1(i)) is also apparent
in Proposition 2.2(iii), which exhibits Z as an intersection of closed affine
half-spaces.

(ii) The inclusion Z ⊂ Ha,b (Proposition 2.2(i)) will play a key role in the paper.
This construction is inspired by that of [28, Lemma 3], where G = H and
L = Id .

Our analysis will require the following asymptotic principle, which is of interest
in its own right.

Proposition 2.4. In the setting of Problem 1.1, let (an, a
∗
n)n∈N be a sequence in

graA, let (bn, b
∗
n)n∈N be a sequence in graB, and let (x, v∗) ∈ K. Suppose that

an ⇀ x, b∗n ⇀ v∗, a∗n+L∗b∗n → 0, and Lan−bn → 0. Then 〈an | a∗n〉+〈bn | b∗n〉 → 0
and (x, v∗) ∈ Z.

Proof. Define

(2.11) V =
{

(x, y) ∈ K
∣

∣ Lx = y
}

.

Then

(2.12) V
⊥ =

{

(u∗, v∗) ∈ K
∣

∣ u∗ = −L∗v∗
}

.

Now set

(2.13) A : K → 2K : (x, y) 7→ Ax ×By.

We deduce from (1.7) that, for every (x, v∗) ∈ K,

(x, v∗) ∈ Z ⇔
{

(x,−L∗v∗) ∈ graA

(Lx, v∗) ∈ graB

⇔ (x,u) =
(

(x, Lx), (−L∗v∗, v∗)
)

∈ (V × V
⊥) ∩ graA.(2.14)
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On the other hand, [1, Lemma 3.1] asserts that

(∀(x, y) ∈ K)

{

PV (x, y) =
(

(Id +L∗L)−1(x+ L∗y), L(Id +L∗L)−1(x+ L∗y)
)

PV ⊥(x, y) =
(

L∗(Id +LL∗)−1(Lx− y),−(Id +LL∗)−1(Lx− y)
)

.

(2.15)

Now set

(2.16) x = (x, Lx), u = (−L∗v∗, v∗), and (∀n ∈ N)

{

xn = (an, bn)

un = (a∗n, b
∗
n).

Since a∗n + L∗b∗n → 0 and Lan − bn → 0, we derive from (2.15) that PV un → 0 and
PV ⊥xn → 0. Altogether, since L and L∗ are weakly continuous, the assumptions
yield

(2.17)































(∀n ∈ N) (xn,un) ∈ graA

xn ⇀ x

un ⇀ u

PV ⊥xn → 0

PV un → 0.

However, (2.17) and [9, Proposition 25.3] imply that

(2.18) 〈xn | un〉 → 0 and (x,u) ∈ (V × V
⊥) ∩ graA.

In view of (2.14), the proof is complete.

Remark 2.5. In the special case when G = H and L = Id , Proposition 2.4 reduces
to [6, Corollary 3] (see also [9, Corollary 25.5] for an alternate proof), where m = 2.
The decomposition K = V ⊕V

⊥, where V is as in (2.11), is used in [1] in a different
context.

3. Finding Kuhn–Tucker points by Fejér approximations. In view of Proposi-
tion 2.1(i), Problem 1.1 reduces to finding a point in a nonempty closed convex subset
of a Hilbert space. This can be achieved via the following generic Fejér-monotone
algorithm.

Proposition 3.1.[22] Let H be a real Hilbert space, let C be a nonempty closed

convex subset of H, and let x0 ∈ H. Iterate

(3.1)

for n = 0, 1, . . .








Hn is a closed affine half-space such that C ⊂ Hn

λn ∈ ]0, 2[
xn+1 = xn + λn(PHn

xn − xn).

Then the following hold:

(i) (xn)n∈N is Fejér monotone with respect to C: (∀z ∈ C)(∀n ∈ N) ‖xn+1 −
z‖ 6 ‖xn − z‖.

(ii)
∑

n∈N
λn(2− λn)‖PHn

xn − xn‖2 < +∞.

(iii) Suppose that, for every x ∈ H and every strictly increasing sequence (kn)n∈N

in N, xkn
⇀ x ⇒ x ∈ C. Then (xn)n∈N converges weakly to a point in C.
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We now derive from the above convergence principle a conceptual primal-dual
splitting framework.

Proposition 3.2. Consider the setting of Problem 1.1. Suppose that P 6= ∅, let

x0 ∈ H, let v∗0 ∈ G, and iterate

(3.2)

for n = 0, 1, . . .


























































(an, a
∗
n) ∈ graA

(bn, b
∗
n) ∈ graB

s∗n = a∗n + L∗b∗n
tn = bn − Lan
σn =

√

‖s∗n‖2 + ‖tn‖2
if σn = 0








x = an
v∗ = b∗n
terminate.

if σn > 0


















λn ∈ ]0, 2[
∆n = max

{

0, (〈xn | s∗n〉+ 〈tn | v∗n〉 − 〈an | a∗n〉 − 〈bn | b∗n〉)/σn

}

θn = λn∆n/σn

xn+1 = xn − θns
∗
n

v∗n+1 = v∗n − θntn.

Then either (3.2) terminates at a solution (x, v∗) ∈ Z in a finite number of iterations

or it generates infinite sequences (xn)n∈N and (v∗n)n∈N such that the following hold:

(i) (xn, v
∗
n)n∈N is Fejér monotone with respect to Z.

(ii)
∑

n∈N
λn(2− λn)∆

2
n < +∞.

(iii) Suppose that for every x ∈ H, every v∗ ∈ G, and every strictly increasing

sequence (kn)n∈N in N,

(3.3)
[

xkn
⇀ x and v∗kn

⇀ v∗
]

⇒ (x, v∗) ∈ Z.

Then (xn)n∈N converges weakly to a point x ∈ P, (v∗n)n∈N converges weakly

to a point v∗ ∈ D , and (x, v∗) ∈ Z.

Proof. We first observe that, by Proposition 2.1, Z is nonempty, closed, and
convex. Two alternatives are possible. First, suppose that, for some n ∈ N, σn = 0.
Then Proposition 2.2(i) asserts that the algorithm terminates at (x, v∗) = (an, b

∗
n) ∈

Z. Now suppose that (∀n ∈ N) σn > 0. For every n ∈ N, set

(3.4) xn = (xn, v
∗
n), s

∗
n = (s∗n, tn), and ηn = 〈an | a∗n〉+ 〈bn | b∗n〉,

and define

(3.5) Hn =
{

x ∈ K
∣

∣ 〈x | s∗n〉 6 ηn
}

.

Then we derive from (3.2) and Proposition 2.2(ii) that (∀n ∈ N) Z ⊂ Hn. On the
other hand, Proposition 2.2(iv) implies that

(3.6) (∀n ∈ N) ∆n = ‖PHn
xn − xn‖ and xn+1 = xn + λn(PHn

xn − xn).

Thus, the conclusions follow from Proposition 2.1(i) and Proposition 3.1.
At the nth iteration of algorithm (3.2), one picks the quadruple (an, a

∗
n, bn, b

∗
n) in

graA×graB. In the following corollary, this quadruple is taken in a more restricted
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set adapted to the current primal-dual iterate (xn, v
∗
n), which leads to more explicit

convergence conditions.
Corollary 3.3. Consider the setting of Problem 1.1. Suppose that P 6= ∅, let

ε ∈ ]0, 1[, let α ∈ ]0,+∞[, let x0 ∈ H, and let v∗0 ∈ G. For every (x, v∗) ∈ K, set

(3.7) Gα(x, v
∗) =

{

(a, b, a∗, b∗) ∈ K×K
∣

∣ (a, a∗) ∈ graA, (b, b∗) ∈ graB, and

〈x− a | a∗ + L∗v∗〉+ 〈Lx− b | b∗ − v∗〉 > α
(

‖a∗ + L∗b∗‖2 + ‖La− b‖2
)

}

.

Iterate

(3.8)

for n = 0, 1, . . .
















































(an, bn, a
∗
n, b

∗
n) ∈ Gα(xn, v

∗
n)

s∗n = a∗n + L∗b∗n
tn = bn − Lan
τn = ‖s∗n‖2 + ‖tn‖2
if τn = 0








x = an
v∗ = b∗n
terminate.

if τn > 0












λn ∈ [ε, 2− ε]
θn = λn

(

〈xn | s∗n〉+ 〈tn | v∗n〉 − 〈an | a∗n〉 − 〈bn | b∗n〉
)

/τn
xn+1 = xn − θns

∗
n

v∗n+1 = v∗n − θntn.

Then either (3.8) terminates at a solution (x, v∗) ∈ Z in a finite number of iterations

or it generates infinite sequences (xn)n∈N and (v∗n)n∈N such that the following hold:

(i)
∑

n∈N
‖s∗n‖2 < +∞ and

∑

n∈N
‖tn‖2 < +∞.

(ii)
∑

n∈N
‖xn+1 − xn‖2 < +∞ and

∑

n∈N
‖v∗n+1 − v∗n‖2 < +∞.

(iii) Suppose that

(3.9) xn − an ⇀ 0 and v∗n − b∗n ⇀ 0.

Then (xn)n∈N converges weakly to a point x ∈ P, (v∗n)n∈N converges weakly

to a point v∗ ∈ D , and (x, v∗) ∈ Z.

Proof. This corollary is an application of Proposition 3.2. To see this, let
(x, v∗) ∈ K. First, to show that the algorithm is well defined, we must prove that
Gα(x, v

∗) 6= ∅. Since P 6= ∅, it follows from Proposition 2.1(ii) that Z 6= ∅. Now
let (a, b∗) ∈ Z, and set a∗ = −L∗b∗ and b = La. Then (1.7) yields (a, a∗) ∈ graA
and (b, b∗) ∈ graB. Moreover,

〈x− a | a∗ + L∗v∗〉+ 〈Lx− b | b∗ − v∗〉
= −〈x− a | L∗(b∗ − v∗)〉+ 〈L(x− a) | b∗ − v∗〉
= 0

= α
(

‖a∗ + L∗b∗‖2 + ‖La− b‖2
)

.(3.10)

Hence (a, b, a∗, b∗) ∈ Gα(x, v
∗) and (3.8) is well defined. Next, to show that (3.8) is

a special case of (3.2) it is enough to consider the case when (∀n ∈ N) τn > 0. Note

8
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that (3.8) yields

(∀n ∈ N) 〈xn | s∗n〉+ 〈tn | v∗n〉 − 〈an | a∗n〉 − 〈bn | b∗n〉
= 〈xn − an | a∗n + L∗v∗n〉+ 〈Lxn − bn | b∗n − v∗n〉
> α

(

‖a∗n + L∗b∗n‖2 + ‖Lan − bn‖2
)

= ατn

> 0.(3.11)

In turn, if we define (∆n)n∈N as in (3.2), we obtain

(3.12) (∀n ∈ N) ∆n =
〈xn | s∗n〉+ 〈tn | v∗n〉 − 〈an | a∗n〉 − 〈bn | b∗n〉√

τn
> α

√
τn > 0.

Hence (3.8) is a special case of (3.2). Moreover, it follows from (3.12) and Proposi-
tion 3.2(ii) that
(3.13)
∑

n∈N

(

‖s∗n‖2 + ‖tn‖2
)

=
∑

n∈N

τn 6
1

α2

∑

n∈N

∆2
n 6

1

(αε)2

∑

n∈N

λn(2− λn)∆
2
n < +∞,

which establishes (i). On the other hand, (ii) results from (3.8) and (3.13) since

∑

n∈N

(

‖xn+1 − xn‖2 + ‖v∗n+1 − v∗n‖2
)

=
∑

n∈N

θ2nτn

=
∑

n∈N

λ2
n∆

2
n

6 (2− ε)2
∑

n∈N

∆2
n

< +∞.(3.14)

Finally, to prove (iii), it remains to check (3.3). Take x ∈ H, v∗ ∈ G, and a strictly
increasing sequence (kn)n∈N in N such that xkn

⇀ x and v∗kn
⇀ v∗. Then it follows

from (3.9) and (i) that

(3.15) akn
⇀ x, b∗kn

⇀ v∗, a∗kn
+ L∗b∗kn

→ 0, and Lakn
− bkn

→ 0,

and from (3.8) that (∀n ∈ N) (an, a
∗
n) ∈ graA and (bn, b

∗
n) ∈ graB. We therefore

appeal to Proposition 2.4 to conclude that (x, v∗) ∈ Z.

Remark 3.4. In the special case when G = H and L = Id , Corollary 3.3(iii) was
established in [28, Proposition 2] under the following additional assumptions: A+B
is maximally monotone or H is finite-dimensional, xn − an → 0, and v∗n − b∗n → 0.

Corollary 3.3 is conceptual in that it does not specify a rule for selecting the
quadruple (an, bn, a

∗
n, b

∗
n) in Gα(xn, v

∗
n) at iteration n. We now provide an example

of a concrete selection rule.

Proposition 3.5. Consider the setting of Problem 1.1. Suppose that P 6= ∅, let

9
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ε ∈ ]0, 1[, let x0 ∈ H, let v∗0 ∈ G, and iterate

(3.16)

for n = 0, 1, . . .




























































(γn, µn) ∈ [ε, 1/ε]2

an = JγnA(xn − γnL
∗v∗n)

ln = Lxn

bn = JµnB(ln + µnv
∗
n)

s∗n = γ−1
n (xn − an) + µ−1

n L∗(ln − bn)
tn = bn − Lan
τn = ‖s∗n‖2 + ‖tn‖2
if τn = 0








x = an
v∗ = v∗n + µ−1

n (ln − bn)
terminate.

if τn > 0












λn ∈ [ε, 2− ε]
θn = λn

(

γ−1
n ‖xn − an‖2 + µ−1

n ‖ln − bn‖2
)

/τn
xn+1 = xn − θns

∗
n

v∗n+1 = v∗n − θntn.

Then either (3.16) terminates at a solution (x, v∗) ∈ Z in a finite number of itera-

tions or it generates infinite sequences (xn)n∈N and (v∗n)n∈N such that the following

hold:

(i)
∑

n∈N
‖s∗n‖2 < +∞ and

∑

n∈N
‖tn‖2 < +∞.

(ii)
∑

n∈N
‖xn+1 − xn‖2 < +∞ and

∑

n∈N
‖v∗n+1 − v∗n‖2 < +∞.

(iii)
∑

n∈N
‖xn − an‖2 < +∞ and

∑

n∈N
‖Lxn − bn‖2 < +∞.

(iv) (xn)n∈N converges weakly to a point x ∈ P, (v∗n)n∈N converges weakly to a

point v∗ ∈ D , and (x, v∗) ∈ Z.

Proof. We are going to derive the results from Corollary 3.3. To this end, let us
set

(3.17) (∀n ∈ N) a∗n = γ−1
n (xn − an)− L∗v∗n and b∗n = µ−1

n (Lxn − bn) + v∗n.

Now let n ∈ N. To show that (3.16) is an instantiation of (3.8), let us check that
there exists α ∈ ]0,+∞[ such that (an, bn, a

∗
n, b

∗
n) ∈ Gα(xn, v

∗
n). By construction,

we have

(3.18) (an, a
∗
n) ∈ graA and (bn, b

∗
n) ∈ graB.

In view of (3.7), we must find α ∈ ]0,+∞[ such that
(3.19)
〈xn − an | a∗n + L∗v∗n〉+ 〈Lxn − bn | b∗n − v∗n〉 > α

(

‖a∗n + L∗b∗n‖2 + ‖Lan − bn‖2
)

.

By (3.17),
(3.20)
〈xn − an | a∗n + L∗v∗n〉+ 〈Lxn − bn | b∗n − v∗n〉 = γ−1

n ‖xn − an‖2 + µ−1
n ‖Lxn − bn‖2

and

(3.21) ‖a∗n + L∗b∗n‖2 + ‖Lan − bn‖2

= ‖(γ−1
n Id +µ−1

n L∗L)xn − (γ−1
n an + µ−1

n L∗bn)‖2 + ‖Lan − bn‖2.
10
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On the other hand,

(3.22) ‖Lan − bn‖2 = ‖Lan‖2 − 2〈Lan | bn〉+ ‖bn‖2

and

‖(γ−1
n Id +µ−1

n L∗L)xn − (γ−1
n an + µ−1

n L∗bn)‖2

= ‖γ−1
n xn + µ−1

n L∗Lxn‖2 − 2〈γ−1
n xn + µ−1

n L∗Lxn | γ−1
n an + µ−1

n L∗bn〉
+ ‖γ−1

n an + µ−1
n L∗bn‖2

= γ−2
n ‖xn‖2 + 2γ−1

n µ−1
n ‖Lxn‖2 + µ−2

n ‖L∗Lxn‖2 − 2γ−2
n 〈xn | an〉

− 2γ−1
n µ−1

n 〈Lxn | bn〉 − 2γ−1
n µ−1

n 〈Lxn | Lan〉 − 2µ−2
n 〈L∗Lxn | L∗bn〉

+ γ−2
n ‖an‖2 + 2γ−1

n µ−1
n 〈Lan | bn〉+ µ−2

n ‖L∗bn‖2

= γ−2
n ‖xn − an‖2 + µ−2

n ‖L∗(Lxn − bn)‖2 + 2γ−1
n µ−1

n ‖Lxn‖2

− 2γ−1
n µ−1

n 〈Lxn | bn〉 − 2γ−1
n µ−1

n 〈Lxn | Lan〉+ 2γ−1
n µ−1

n 〈Lan | bn〉
= γ−2

n ‖xn − an‖2 + µ−2
n ‖L∗(Lxn − bn)‖2 + γ−1

n µ−1
n ‖L(xn − an)‖2

− γ−1
n µ−1

n ‖Lan‖2 + γ−1
n µ−1

n ‖Lxn − bn‖2 − γ−1
n µ−1

n ‖bn‖2

+ 2γ−1
n µ−1

n 〈Lan | bn〉.(3.23)

Combining (3.21), (3.22), and (3.23), and recalling that {γn, µn} ⊂ [ε, ε−1], we
obtain

‖a∗n + L∗b∗n‖2 + ‖Lan − bn‖2

= γ−2
n ‖xn − an‖2 + µ−2

n ‖L∗(Lxn − bn)‖2

+ γ−1
n µ−1

n ‖L(xn − an)‖2 + γ−1
n µ−1

n ‖Lxn − bn‖2

+
(

1− γ−1
n µ−1

n

)(

‖Lan‖2 − 2〈Lan | bn〉+ ‖bn‖2
)

= γ−2
n ‖xn − an‖2 + µ−2

n ‖L∗(Lxn − bn)‖2 + γ−1
n µ−1

n ‖L(xn − an)‖2

+ γ−1
n µ−1

n ‖Lxn − bn‖2 +
(

1− γ−1
n µ−1

n

)

‖Lan − bn‖2

6 ε−1
(

γ−1
n ‖xn − an‖2 + µ−1

n ‖L∗(Lxn − bn)‖2 + γ−1
n ‖L(xn − an)‖2

+ µ−1
n ‖Lxn − bn‖2

)

+ 2
(

1− γ−1
n µ−1

n

)(

‖L(an − xn)‖2 + ‖Lxn − bn‖2
)

6 ε−1
(

1 + ‖L‖2
)

(

γ−1
n ‖xn − an‖2 + µ−1

n ‖Lxn − bn‖2
)

+ 2
(

γn − µ−1
n

)

γ−1
n ‖L‖2 ‖xn − an‖2 + 2

(

µn − γ−1
n

)

µ−1
n ‖Lxn − bn‖2

6 ε−1
(

1 + ‖L‖2 + 2(1− ε2)max
{

1, ‖L‖2
})

×
(

γ−1
n ‖xn − an‖2 + µ−1

n ‖Lxn − bn‖2
)

.(3.24)

Therefore, (3.20) implies that (3.19) is satisfied with

(3.25) α =
ε

1 + ‖L‖2 + 2(1− ε2)max
{

1, ‖L‖2
} .

We thus obtain (i) and (ii). To prove (iii), note that it follows from (3.17) that

xn − an = (γ−1
n Id +µ−1

n L∗L)−1
(

γ−1
n (xn − an) + µ−1

n L∗L(xn − an)
)

= (γ−1
n Id +µ−1

n L∗L)−1
(

γ−1
n (xn − an) + µ−1

n L∗(Lxn − bn)

+ µ−1
n L∗(bn − Lan)

)

= γn(Id +(γn/µn)L
∗L)−1

(

(a∗n + L∗b∗n) + µ−1
n L∗(bn − Lan)

)

.(3.26)

11
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Thus, since ‖(Id +(γn/µn)L
∗L)−1‖ 6 1 and since max{γn, µ−1

n } 6 ε−1, we have

‖xn − an‖2 6 γ2
n

∥

∥(Id +(γn/µn)L
∗L)−1

∥

∥

2 (‖a∗n + L∗b∗n‖+ µ−1
n ‖L∗(Lan − bn)‖

)2

6 2γ2
n

(

‖a∗n + L∗b∗n‖2 + µ−2
n ‖L∗(Lan − bn)‖2

)

6 2ε−2
(

‖s∗n‖2 + ε−2‖L‖2 ‖tn‖2
)

.(3.27)

Hence, (i) yields
∑

n∈N
‖xn − an‖2 < +∞. In turn, since

(3.28) ‖Lxn − bn‖2 = ‖L(xn − an) + Lan − bn‖2 6 2
(

‖L‖2 ‖xn − an‖2 + ‖tn‖2
)

,

we obtain
∑

n∈N
‖Lxn − bn‖2 < +∞. Therefore

(3.29)
∑

n∈N

‖v∗n − b∗n‖2 =
∑

n∈N

µ−2
n ‖Lxn − bn‖2 6 ε−2

∑

n∈N

‖Lxn − bn‖2 < +∞.

Thus, (3.9) is satisfied and (iv) follows.
Remark 3.6. As mentioned in the Introduction, existing methods for solving

Problem 1.1 either require knowledge of ‖L‖ or necessitate potentially hard to imple-
ment inversions of linear operators. For instance, the method of [16], which hinges
on a reformulation that employs Tseng’s forward-backward-forward algorithm [47],
imposes the same scaling coefficients on A and B at each iteration and they must
be bounded by a specific constant which depends on ‖L‖; more precisely, (∀n ∈ N)
γn = µn ∈ ]0, 1/‖L‖[. These restrictions are lifted in (3.16), where the parameters
(γn)n∈N and (µn)n∈N can evolve freely in an arbitrarily large interval of ]0,+∞[
independent from L.

We now highlight two particular instances of interest.
Example 3.7. Consider the setting of Problem 1.1 with A = 0. Then the primal

problem (1.5) reduces to

(3.30) find x ∈ H such that 0 ∈ L∗BLx.

Assume that it has at least one solution, let λ ∈ ]0, 2[, let x0 ∈ H, let v∗0 ∈ G, and
iterate

(3.31)

for n = 0, 1, . . .






















































an = xn − L∗v∗n
ln = Lxn

bn = JB(ln + v∗n)
s∗n = xn − an + L∗(ln − bn)
tn = bn − Lan
τn = ‖s∗n‖2 + ‖tn‖2
if τn = 0








x = an
v∗ = v∗n + ln − bn
terminate.

if τn > 0








θn = λ
(

‖xn − an‖2 + ‖ln − bn‖2
)

/τn
xn+1 = xn − θns

∗
n

v∗n+1 = v∗n − θntn.

12
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This algorithm is the instance of (3.16) in which A = 0 and (∀n ∈ N) γn = µn = 1
and λn = λ. It follows from Proposition 3.5 that, if it does not terminate, it produces
a sequence (xn)n∈N that converges weakly to a solution to (3.30). In the special
case when H = R

N and G = R
M this result was established in [27] (the fact that

[27, Algorithm 3.1] is equivalent to (3.31) follows from elementary manipulations).
Interestingly, the analysis of [27] is quite different from ours and it does not employ
a geometric construction.

Example 3.8. Consider the setting of Problem 1.1 with G = H and L = Id . Then
the primal problem (1.5) reduces to

(3.32) find x ∈ H such that 0 ∈ Ax+Bx.

Assume that it has at least one solution, let ε ∈ ]0, 1[, let x0 ∈ H, let v∗0 ∈ H, and
iterate

(3.33)

for n = 0, 1, . . .
























































(γn, µn) ∈ [ε, 1/ε]2

an = JγnA(xn − γnv
∗
n)

bn = JµnB(xn + µnv
∗
n)

s∗n = γ−1
n (xn − an) + µ−1

n (xn − bn)
tn = bn − an
τn = ‖s∗n‖2 + ‖tn‖2
if τn = 0








x = an
v∗ = v∗n + µ−1

n (xn − bn)
terminate.

if τn > 0












λn ∈ [ε, 2− ε]
θn = λn

(

γ−1
n ‖xn − an‖2 + µ−1

n ‖xn − bn‖2
)

/τn
xn+1 = xn − θns

∗
n

v∗n+1 = v∗n − θntn.

Then Proposition 3.5 asserts that, if the algorithm does not terminate, it produces
a sequence (xn, v

∗
n)n∈N that converges weakly to a point (x, v∗) such that −v∗ ∈ Ax

and v∗ ∈ Bx, so that x solves (3.32). Under the additional assumptions that A+B
is maximally monotone or that H is finite-dimensional, this result was established in
[28, Proposition 3] for a version of (3.33) in which an additional relaxation parameter
is allowed in the definition of an.

4. A Fejér monotone algorithm for coupled monotone inclusions. Many com-
plex systems feature interactions between several variables can be modeled in terms
of equilibria involving composite monotone operators. A mathematical formulation
of such problems in duality is the following.

Problem 4.1. Let m and K be strictly positive integers, let (Hi)16i6m and
(Gk)16k6K be real Hilbert spaces, and set K = H1 ⊕ · · ·Hm ⊕ G1 ⊕ · · · ⊕ GK . For
every i ∈ {1, . . . ,m} and every k ∈ {1, . . . ,K}, let Ai : Hi → 2Hi and Bk : Gk → 2Gk

be maximally monotone, let zi ∈ Hi, let rk ∈ Gk, and let Lki : Hi → Gk be linear

13
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and bounded. Consider the coupled inclusions problem

(4.1) find x1 ∈ H1, . . . , xm ∈ Hm such that

(∀i ∈ {1, . . . ,m}) zi ∈ Aixi +
K
∑

k=1

L∗
ki

(

Bk

( m
∑

j=1

Lkjxj − rk

))

,

the dual problem

(4.2) find v∗1 ∈ G1, . . . , v
∗
K ∈ GK such that

(∀k ∈ {1, . . . ,K}) − rk ∈ −
m
∑

i=1

Lki

(

A−1
i

(

zi −
K
∑

l=1

L∗
liv

∗
l

))

+B−1
k v∗k,

and the associated Kuhn–Tucker set

(4.3)

Z =

{

(x1, . . . , xm, v∗1 , . . . , v
∗
K) ∈ K

∣

∣

∣

∣

(∀i ∈ {1, . . . ,m}) zi −
K
∑

k=1

L∗
kiv

∗
k ∈ Aixi

and (∀k ∈ {1, . . . ,K})
m
∑

i=1

Lkixi − rk ∈ B−1
k v∗k

}

.

The problem is to find a point in Z. The sets of solutions to (4.1) and (4.2) are
denoted by P and D , respectively.

Such formulations, at least in their primal form (4.2), have been investigated at
various levels of generality in [2, 3, 5, 10, 13, 15, 17, 20, 18, 23, 33, 34] to model
problems arising in areas such as game theory, evolution equations, machine learn-
ing, signal and image processing, mechanics, the cognitive sciences, and domain
decomposition methods in partial differential equations. As shown in [11] and [23,
Section 3], another important motivation for studying such systems is the fact that
single-variable inclusion problems involving various types of parallel sums of mono-
tone operators, can be recast in the multivariate format (4.1) via the introduction
of auxiliary variables.

In this section, we shall use the following result, which establishes a bridge
between Problem 1.1 and Problem 4.1, to devise a splitting method for the latter
based on Proposition 3.5.

Proposition 4.2. Consider the setting of Problem 4.1 and set

(4.4)































H =
⊕m

i=1 Hi

G =
⊕K

k=1 Gk

A : H → 2H : (xi)16i6m 7→×m

i=1
(−zi +Aixi)

B : G → 2G : (yk)16k6K 7→×K

k=1
Bk(yk − rk)

L : H → G : (xi)16i6m 7→
(
∑m

i=1 Lkixi

)

16k6K

in Problem 1.1. Then the following hold:

(i) Problem 1.1 coincides with Problem 4.1.

(ii) Let γ ∈ ]0,+∞[, let (xi)16i6m ∈ H, and let (yk)16k6K ∈ G. Then

(4.5) JγA(xi)16i6m =
(

JγAi
(xi + γzi)

)

16i6m

and JγB(yk)16k6K =
(

rk + JγBk
(yk − rk)

)

16k6K
.

14



SIAM J. OPTIM. c© xxxx Society for Industrial and Applied Mathematics
Vol. xx, pp. x x–x

Proof. (i): This follows from (4.4) and the fact that L∗ : G → H : (yk)16k6K 7→
(
∑K

k=1 L
∗
kiyk)16i6m.

(ii): [9, Propositions 23.15 and 23.16].

To find a Kuhn–Tucker point in Problem 4.1 we can invoke Proposition 4.2 and
apply the algorithms devised in Section 3 in the setting of (4.4). Thus, Proposi-
tion 3.5 leads to the following result.

Theorem 4.3. Consider the setting of Problem 4.1. Suppose that P 6= ∅, let

ε ∈ ]0, 1[, let x1,0 ∈ H1, . . . , xm,0 ∈ Hm, v∗1,0 ∈ G1, . . . , v
∗
K,0 ∈ GK , and iterate

(4.6)

for n = 0, 1, . . .






























































































(γn, µn) ∈ [ε, 1/ε]2

for i = 1, . . . ,m
⌊

ai,n = JγnAi

(

xi,n + γn
(

zi −
∑K

k=1 L
∗
kiv

∗
k,n

)

)

for k = 1, . . . ,K








lk,n =
∑m

i=1 Lkixi,n

bk,n = rk + JµnBk

(

lk,n + µnv
∗
k,n − rk

)

tk,n = bk,n −∑m
i=1 Lkiai,n

for i = 1, . . . ,m
⌊

s∗i,n = γ−1
n (xi,n − ai,n) + µ−1

n

∑K
k=1 L

∗
ki(lk,n − bk,n)

τn =
∑m

i=1 ‖s∗i,n‖2 +
∑K

k=1 ‖tk,n‖2
if τn = 0
















for i = 1, . . . ,m
⌊

xi = ai,n
for k = 1, . . . ,K
⌊

v∗k = v∗k,n + µ−1
n (lk,n − bk,n)

terminate.
if τn > 0




















λn ∈ [ε, 2− ε]

θn = λn

(

γ−1
n

∑m
i=1 ‖xi,n − ai,n‖2 + µ−1

n

∑K
k=1 ‖lk,n − bk,n‖2

)

/τn
for i = 1, . . . ,m
⌊

xi,n+1 = xi,n − θns
∗
i,n

for k = 1, . . . ,K
⌊

v∗k,n+1 = v∗k,n − θntk,n.

Then either (4.6) terminates at a solution (x1, . . . , xm, v∗1, . . . , v
∗
K) ∈ Z in a finite

number of iterations or it generates infinite sequences (x1,n)n∈N, . . . , (xm,n)n∈N,

(v∗1,n)n∈N, . . . , (v
∗
K,n)n∈N such that the following hold:

(i) (∀i ∈ {1, . . . ,m}) ∑n∈N
‖s∗i,n‖2 < +∞,

∑

n∈N
‖xi,n+1 − xi,n‖2 < +∞, and

∑

n∈N
‖xi,n − ai,n‖2<+∞.

(ii) (∀k ∈ {1, . . . ,K}) ∑n∈N
‖tk,n‖2 <+∞,

∑

n∈N
‖v∗k,n+1 − v∗k,n‖2 <+∞, and

∑

n∈N
‖∑m

i=1 Lkixi,n − bk,n‖2<+∞.

(iii) For every i ∈ {1, . . . ,m} (xi,n)n∈N converges weakly to a point xi, for every

k ∈ {1, . . . ,K} (v∗k,n)n∈N converges weakly to a point v∗k, (x1, . . . , xm) ∈ P,

(v∗1, . . . , v
∗
K) ∈ D , and (x1, . . . , xm, v∗1, . . . , v

∗
K) ∈ Z.

Proof. Define H, G, A, B, and L as in (4.4). Then, as seen in Proposition 4.2(i),
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Problem 1.1 coincides with Problem 4.1. Now set

(4.7) (∀n ∈ N)















































an = (ai,n)16i6m

s∗n = (s∗i,n)16i6m

xn = (xi,n)16i6m

bn = (bk,n)16k6K

ln = (lk,n)16k6K

tn = (tk,n)16k6K

v∗n = (v∗k,n)16k6K .

Then we derive from Proposition 4.2(ii) that (4.6) coincides with (3.16). The asser-
tions therefore follow from Proposition 3.5.

Remark 4.4. In the special case when m = 1, A1 = 0, z1 = 0, and, for every
k ∈ {1, . . . ,K}, Gk = H, Lk1 = Id , and rk = 0, the primal problem (4.1) becomes

(4.8) find x ∈ H such that 0 ∈
K
∑

k=1

Bkx,

and the associated Kuhn–Tucker set of (4.3) becomes
(4.9)

Z =

{

(x, v∗1 , . . . , v
∗
K) ∈ HK+1

∣

∣

∣

∣

K
∑

k=1

v∗k = 0 and (∀k ∈ {1, . . . ,K}) v∗k ∈ Bkx

}

.

In this setting, (4.6) reduces to an algorithm which is similar to that of [29, Section 4].
The convergence of the latter was established under the additional assumption that
∑K

k=1 Bk is maximally monotone or thatH is finite-dimensional [29, Proposition 4.2],
but these assumptions were subsequently shown not to be necessary [6]. Let us note
that in this special case, (4.6) is different from the algorithm of [29] as it has a
parallel structure (all the operators (Bk)16k6K are used simultaneously), whereas
that of [29] allows for more flexibility (e.g., sequential activation) and it assigns to
each monotone operator its own scaling parameter. It is natural to ask whether,
in our general setting, (4.6) could be extended to include such features by using
Corollary 3.3 directly instead of Proposition 3.5. We have not been successful in
bringing an affirmative answer to this question.

Remark 4.5. Using Proposition 4.2, any algorithm for solving Problem 1.1 can in
principle be used to solve Problem 4.1. However, methods which require the compu-
tation of the norm of the operator L of (4.4) face the difficulty of expressing it tightly
in terms of those of the individual coupling operators (Lki)16k6K

16i6m

; see, for instance,

[11, 23] for examples of such approximations. This task is further complicated by
the fact that in some situations the norms of the individual coupling operators may
not even be computable precisely. For instance, in domain decomposition meth-
ods, Lki is the trace operator relative to the interface between two subdomains and,
depending on the underlying assumptions, its norm may not be easy to estimate.
Likewise, inverting linear operators based on various combinations of the individual
coupling operators is typically unfeasible in such applications, which renders inoper-
ative those methods of [1, 14, 16] using such computations. These shortcomings of
existing methods are circumvented by (4.6), which makes it particularly attractive
for solving Problem 4.1.
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Remark 4.6. An alternative method to solve Problem 4.1 is that proposed in
[23]. In terms of complexity per iteration and parallelizability, both algorithms are
quite comparable. However, as noted in Remark 4.5, the method of [23] implicitly
requires a tight bound on the norm of the global operator L of (4.4), which can be a
serious drawback. Another difference between the method of [23] and (4.6), is that
the latter features two sequences of scaling parameters (γn)n∈N and (µn)n∈N which,
furthermore, can be arbitrarily large or small. The proposed algorithm (4.6) also
incorporates relaxation parameters (λn)n∈N that can induce large step sizes through
overrelaxations up to almost 2, whereas the method of [23] is unrelaxed.

An important area of application of Problem 4.1 is multivariate convex mini-
mization problems. We denote by Γ0(H) the class of lower semicontinuous convex
proper functions from H to ]−∞,+∞]. Let f ∈ Γ0(H). The conjugate of f is
Γ0(H) ∋ f∗ : u 7→ supx∈H(〈x | u〉 − f(x)). For every x ∈ H, f + ‖x − ·‖2/2 has a
unique minimizer, which is denoted by proxfx [40]. We have

(4.10) proxf = J∂f ,

where

(4.11) ∂f : H → 2H : x 7→
{

u∗ ∈ H
∣

∣ (∀y ∈ H) 〈y − x | u∗〉+ f(x) 6 f(y)
}

is the Moreau subdifferential of f . The following formulation captures a variety of
multivariate minimization problems, e.g., [3, 4, 5, 15, 18, 19, 20, 33, 34].

Problem 4.7. Let m and K be strictly positive integers, let (Hi)16i6m and
(Gk)16k6K be real Hilbert spaces, and set K = H1 ⊕ · · ·Hm ⊕ G1 ⊕ · · · ⊕ GK . For
every i ∈ {1, . . . ,m} and every k ∈ {1, . . . ,K}, let fi ∈ Γ0(Hi), let gk ∈ Γ0(Gk), let
zi ∈ Hi, let rk ∈ Gk, and let Lki : Hi → Gk be linear and bounded. Let P be the set
of solutions to the primal problem

(4.12) minimize
x1∈H1,..., xm∈Hm

m
∑

i=1

(

fi(xi)− 〈xi | zi〉
)

+

K
∑

k=1

gk

( m
∑

i=1

Lkixi − rk

)

,

and let D be the set of solutions to the dual problem

(4.13) minimize
v∗

1
∈G1,..., v

∗

K∈GK

m
∑

i=1

f∗
i

(

zi −
K
∑

k=1

L∗
kiv

∗
k

)

+

K
∑

k=1

(

g∗k(v
∗
k) + 〈v∗k | rk〉

)

.

The problem is to find a point in the associated Kuhn–Tucker set

(4.14)

Z =

{

(x1, . . . , xm, v∗1 , . . . , v
∗
K) ∈ K

∣

∣

∣

∣

(∀i ∈ {1, . . . ,m}) zi −
K
∑

k=1

L∗
kiv

∗
k ∈ ∂fixi

and (∀k ∈ {1, . . . ,K})
m
∑

i=1

Lkixi − rk ∈ ∂g∗kv
∗
k

}

.

Corollary 4.8. Consider the setting of Problem 4.7. Suppose that

(4.15) (∀i ∈ {1, . . . ,m}) zi ∈ ran

(

∂fi +

K
∑

k=1

L∗
ki ◦ ∂gk ◦

( m
∑

j=1

Lkj · −rk

))

,
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let ε ∈ ]0, 1[, let x1,0 ∈ H1, . . . , xm,0 ∈ Hm, let v∗1,0 ∈ G1, . . . , v∗K,0 ∈ GK , and

iterate (4.6), where the only modification is that we now set

(4.16) ai,n = proxγnfi

(

xi,n + γn

(

zi −
K
∑

k=1

L∗
kiv

∗
k,n

))

and

(4.17) bk,n = rk + proxµngk

(

lk,n + µnv
∗
k,n − rk

)

.

Then the conclusions of Theorem 4.3 hold true.

Proof. Set (∀i ∈ {1, . . . ,m}) Ai = ∂fi and (∀k ∈ {1, . . . ,K}) Bk = ∂gk. Then,
using the same arguments as in [23, Proposition 5.4], we obtain that (4.12) and
(4.13) are instances of (4.1) and (4.2), respectively.

Sufficient conditions for this constraint qualification (4.15) to hold can be found
in [23, Proposition 5.3]. In particular, if (Hi)16i6m and (Gk)16k6K are finite-
dimensional and if P 6= ∅, then (4.15) is satisfied if (∀i ∈ {1, . . . ,m})(∃xi ∈
ri dom fi)(∀k ∈ {1, . . . ,K})

∑m
i=1 Lkixi − rk ∈ ri dom gk.
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H. Bauschke, P. Borwein, F. Garvan, M. Théra, J. Vanderwerff, and H. Wolkowicz, eds.),
Springer, New York, 2013, pp. 143–159.

[18] L. M. Briceño-Arias, P. L. Combettes, J.-C. Pesquet, and N. Pustelnik, Proximal

algorithms for multicomponent image recovery problems, J. Math. Imaging Vision, 41
(2011), pp. 3–22.

[19] E. J. Candès, X. Li, Y. Ma, and J. Wright, Robust principal component analysis?, J.
ACM, 58 (2011), art. 11, 37 pp.

[20] G. Cohen, Nash equilibria: Gradient and decomposition algorithms, Large Scale Syst., 12
(1987), pp. 173–184.

[21] P. L. Combettes, The convex feasibility problem in image recovery, in: Advances in Imaging
and Electron Physics (P. Hawkes, Ed.), vol. 95, Academic Press, New York, 1996, pp.
155–270.

[22] P. L. Combettes, Fejér-monotonicity in convex optimization, in: Encyclopedia of Opti-
mization, (C. A. Floudas and P. M. Pardalos, Eds.), vol. 2, Springer-Verlag, New York,
2001, pp. 106–114. (Also available in 2nd ed., pp. 1016–1024, 2009.)

[23] P. L. Combettes, Systems of structured monotone inclusions: Duality, algorithms, and

applications, SIAM J. Optim., 23 (2013), pp. 2420–2447.

[24] P. L. Combettes and J.-C. Pesquet, Proximal splitting methods in signal processing, in:
Fixed-Point Algorithms for Inverse Problems in Science and Engineering, H. H. Bauschke
et al. eds., Springer, New York, 2011, pp. 185–212.

[25] P. L. Combettes and J.-C. Pesquet, Primal-dual splitting algorithm for solving inclusions

with mixtures of composite, Lipschitzian, and parallel-sum type monotone operators, Set-
Valued Var. Anal., 20 (2012), pp. 307–330.
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