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Quasinonexpansive Iterations on the Affine Hull of
Orbits: From Mann's Mean Value Algorithm to
Inertial Methods*
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Abstract. Fixed point iterations play a central role in the design and the analysis of a large number of opti-
mization algorithms. We study a new iterative scheme in which the update is obtained by applying a
composition of quasinonexpansive operators to a point in the affine hull of the orbit generated up to
the current iterate. This investigation unifies several algorithmic constructs, including Mann’s mean
value method, inertial methods, and multilayer memoryless methods. It also provides a framework
for the development of new algorithms, such as those we propose for solving monotone inclusion and
minimization problems.
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1. Introduction. Algorithms arising in various branches of optimization can be effi-
ciently modeled and analyzed as fixed point iterations in a real Hilbert space #; see, e.g.,
[9, 10, 13, 16, 18, 19, 22, 26, 43]. Our paper unifies three important algorithmic fixed point
frameworks that coexist in the literature: mean value methods, inertial methods, and multi-
layer memoryless methods.

Let T: H — H be an operator with fixed point set Fix 7. In 1953, inspired by classical
results on the summation of divergent series [11, 29, 44], Mann [34] proposed to extend the
standard successive approximation scheme

(1.1 xo€H and (VneN) z,41=Tx,
to the mean value algorithm

(1.2) ro€H and (VneN) wz,. =717, where 7, ¢c conv (a:j)0<j<n.
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In other words, the operator T is not applied to the most current iterate as in the memoryless
(single step) process (1.1), but to a point in the convex hull of the orbit (z;)o<;<, generated so
far. His motivation was that, although the sequence generated by (1.1) may fail to converge
to a fixed point of T, that generated by (1.2) can under suitable conditions. This work was
followed by interesting developments and analyses of such mean value iterations, e.g., [8, 12,
15, 28, 30, 32, 35, 37, 42], especially in the case when T is nonexpansive (1-Lipschitzian) or
merely quasinonexpansive, that is (this notion was essentially introduced in [27])

(1.3) (Vo € H)(Vy € FIXT) ||Tz —y| < ||z —y]|.
In [21], the asymptotic behavior of the mean value process

(1.4) o€ H and (VneN) zp41 =Tp+A(1,Tn+e,—Ty), Where T, € conv (xj)Oéjgn’
was investigated under general conditions on the construction of the averaging process
(Tn)nen and the assumptions that, for every n € N, e,, € H models a possible error made
in the computation of 7,,%,, A\, € |0,2[, and T,,: X — H is firmly quasinonexpansive, i.e.,
2T, — Id is quasinonexpansive or, equivalently [10],

(1.5) (Ve e H)(Vy € FixT,)) (y—Thx |z —Tyz) <O0.

The idea of using the past of the orbit generated by an algorithm can also be found in the
work of Polyak [39, 41], who drew inspiration from classical multistep methods in numerical
analysis. His motivation was to improve the speed of convergence over memoryless methods.
For instance, the classical gradient method [38] for minimizing a smooth convex function
f:H — R is an explicit discretization of the continuous-time process —z(t) = Vf(x(t)).
Polyak [39] proposed to consider instead the process —i(t) — Bi(t) = V f(x(t)), where
B € ]0,+oc[, and studied the algorithm resulting from its explicit discretization. He observed
that, from a mechanical viewpoint, the term #(¢) can be interpreted as an inertial compo-
nent. More generally, for a proper lower semicontinuous convex function f: H — |—o0, +00],
Alvarez investigated in [1] an implicit discretization of the inertial differential inclusion
—&(t) — Ba(t) € Of(x(t)), namely

Ty = (1 + Un)xn — NnTn—1
(1.6) (VneN) zpp1 = Prox, T+ en, where nn € [0,1]
Yn € 10, +o0[,

and where prox; is the proximity operator of f [10, 36]. The inertial proximal point algo-
rithm (1.6) has been extended in various directions, e.g., [3, 14, 17]; see also [5] for further
motivation in the context of nonconvex minimization problems.

Working from a different perspective, a structured extension of (1.1) involving the com-
position of m averaged nonexpansive operators was proposed in [19]. This m-layer algorithm
is governed by the memoryless recursion

(1.7) (VneN) zpp1=z,+ N\ (Tlm Ty + €y — wn), where )\, €]0,1].
2
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Recall that a nonexpansive operator 7': H — #H is averaged with constant « € |0, 1] if there
exists a nonexpansive operator R: H — H such that T = (1 — «)Id +«aR [7, 10]. The
multilayer iteration process (1.7) was shown in [19] to provide a synthetic analysis of various
algorithms, in particular in the area of monotone operator splitting methods. It was extended
in [25] to an overrelaxed method, i.e., one with parameters (\,),cn possibly larger than 1.

In the literature, the asymptotic analysis of the above methods has been carried out in-
dependently because of their apparent lack of common structure. In the present paper, we
exhibit a structure that unifies (1.1), (1.2), (1.4), (1.6), and (1.7) in a single algorithm of the
form

(1.8) zoeM and (VneN) zpp1 =Tn+ A (Tin - Tinn@n + €0 — T,

where %, € aff (z;) and )\, €]0,+o0[,

0<jsn

under the assumption that each operator 7; ,, is «; ,-averaged quasinonexpansive, i.e.,

(1.9) (Vz € H)(Vy € FixT},)
2(1 — ain)(y — Tinz | @ = Tinz) < 2ain — 1) (2 —yl* = | Tinz —yll?),

for some «; ,, € |0, 1], which means that the operator (1 —1/a;,)Id +(1/®; )T}, is quasinon-
expansive. In words, at iteration n, a point T, is picked in the affine hull of the orbit (z;)o<;j<n
generated so far, a composition of quasinonexpansive operators is applied to it, up to some
error e,, and the update x,,, is obtained via a relaxation with parameter \,,. Note that (1.8)—
(1.9) not only brings together mean value iterations, inertial methods, and the memoryless
multilayer setting of [19, 25], but also provides a flexible framework to design new iterative
methods.

The fixed point problem under consideration will be the following (note that we allow 1
as an averaging constant for added flexibility).

Problem 1.1. Let m be a strictly positive integer. For every n € N and everyi € {1,...,m},
a;, € 10,1] and T;,,: H — H is «; ,-averaged nonexpansive if i < m, and «,, ,-averaged
quasinonexpansive if i = m. In addition,

(1.10) S=(FixT, #2, where (YneN) T,=Ti,  Thn,
neN

and one of the following holds:

(a) For every n € N, Ty, ,, is ayy, n,-averaged nonexpansive.

(b) m > 1 and, for everyn € N, a,,, < 1 and (2, Fix T; ,, # @.

() m=1.

The problem is to find a point in S.

To solve Problem 1.1, we are going to employ (1.8), which we now formulate more for-
mally.

Algorithm 1.2. Consider the setting of Problem 1.1. For every n € N, let ¢,, be an averaging
constant of T;,, let A, € ]0,1/¢,,] and, for everyi € {1,...,m}, lete; , € H. Let (tin j)nen,0<j<n
be a real array which satisfies the following:

3
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(@) suppen D _j_g ltn,j| < +oo.

(b) (VvneN) Z?:o g = 1.

© (% €N) Tm_pu; =0.

(d) There exists a sequence (X, )nen in |0, +oo[ such that inf,,cn x, > 0 and every sequence
(&2)nen in [0, +oo] that satisfies

D neN Xn€n < 00
(1.11) 3 (en)nen € [0, +oo[" ne n
< > (VneN) &1 < E]’:O pinj&j + €n
converges.
Let zp € H and set
(1.12)
forn=0,1,...

n
Tn =) lin,j
=0

Tpt1 = TntAn (Tl,n <T27n( T Tm—l,n(Tm,nTn"‘em,n)+em71,n T ) +€2,n) +el,n_§n>-

Remark 1.3. Here are some comments about the parameters appearing in Problem 1.1 and
Algorithm 1.2.
(i) The composite operator 7,, of (1.10) is averaged quasinonexpansive with constant

m —1\ —1
ai’” i . .
(1.13) On = (1 T (Z 1— ain) > ,if lréliz)fnaun <1

1, otherwise.

The proof is given in [25, Proposition 2.5] for case (a) of Problem 1.1. It easily extends
to case (b), while case (c) is trivial.

(if) Examples of arrays (i ;)nen,0<j<n that satisfy conditions (a)-(d) in Algorithm 1.2
are provided in [21, Section 2] in the case of mean value iterations, i.e.,
inf,, ey minp<j<n ptn; = 0, with x,, = 1. An important instance with negative coef-
ficients will be presented in Example 2.5.

(iii) The term e;,, in (1.12) models a possible numerical error in the implementation of the
operator 7T; ,,.

The material is organized as follows. In Section 2 we provide preliminary results. The

main results on the convergence of the orbits of Algorithm 1.2 are presented in Section 3.
Section 4 is dedicated to new algorithms for fixed point computation, monotone operator
splitting, and nonsmooth minimization based on the proposed framework.
Notation. 7 is a real Hilbert space with scalar product (- | -) and associated norm || - ||. We
denote by Id the identity operator on H; — and — denote, respectively, weak and strong
convergence in H. The positive and negative parts of £ € R are, respectively, £t = max{0, £}
and £~ = —min{0,{}. Finally, 6, ; is the Kronecker delta: it takes on the value 1 if n = j, and
0 otherwise.
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2. Preliminary results. In this section we establish some technical facts that will be used
subsequently. We start with a Gronwall-type result.

Lemma 2.1. Let (0,,)nen and (g,,)nen be sequences in [0, +o00|, and let (v, )nen be a sequence
in R such that (Vn € N) 6,11 < (1 + v,)0,, + &5, Then

n n—1 n
2.1 (VneN) 6,41 <bpexp <Zl/k> + Zsj exp < Z I/k) + &p.
k=0 =0

k=j+1
Proof. We have (Vn € N) 1 + v, < exp(vy,). Therefore 6 < 6 exp(vp) + €9 and

(Vn e NN {0}) 6Op41 < bOpexp(vy) +én
<O eXp(Vn) eXp(anl) + En—1 eXp(Vn) +én

n

1
e ] exp(m) +en
0 k=j+1

n n—1 n
(2.2) = g exp <Zl/k> + Zsj exp < Z Vk) + en,
k=0 j=0

k=j+1

n n
<O [ [ exp(mn) +
k=0 J

as claimed. H

Lemma 2.2.[31, Theorem 43.5] Let (&,,)nen be a sequence in R, let £ € R, suppose that
(Hn,j)neN,0<j<n s a real array that satisfies conditions (a)-(c) in Algorithm 1.2. Then &, — £
=D G0 tn,i& — &

Lemma 2.3. Let (Bn)nens (n)neNs (On)nens (Mn)nens and (Ap)nen be sequences in [0, 400,
let (¢ )nen be a sequence in ]0,1], let (9, 0) € ]0,+oo[?, and let n € ]0,1[. Set _; = Sy and
(2.3) (VneN) w, = ¢i — Ans
and suppose that the following hold:

@ (VneN) n, <nptr <.

() (YneN) v, <n(l+n)+ndw,.

2(1 1
© (men) TUEDENT 2o,
9/ — 1 Y,
() (YneN) 0<i < [Pn —n(n(1 +n) + ndw +1-|-0)'
I(1+n(1 +n) 4+ nwpir + o)
1 n )\n n n + 79)\n -1

(E) (vn S N) Bn-l—l - Bn - nn(/@n - /Bn—l) g ( /¢ )(77 <(n ) ) 5n+1 + Vn(sn
Then ), o 0n < +00.

Proof. We use arguments similar to those used in [3, 14]. It follows from (c) that (vVn € N)
0 < V/bn—n*wn19—n*(1+n)—no. This shows that (A, ),en is well defined. Now set (Vn € N)
pn = 1/(nn +9\,) and Ky, = By — MnPn—1 + Yndn. We derive from (a) and (e) that

(V’I’L € N) Rn+1 — Rn < 5n+1 - nnﬁn - /Bn + nnﬁnfl + '7n+15n+1 - 'Vn(sn
< <(1/¢n - )‘n)(nnpn - 1)

2.4) .

5

+ '}’n+1> 5n+1-
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On the other hand, (Vn € N) ¥(1 + (n(1 + 1) + ndwn41 + o)) > 0. Consequently, (d) can be
written as

¥
(2.5)  (YneN) IA, + 9N (n(1 +n) + ndwpgr +0) < rele n(n(1+n) + ndwns1 +0).

n

Using (a) and (b), and then (2.5), we get

9
(2.6) (Vn € N) (0 +9An) (a1 +0)+9A, < (77+79)\n)(77(1+77)+7779wn+1 +U) + I, < ¢_

n

However,
(Vn € N) (0, + 9An) (Vg1 + o) + 9N, < %
S (M +90) (Y1 +0) — (1/dn — Ap)0 <0
& (1/¢n = An) <W) < ~(nt1 +0)
2.7) o Lo )‘7;\)(7771/)11 D,

It therefore follows from (2.4) and (2.6) that

(2.8) (Vn € N)  Kpt1 — kn < —00p41.

Thus, (K, )nen is decreasing and

(2.9) (Yn €N) By —nBn—1 = Kn — Mbn < kn < Ko,

from which we infer that (Vn € N) 3, < ko + 1n8,—1. In turn,

n—1
i K
(2.10) (Vn € NN A0}) By < n"Bo + ko Zny <n"Bo + ! _0 )
j=0
Altogether, we derive from (2.8), (2.9), and (2.10) that
(2.11) (Vn€N) o) 811 < o — kng1 < Ko+ 1 < 1*2)77 LG,
j=0

Hence, > ;- 6; < ro/((1 —n)o) < +oo, and the proof is complete. l
Lemma 2.4. Let (1, )nen be a sequence in [0, 1[. For every n € N, set

0, if k<n;
k

Z(Uj— )7 l:fk’>’l’L,

j=n+1

(2.12) (VEeN) (Gn=

and xn = ) i, eXP(Cr,n)- Then the following hold:
6
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(i) Let 7 € [2,+o00[ and suppose that (Vn € N) n,41 = n/(n+ 1+ 7). Then (Vn € N)

(ii) Suppose that (3n € [0,1])(Vn € N) n,, < n. Then (Vn € N) x, <e/(1 —n).

Proof. (i): We have (¥n € N)(Vk € {n+1,n+2,...}) G =—(1+7) 35 11/ +7) <
-3 Z;?:nJrl 1/(j +2). Since & — 1/(£ + 2) is decreasing on [1, +oo], it follows that

k+1 dé-
b E+2 0 T (k+3)3

2.13) (Vn e N)(Vk € {n+1,n+2,...}) Con < —3/

Furthermore, since ¢ ~ 1/(£ + 3)3 is decreasing on |—1, +oc[, (2.12) yields

(n+3)3 oo de (n+3)3 n+7
(2.14) (¥n € N) X"\Z k+33 (n+3)° /1 (§+3)3:2(n+2)2< 2

(ii): Note that

k k
2.15) (vn € N)(Vk € {n+1,n42,..}) Gn= Y (=1 < > (n—1) = (n=1)(k—n).
j=n+1 j=n+1

Since £ — exp((n — 1)¢) is decreasing on |—1, +oo], it follows that

—+00

(2.16) (VneN) x, < Zexp (n=1)(k—n)) g/ exp (17— 1)(€ —n))dé = exp(1 —77),

k>n -1 1—n

which proves the assertion. l

The next example provides an instance of an array (i, j)neN,0<;j<n Satisfying the conditions
of Algorithm 1.2 with negative entries. This example will be central to the study of the
convergence of some inertial methods.

Example 2.5. Let (fin,j)nen,0<j<n be a real array such that poo = 1 and

1_:un,n7 ifj:n_l;

2.17) (YneN) 1< pn,<2 and (V5€{0,...,n}) pin; = .
217) ( ) im, (vje{ Dby {07 I

For every n € N, set

0, if k<n
(2.18) VEEN) Grn={ < :
ety > (-2, k>,
j=n+1

and suppose that x, = >}~ exp(Ck,n) < +00. Then (pin, j)nen 0<j<n Satisfies conditions (a)-(d)
in Algorithm 1.2.

Pl‘OOf (a): (Vn S N) Z? 0 ‘,un,j’ = fnn + ’1 - ,Un,n’ <3

(b): (Vn € N) E] oHn,j = (1 = tnn) + pnp = 1.

(c): Let j € N. Then (Vn € N) n > j + 1 = pu, ; = 0. Hence, nll)l}_loo fon,; = 0.

7
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(d): We have (Vn € N) xn = > 1>, exp(Ckn) = exp(Cn,n) = 1. Now suppose that (£,)nen
is a sequence in [0, +-o00[ such that there exists a sequence (&, )nen in [0, +oo] that satisfies

(2.19) Z Xnén < +oo and (VneN) &1 < Z,un,jﬁj + &p.
neN j=0

Setp =0and (Vn € N) 0,11 = [§nt1 — &) and vy, = iy, — 2. It results from (2.19), (2.17),
and the inequalities & — & < (po,0 — 1)&o + €0 and

(vn eNN {0}) §n+1 - gn < (Mn,n - 1)§n + (1 - ,Un,n)fn—l +én
(2.20) = (Mn,n —1)(& — &n—1) +€n,

that (Vn € N) 0,41 < (tnn — 1)0n + e, = (1 + 1,)0,, + . Consequently, we derive from
Lemma 2.1 and (2.18) that (Vn € N) 0,1 < > ;_erexp((n). Using [31, Theorem 141],
this yields

(2.21) D 01 <D D enexp(Gur) = D ek Yy exp(Cuk) = D ek

neN neN k=0 keN nzk keN

Now set (Vn € N) w, = &, — > p_o 0k Since Y, .y xwer < +00, we infer from (2.21) that
> nen On < 4o0. Thus, since inf,en &n = 0, (wn)nen is bounded below and

(2.22) (VneN) w1 =&t — Opy1 — Zak <&t —Eny1 +H &0 — Zak = Wwp.
k=0 k=0

Altogether, (w;,)nen converges, and so does therefore (&, ) ecn. B

3. Asymptotic behavior of Algorithm 1.2. The main result of the paper is the following
theorem, which analyzes the asymptotic behavior of Algorithm 1.2.
Theorem 3.1. Consider the setting of Algorithm 1.2. For every n € N, define

= Tz nTmna if 1 ;
B Vu=x Y leinll and (Vie{l,...,m}) TM—{ +, w Figm

i=1

Id, if i=m,
and set
(3.2) Ut S = [0, +00] 1 = Uy (2T — x| + Un).

Then the following hold:
() Letn € Nand x € S. Then [|zn+1 — | < 3270 [pnl |25 — 2| + Un.
(ii) Letn € Nand x € S. Then

2 - 2 1 O 2
|Znt1 = 2> <D pn gl — zl|* — 5 DDtz — il
=0 =0 k=0

— (100 = A TnTr — Tn||> + v ().
8
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(iii) Letn € Nand x € S. Then

n n

n
1
|2nr1 = z* <D pm gl — z)|* = 3 SO tmgtn gl —
=0

=0 k=0
+ MO = DT Ty — Tn|?

1 _
= o (1 T, ) T — (10 ) ] ) + 0.
,n

1<i<m

Now assume that, in addition,

(3.3) Z X"ZZ fin jting) " ||tj — 2x]|* < 400 and (Vx € S) Z XnVn(z) < +00.

neN 7=0 k=0 neN

Then the following hold:
(iv) Let x € S. Then (||x,, — x||)nen converges.
W) Aa(1/¢n = M) I T0Tn — T[> — 0.

Vi) D00 D kot jtin k] Tl — i ]* — 0.
(vii) Suppose that

(3.4) Fe )0, 1)(VneN) A < (1—£)/dn.

Then z4+1 — T, — 0. In addition, if every weak sequential cluster point of (T, )nen 1S in
S, then there exists x € S such that x,, — x.
(viii) Suppose that (T, )nen has a strong cluster point x in S and that (3.4) holds. Then

Ty, — T
(ix) Let x € S and suppose that (3¢ € |0,1[)(Vn € N) A, < e+ (1 —€)/¢y,. Then

1 _
Ap max —|[(Id =T;.) Ty nTn — (Id =T ) Tis || — 0.

1<z<m Qin

Proof. Let n € N and set

(35) €n = Tl,n <T2,n( te Tm—l,n(Tm,nfn + em,n) + €Em—1n """ ) + e2,n> + €ln — Tnfn
9
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If m > 1, using the nonexpansiveness of the operators (75 ,,)1<i<m—1, We obtain

len

< llewn]l + \

< llewnll+

N

m
<D lleiall.
i=1

(3.6)

Tl,n <T2,n( o Tm—l,n(Tm,nEn + em,n) + Em—1,,n """ ) + 62,n> - Tl,n e Tm,nfn

TZ,n <T3,n( to Tm—l,n(Tm,nfn + em,n) + €Em—1n """ ) + e3,n> + €2n — T2,n e Tm,nfn
lernll + lle2nll+

T3,n <T4,n( to Tm—l,n(Tm,nfn + em,n) + €Em—1,n """ ) + e4,n> + €3n — T3,n e Tm,nfn

Thus, we infer from (3.1) that

3.7)

Anllenl] < Jp.

On the other hand, we derive from (1.12) and (3.5) that

(3.8)

Now set

(3.9

Tng1 = Tn + M (TnTn + €0 — Tp).

1 1— 6,

o " b

Id and 7, = \¢dn.

Then 7, € 10, 1], Fix R,, = FixT,,, and R,, is quasinonexpansive since 7,, is averaged quasinon-
expansive with constant ¢,, by Remark 1.3(i). Furthermore, (3.8) can be written as

(3.10)

Next, we define

(3.11)

Tp+1 = Tn + Mn (Rnfn - En) + Anén-

Zp = Tp + )\n(TnEn - En) =T, + nn(Rnfn - fn)

Let z € S. Since z € Fix R,, and R,, is quasinonexpansive, we have

(3.12)

lzn = all = (1 = 1) (@0 — @) + M0 (RaT0 — )|
< (1= ) |[Zn — x| + 10| RaTn — |

10
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Hence, (3.10) and (3.7) yield

(3.13) [2nt1 =zl < llzn — 2l + Anllenll < 120 — [l + On-

In turn, it follows from (3.12) and (3.2) that

(3.14) Zn41 — )|? < 2 — 2)|* + 200120 — ]| + 92 < ||z — 2[|* + vi ().

In addition, [10, Lemma 2.14(ii)] yields

n

2 n n
1
= pimjllz; —x|® - 5 SO tngtnkll — ol
=0

§=0 k=0

(3.15) ||z, — z|* =

> pin gz — x)
§=0
(i): By (3.13) and (3.12),

(3.16) (Vn e N)(Vz € S)  |zpt1 — x| < ||Tn — || + 95 < |pn il |2 — || + .
§=0
(ii): Letn € Nand x € S. Since

|20 — x”z = [[(1 =) (@n — 2) + N (RnTn — w)HZ

= (1 =na)l|Zn — xHZ + M || RnTn — xHZ = (1 — 1) | R T — jnH2
(3.17) < |zn - $||2 = (1 = 1) | R T — En||2a

we deduce from (3.14) and (3.9) that

[2n1 — 2| < |20 — |* + vn(2)
< |Zn — x”z = (L = ) [| R T, — En”z + vn ()
(3.18) = ||z, — m||2 — M1/ bp, — A T0Tr, — EnH2 + vp(z).

In view of (3.15), we obtain the announced inequality.
(iii): Let n € N and = € S. We derive from [10, Proposition 4.35] that

(Vie{1,...,m—1})(V(u,v) € H?)

1-— ai,n

(3.19) | T3 — Ty ] < JJu—v|* — 1(Id =T 5)u — (Id =T;)0])*.

7,m

If m > 1, using this inequality successively fori = 1,...,m — 1 leads to

1T — 2|® = [T Tonnn = T Tt
m—1 1— o
< ”Tm,nfn - Tm,nw”2 - Z Tw ”(Id _Ti,n)Ti-i—,nEn - (Id _Ti,n)Ti—f—,nw”2
i=1 L
< ||Tm,njn - T’m,nxn2
1-— Oéi,n ‘

(3.20) ~ x| (1 T ) T o~ (14 =T ) Tl

11
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Note that, in cases (a) and (c) of Problem 1.1,

1 —amn

(3.21) | TonnTn — Tn|® < || T — 2| — 1(Ad ~T0)Zn — (Id =T ).

m,n

This inequality remains valid in case (b) of Problem 1.1 since [10, Proposition 4.49(i)] implies
that

m
(3.22) FiX (T - Trnn) = [ | FiXTim
=1

and, therefore, that = € Fix T, ,,. Altogether, we deduce from (3.20) and (3.21) that

1-— ai,n

(3.23) |T0Z, — z|? < [T — z|? — max 1(Id =T.0) Tt nTp — (Id =T;) Tip pz||? -
1<i<m ai,n
Hence, it follows from (3.11) that

20— 2)* = [|[(1 = X)) (T — ) + AT — )|
= (1= M)[[zn — $||2 + Al TnTn — $||2 + An(An = DI TT0 — EnHZ

1—o
< [T — [ = A, max S |(1d =T ) Tig o — (Id =T;0) Tig x|
1<i<m in
(3.24) + MM = D T0Tn — T

In view of (3.14) and (3.15), the inequality is established.
(iv): Let x € S and set

§n = ”xn - w”2
n n

[ttt 1)~ [l — 1.
§=0 k=0

Since inf,, ey A (1/¢n — Ap) = 0, (3.3) and (ii) imply that

(3.25) (Vn € N)

1
En = Vn(fL') + 5

n

(3.26) Z Xnén < +oo and (VneN) &1 < pn, &G + En-
neN j=0

In turn, it follows from (3.3) and condition (d) in Algorithm 1.2 that (||x,, — z||)nen converges.
(v)—(vi): Let x € S. Then it follows from (iv) that p = lim,,,~ ||z, — || is well defined.
Hence, Lemma 2.2 implies that Y7 yun jllz; — 2||* — p® and therefore that

n
(3.27) > gl = al® = llznsr — 2> = 0.
j=0

Since inf, ey xn > 0, (3.3) yields
(3.28) va(z) =0 and > Y [t [l — 2kl* = 0.

§=0 k=0
12
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It follows from (ii), (3.27), and (3.28) that

1 n n
0 < A(1/dn — A TnTn — Tul* + B} ZZ[Mn7jMn,k]+|’xj —

j=0 k=0
n 1 n n
<Dl = ol = lleniy =2l + 53> lnjtn ] llg — zel* + vn(2)
j=0 j=0 k=0

(3.29) -0,

which gives the desired conclusions.
(vii): Set ( = 1/e — 1. We deduce from (3.3) and (3.2) that ) 79% < +oco. Hence, it
follows from (3.8), (3.7), (3.4), and (v) that

i1 = Tl < 2(A2 | Tt — Ta* + A2 enl?)

An _
< 2<m>\n(l/¢n - An)HTnxn - anQ + 19%)

< 2(CAn(1/6n = AT — 7 |* + 92)
(3.30) — 0.

Therefore z,,+1 —Z,, — 0 and hence the weak sequential cluster points of (z,,),en lie in S. In
view of (iv) and [10, Lemma 2.47], the claim is proved.

(viii): Since x,,+1 — T, — 0 by (3.30), (z,,)nen has a strong cluster point = € S. In view of
(iv), z,, — .

(ix): Set ¢ = 1/e — 1. Then, for every n € N, A, < 1/(1 4 ¢) + ¢/(¢n(1 + ¢)) and hence
(I1+OA—1 </, e, Ay —1 < (1), — Ap). We therefore derive from (iii), (3.27), (3.3),
(v), and (3.28) that

[87%)

1—
0< A\, max ————
1<i<m ai,n

n n n
1 _
<Y gl — 2l = ens — ) + 3 SO ltngtng) " llzg — il
j=0 §=0 k=0

1(3d ~T50) Ti T — (1d =T ) Tig

+ (A = D T0Tn — Tn|)? + v (@)

n n n
1 _
<Y gl = 2l? = ona — 2] + 3 S ltmgtng) Ml — il
i=0 7=0 k=0
+ (1) — M) | 0T, — jnH2 + vn(x
(3.31) — 0,

which shows the assertion. l
Next, we present two corollaries that are instrumental in the analysis of two important
special cases of our framework: mean value and inertial multilayer algorithms.
13
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Corollary 3.2. Consider the setting of Algorithm 1.2 and define (9,,)nen as in (3.1). Assume
that

3.32 inf mi =0 d 0 .
532 g e 20 3 <
n

Then the following hold:

M 7o g tngnllay — a2 = 0.
(ii) Let x € S and suppose that (3¢ €]0,1[)(Vn € N) A, < e+ (1 —€)/¢y. Then

o
Apmax —— ||(Id —T; ) Ti4 0T — (Id =T, Ti n||” — .

1<i<m aim

(iii) Suppose that every weak sequential cluster point of (T, )nen is in S and that (3¢ €
10,1))(Vn € N) A\, < (1 — ¢)/bp. Then x, 1 — Ty, — 0 and there exists x € S such that
Ty, — 2.

(iv) Suppose that every weak sequential cluster point of (T )nen i in S, that sup, ey ¢n < 1,
and that (3¢ € 10,1))(Vn € N) A\, < e + (1 — €)/¢n. Then x, 1 — T, — 0 and there
exists x € S such that x,, — =x.

(v) Suppose that every weak sequential cluster point of (T, )nen is in S and that inf,,en fty 5, >
0. Then x, — T, — 0 and there exists x € S such that x,, — =.

Proof. We derive from Theorem 3.1(i) that (Vn € N) [|[zp41 — 2| < X7 pin,jll7j — 2|+ 0y
In turn, it follows from condition (d) in Algorithm 1.2 that (||x;,, — z||)nen converges. As a
result, (x,)nen is bounded and (3.32) therefore implies (3.3).

(i)—(iii): These follow respectively from items (vi), (ix), and (vii) in Theorem 3.1.

(iv): Set 6 = (1 — sup,,ey ). Then § € ]0,¢[ and (Vn € N) (¢ — §)/¢, > €. Hence,

1—¢ 1-0 e—96 1-9¢
(3.33) VneN) N\, <e+ =+ — < .
( ) On ®n On On
The claim therefore follows from (iii).
(v): Set
1 :un,n+1’ if j=mn:
(334) 6=——— and (VneN)(Vje{0,...,n}) n;= 2
inf Hn,n Hn,j if 7
neN T, irj<n.

14
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Then, using Apollonius’ identity, [10, Lemma 2.12(iv)], and (3.34), we obtain

_ 2
Ty + T

2

1 1

170 = @al = 5 (70 = )2 + llzn — o) -
2
= 2 (I — 2l + llan — 2[?) -

g(@j — )

N =

L/
= 5 (I = 2 + llza — 2ll?) — nyn,juwj —alP+ S gl —
1 n
<3 (Zun]\\% = a|® + flan - xH2> =D mllzy — xl?
=0
1 n—1
* 4 ( Z pn gt gollzj — oxl* + Z/‘n,j(/‘n,n + 1)z — $nH2>
0<j<k<n Jj=0
1 & -
< 5( pn gllzg = 2|* + IIfL’n—wH2> =D mllzy — xl?
j=0 Jj=0
1 n—1
T3 ( Y gkl — 2l 0 pn gl — fﬂnHz)
0<j<k<n Jj=0
1< -
< 5( pn gl — 2|® + Hxn—xH2> =D mllzy — xl?
j=0 Jj=0
1+0 2
(3.35) D bngbnklleg — 2l

0<j<k<n

Next, let us set p = lim ||z, —z||>. Then it follows from Lemma 2.2 that >~ i ;|| z; —||* — p
and > "o Yn,jllT; — z||*> — p. On the other hand, (i) asserts that D o<j<ken Hn,jhn gkl 25 —
x1||? — 0. Altogether, (3.35) yields ||Z,, — z,|| — 0. Thus, the weak sequential cluster points
of (z)nen belong to S, and the conclusion follows from the fact that (||x,, — z||)nen converges
and from [10, Lemma 2.47]. &

Corollary 3.3. Consider the setting of Algorithm 1.2 with (Vi € {1,...,m})(Vn € N) ¢;,, = 0.
Set x_1 = xy and suppose that there exists a sequence (1, )nen in [0, 1] such that ny = 0 and

Ltnn, ifj=mn
(3.36) (Vn e N)(Vj € {0,...,n}) tnj =< —nn, if j=n—1;
0, if j<n-—1.

For every n € N, set

0, if k<n
k
(3.37) Vk € N n= .
WREN) =0 S~ (2 1), i k>,
Jj=n+1

15
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and assume that xn = ) ;- exp(Ck,n)- Suppose that one of the following is satisfied:
(@) ZnEN XnnnHwn - wn—lu2 < +o0.
(®) X ,ennll®n — zp—1||? < +oo and there exists T € [2,+oo such that (Vn € N\ {0})
M= Mn—-1)/(n+71).
(© Y penMnllzn — zn_1]|* < +oo and there exists n € [0, 1] such that (Vn € N) 5, <.
(d) Set (Vn € N) wy = 1/¢ — Ap. There exist (5,9) € 0,+o00[* and n € |0, 1[ such that

M < Mnt1 S 1)

N7 n(n(1+n) +ndwny1 +0)
(3.38) (Vn € N) K D1+ 01 +n) +nwpgr +0)

(4m)+no _ 1

% ®n

N

2
—n wn+1.

Then the following hold:
@ An(1/6n = )1 ToTn — Tn* = 0.
(ii) Let x € S and suppose that (3¢ €]0,1[)(Vn € N) A, < e+ (1 —€)/¢y. Then

— QGn

A, Max 1(1d =T;.0) T T — (Id —T.0) Tz ||* — 0.

1<i<m ai,n
(iii) =, — z, — 0.
(iv) Suppose that every weak sequential cluster point of (T, )nen is in S. Then there exists
r € S such that x,, — =.
Proof. In view of Example 2.5, (i j)neno<j<n satisfies conditions (a)-(d) in Algo-
rithm 1.2.
(a): Set x = inf,,en X, and define (v,,)nen as in (3.2). We have sup,,cn(1 + 7,) < 2 and

nr'b s njlnkl [|T5 — 2:1 n ) XnTn n_n—2

(339) (vnen) 1X > =0 2k=oltin it k) "Iz — zil|* = (14 m)xnnl|l2n — zn-1|
(Vz € S) xntn(z)=0.

Hence (3.3) holds, and (i) and (ii) follow from Theorem 3.1 (v)&(ix), respectively. Further-

more, (3.36) implies that

I L e L e e | g

Thus, (iii) holds. In turn, the weak sequential cluster points of (z,,),en belong to S and (iv)
therefore follows from Theorem 3.1(iv) and [10, Lemma 2.47].
(b)=-(a): It follows from Lemma 2.4(i) that

n+7
(3.41) ZXnUonn - xnflnz < Z D) ||xn - $n71H2 < +o0.
neN neN

(c)=-(a): Lemma 2.4(ii) asserts that sup,,cy xn < €/(1 — 7).
(d)=(c): Let z € S. It follows from Theorem 3.1(ii) that

(Vn €N) |lzpy1 — $||2 <1+ ) l|lzn — $||2 = MllTn—1 — $||2 + (1 4 10) |20 — $n71||2
1
(3.42) - <¢_ — )\n> | TnZn — Tl

16
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Now set 3_1 = ||zg — z||? and

1

. _ 2 _ N 2 - -
(3.43) (v €N} o =llzn =2 On = [lzn = 2nal’, - and pn = -,

Then
1
(Vn e N) |17, — EnH2 = )\_QH(an — ) + M(Tn-1 — $n)H2

1
= )\_2 <5n+1 + 77%;511 + 7 <2<\/p—n(xn+1 - xn)

7))

1 On

Thus, we derive from (3.42) that

(3'45) (Vn € N) /Bn—I—l - /Bn - 77n(/8n - /Bn—l) < \ n+1 + 'Yn(sm
where

1 1= pnin
(3.46) (VR eN)  yp = 0u(1 + 1) + 7n Fe An 20

However, it follows from (3.43) that (Vn € N) 9 = (1 — p,nn)/(pnAn). Hence, (3.46) yields

1
(3.47) (YneN) v =n,(1+m)+m, <¢— - An>19 < (1 +n) + ndwn.

Thus, by Lemma 2.3, ) - n0n < D,y 0n < +00 and we conclude that (c) is satisfied. l

Remark 3.4. In Corollary 3.3, no errors were allowed in the implementation of the opera-
tors. It is however possible to allow errors in multilayer inertial methods in certain scenarios.
For instance, suppose that in Corollary 3.3 we make the additional assumptions that \,, = 1
and that J,.yranTy, is bounded. At the same time, let us introduce errors of such that
(Vie{1,...,m}) >, cn Xnll€in]| < +oc. Note that (1.12) becomes

forn=0,1,...
(3.48) Ty = (1 + 00)Tn — MnTn—1
Tn+l1 = TLn (T27n( co Tm—l,n(Tm,nEn+€m7n)+em—1,n s ) +€2,n> —i—eLn.

Hence, the assumptions imply that (z,),en is bounded. In turn, (Z,),en is bounded and
it follows from (3.2) that (V2 € S) >, cyXn¥n(2z) < +00. An inspection of the proof of
Corollary 3.3 then reveals immediately that its conclusions under any of assumptions (a)—(c)
remain true.

17
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4. Examples and Applications. In this section we exhibit various existing results as special
cases of our framework. Our purpose is not to exploit it to its full capacity but rather to illus-
trate its potential on simple instances. We first recover the main result of [21] on algorithm
(1.4).

Example 4.1. We consider the setting studied in [21]. Let (T,)nen be a sequence of firmly
quasinonexpansive operators from H to H such that S = (|, nyFixT,, # . Then the problem
of finding a point in S is a special case of Problem 1.1(c) where we assume that o, = 1/2. In
addition, let (e, )nen be a sequence in H such that 3, |len|| < +00, let (A, )nen be a sequence
in ]0,2[ such that 0 < inf,eny A\p < sup,eny A < 2, and let (g j)nen,0<j<n be an array with
entries in [0, +oo[ which satisfies the following:

(@ (YneN) Y5 opn; =1

(b) (VjeN) lim p,;=0.

n—-+00

(c) Every sequence (&,,)nen in [0, +oo] such that

Y nenEn < 00

1 3 (en)nen € [0, +oof"
4.1) ( (€n)nen € [0, +00] > {(VnEN) £n+1<2?=0:unyj£j+€"

converges.
Clearly, conditions (a)—(c) above imply that, in Algorithm 1.2, conditions (a)—(d) are satisfied.
Now let zy € H, and define a sequence (z,,)neN by

(4.2) (Vn €N) @1 =Ty + M (TTn + €, — Tp), Where T, = Z P T
=0

which corresponds to a 1-layer instance of (1.12). This mean iteration process was seen in [21] to
cover several classical mean iteration methods, as well as memoryless convex feasibility algorithms
[18] (see also [13]). The result obtained in [21, Theorem 3.5(i)] on the weak convergence of
(Zn)nen to a point in S corresponds to the special case of Corollary 3.2(iii) in which we further
set xn = 1.

Next, we retrieve the main result of [25] on the convergence of an overrelaxed version of
(1.7) and the special cases discussed there, in particular those of [19].

Example 4.2. We consider the setting studied in [25], which corresponds to Problem 1.1(a).
Given o € H and sequences (€1,n)neNs - --» (€mn)nen in H such that Y A >ty [l€inll <
+o0, construct a sequence (x,)nen via the m-layer recursion

(4.3) (YneN) zp41 =x,+
)\n <T1,n (TZ,n( o Tm—l,n(Tm,nwn + em,n) + Em—1,,n """ ) + eZ,n) + €1n — wn)7
where 0< A\, <e+ (1—¢)/¢n.
Note that (4.3) corresponds to the memoryless version of (1.12). The result on the weak con-
vergence of (x,)nen obtained in [25, Theorem 3.5(iii)] corresponds to the special case of Corol-
lary 3.2(iv) in which the following additional assumptions are made:

(@ (VneN)x, =1and (Vj € {0,...,n}) tin,j = Opn ;.
18
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(b) Fee€l0,1)(VneN) X\, < (1 —¢e)(1/py + ).

Note that condition (a) above implies that, in Algorithm 1.2, conditions (a)—(c) trivially hold,
while condition (d) follows from [10, Lemma 5.31]. We also observe that [25, Theorem 3.5(iii)]
itself extends the results of [19, Section 3], where the relaxation parameters (A, )nen are confined
to |0, 1].

The next two examples feature mean value and inertial iterations in the case of a single
quasinonexpansive operator. As is easily seen, the memoryless algorithm (1.1) can fail to
produce a convergent sequence in this scenario.

Example 4.3. Let T': H — H be a quasinonexpansive operator such that 1d —T is demiclosed
at 0 and FixT' # @, let (fin j)nen,0<j<n be an array in [0, +oo| that satisfies conditions (a)—(d)
in Algorithm 1.2 with x,, = 1 and such that inf,cN fint1npntin+1 > 0, and let (e,)nen be a
sequence in H such that ) |len|| < +oo. Let xg € H and iterate

4.4) (VneN) z,41=TZ,+e,, where T,= Z,un,jl“j-
=0

Then Tz,, — T, — 0 and there exists x € FixT such that x,, — r and T,, — =z.

Proof. We apply Corollary 3.2 in the setting of Problem 1.1(c) with T, =T, oy, = 1,
¢n = 1, and A, = 1. First, note that (3.32) is satisfied. Furthermore, Corollary 3.2(v) entails
that 7,, — x,, — 0, while Corollary 3.2(i) yields jty+1 nttnt1,n41l|Tns1 — z,|*> — 0 and hence
ZTpt1 — T — 0. Therefore z,, — TZ, = (T), — xn) + (x, — Tpt1) + €, — 0. Since Id —T is
demiclosed at 0, it follows that every weak sequential cluster point of (%, ),en is in Fix 7. In
view of Corollary 3.2(v), the proof is complete. ll

Example 4.4. Let T': H — H be a quasinonexpansive operator such that Id —T is demiclosed
at 0 and FixT # @, and let (1, )nen be a sequence in [0, 1] such that 19 = 0, n = sup,ey 7n < 1,
and (Vn € N) 1, < fpg1. Let (0,9) € ]0, +o0c[? be such that (n2(1+1n) +no) /9 < 1 —n?, and let
(An)nen be a sequence in |0, 1] such that 0 < inf,en Ay, < sup,ey An < (9 —n(n(1 +n) + o +
7))/ +n(l+n)+nd+o0)). Let xy € H, set x_; = xo, and iterate

(4.5) (Vn €N) zpp1 =T+ M (TTp — Tn), where Tp = (1+10,)2p — NnTn_1.

Then TZ, — T, — 0 and there exists x € FixT such that x,, — =z. In the case when T is
nonexpansive, this result appears in [14, Theorem 5].

Proof. This is an instance of Corollary 3.3(d) (i)&(iv) and Problem 1.1(c) in which T3 ,, =
T, oq, = 1, and ¢, = 1. Note that condition (d) in Corollary 3.3 is satisfied since (Vn € N)
wpn=1-X,<1. 1

Next, we consider applications to monotone operator splitting. Let us recall ba-
sic notions about a set-valued operator A: H — 27 [10]. We denote by ran4A =
{ueM | BzeH)uec Az} the range of A, by domA = {ze€H | Az # o} the
domain of A, by zerd = {zeH | 0 € Az} the set of zeros of A, by grad =
{(z,u) € H x H | u € Az} the graph of A, and by A~! the inverse of 4, i.e., the operator with
graph {(u,z) € # x H | u € Az}. The resolvent of Ais J4 = (Id +A)~! and s: dom A — H
is a selection of A if (Vo € dom A) s(z) € Az. Moreover, A is monotone if

(4.6) (V(z,u) € graA)(V(y,v) e grad) (z—y|u—v)=>0,
19



SIAM J. OPTIM. (©) 2017 Society for Industrial and Applied Mathematics
Vol. xx, pp. x

and maximally monotone if there exists no monotone operator B: H — 2% such that gra A C
gra B # gra A. In this case, J4 is a firmly nonexpansive operator defined everywhere on H
and the reflector R4 = 2J4 — Id is nonexpansive. We denote by I'g(#) the class of proper
lower semicontinuous convex functions from # to |—oo,+o0]. Let f € T'o(H). For every
r € H, f+ ||z — -||?/2 possesses a unique minimizer, which is denoted by prox,z. We have
prox; = Jyr, where

“4.7) 6f:7-[—>2H:xn—>{u€7-[‘(Vy€H) <y—x\u>+f(x)<f(y)}

is the Moreau subdifferential of f. Our convergence results will rest on the following asymp-
totic principle.

Lemma 4.5. Let A and B be maximally monotone operators from H to 2%, let (2, un)nen be
a sequence in gra A, let (y,, vn)nen be a sequence in gra B, let = € H, and let v € H. Suppose
that x,, — x, v, — v, x, — Yy, — 0, and u,, + v, — 0. Then the following hold:

(i) (x,—v) € grad and (z,v) € graB.

(i) 0 € Az + Brand 0 € —A~(—v) + B~ 'w.

Proof. Apply [10, Proposition 26.5] with X =H and L =1d.

As discussed in [19], many splitting methods can be analyzed within the powerful frame-
work of fixed point methods for averaged operators. The analysis provided in the present
paper therefore makes it possible to develop new methods in this framework, for instance
mean value or inertial versions of standard splitting methods. We provide two such exam-
ples below. First, we consider the Peaceman-Rachford splitting method, which typically does
not converge unless strong requirements are imposed on the underlying operators [20]. In
the spirit of Mann’s work [34], we show that mean iterations induce the convergence of this
algorithm.

Proposition 4.6. Let A: H — 2" and B: H — 2" be maximally monotone operators such
that zer (A + B) # @ and let v € |0,+00[. Let (an)nen and (by)nen be sequences in H such
that ),y llan|] < +ooand Y- . |lbnll < +oc, let g € H, and let (pin j)nen0<j<n be an
array in [0, 4oo] that satisfies conditions (a)-(d) in Algorithm 1.2 with x,, = 1 and such that
infpeN pnt1nbnt1nt1 > 0. Iterate

forn=0,1,...
n

Tn =) Hn ]
j=0

Yn = J‘yBEn + bn
Zn = J’yA(2yn - Tn) + an
Tnt1 = Tn + 2(2n — Yn)-

(4.8)

Then there exists « € Fix RyoARp such that z,, — x and T, — z. Now set y = Jygx. Then
yezer(A+B), z, —yn = 0, y» — y, and z, — v.

Proof. Set T = R,aR,p and (Vn € N) e, = 2a,, + Rya(RyBTyn, + 2b,) — RyA(R,BTp).
Then T is nonexpansive, Id —7 is therefore demiclosed, and, since zer (A + B) # @, [10,
Proposition 26.1(iii) (b)] yields FixT" = Fix RyaR,p # @. In addition, we derive from (4.8)
that

(4.9) (VneN) zp1 =TT, + e,
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where

Z llenll < Z (2”anH + [[Rya(RyBTp + 2bn) — R“/A(RVBETL)”)
neN neN
<3 2(1lanll + Ibal)
neN
(4.10) < +o00.

Consequently, we deduce from Example 4.3 that (z,)neny and (Z,,)neny converge weakly to
a point € FixT = FixR,4R,p, and that Tz, — 7, — 0. In addition, [10, Proposi-
tion 26.1(iii) (b)] asserts that y € zer (A + B). Next, we derive from (4.8) and (4.9) that
2(zn—Yn) = Tp41—Tn = (TT, —Ty) + €, — 0. It remains to show that y,, — y. Since (%, )nen
converges weakly, it is bounded. However, (Vn € N) ||y, — vl = ||JyBTn — JyBTo + by <
|Zr, — zo|| + ||br||- Therefore (y,)nen is bounded. Now let = be a weak sequential cluster point
of (Yn)nen, say yg, — z. Inview of [10, Lemma 2.46], it is enough to show that z = y. To this
end, set (Vn € N) v, = v YZn — yn + bp) and w, = v 1 (2yn — T, — 2n + ay). Then (Vn € N)
(zn —an,wy,) € graA and (y, — by, v,) € gra B. In addition, we have 7, — x, 2, —ax, — 2,
vg, — ryfl(w—z)’ (an _akn) — (ykn _bkn) — 0, and Vk,, T+ Wk, = 'Yil(ykn — 2k, +ak, +bkn) — 0.
Hence, we derive from Lemma 4.5(i) that (2,7 '(z — 2)) € graB, i.e., 2 = Jypz = y. W

Remark 4.7. Let f and ¢ be functions in I'y(#), and specialize Proposition 4.6 to A = 0f
and B = Jg. Then zer (A + B) = Argmin(f + g). Moreover, (4.8) becomes

forn=0,1,...
n

Ty = E Hn,jTj
j=0

2y = proxﬁ/f(Qyn —Tp) + an
Tpyl = Ty + Q(Zn - yn)y

(4.11)

and we conclude that there exists a point y € Argmin(f + g) such thaty,, — yand z, — v.

We now propose a new forward-backward splitting framework which includes existing
instances as special cases. The following notion will be needed to establish strong convergence
properties (see [4, Proposition 2.4] for special cases).

Definition 4.8.[4, Definition 2.3] An operator A: H — 2™ is demiregular at € dom A if,
for every sequence (xy,,un)nen in gra A and every u € Ax such that x,, — x and u,, — u, we
have z,, — .

Proposition 4.9. Let 3 € ]0,+oo[, let ¢ € |0, min{1/2, B}[, let zg € H, let A: H — 2% be
maximally monotone, and let B: H — H be 3-cocoercive, i.e.,

(4.12) (Ve e H)(Vy € H) (x —y| Bz — By)/3 > ||Bx — By

Furthermore, let (7, )nen be a sequencein [,28/(1 + ¢)], let (tn, j)nen,0<j<n be a real array that
satisfies conditions (a)—(d) in Algorithm 1.2, and let (ay,)nen and (b, )nen be sequences in H such
that )~ o Xnllan|| < 400 and Y, xnl|bn| < +o00. Suppose that zer (A + B) # @ and that

(4.13) (IneN) Ane [5,1 - (1 _ ﬁ)] ,
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and set (Vn € N) ¢,, = 2/(4 — v,/ B). For every n € N, iterate

(414) 201 =Tp+ M <J%A (fn — Y (BT, + bn)) + a, — En>, where T, = Z Hn T
j=0

Suppose that one of the following is satisfied:

(a) inf min > 0.
neN 0jan I Z

() an = by = 0, (tn,j)nen0<j<n satisfies (3.36), and one of conditions (a)-(d) in Corol-

lary 3.3 is satisfied.
Then the following hold:
@ Jy,4(@n — BZy) — Ty, — 0.

(ii) Let z € zer (A + B). Then BT, — Bz.

(iii) There exists x € zer (A + B) such that z,, — =x.

(iv) Suppose that A or B is demiregular at every point in zer (A + B). Then there exists
x € zer (A + B) such that x,, — .

Proof. We apply Corollary 3.2 in case (a) and from Corollary 3.3 in case (b). We first
note that (4.14) is an instance of Algorithm 1.2 with m = 2 and (Vn € N) Ty, = J,, 4,
Ty =1d =y, B, €1, = ayn, and ez ,, = —y,b,. Indeed, for every n € N, T1 ,, is oy ,,-averaged
with oy, = 1/2 [10, Remark 4.34(iii) and Corollary 23.9], T , is a n-averaged with as,, =
n/(28) [10, Proposition 4.39], and the averaging constant of T} ,, 75 ,, is therefore given by
(1.13) as

a1n + a3 n — 2a1,na2,n o 2

(4.15) = =
1- Q1 nQ2n 4 — 'Vn/ﬁ

Pn.-

On the other hand, we are in the setting of Problem 1.1(a) since [10, Proposition 26.1(iv)(a)]
yields (Vn € N) Fix (T} ,1,,) = zer (A + B) # @. We also observe that, in view of (4.13),

1—¢ 1—0[1,,1 1—0[27n

(4.16) (VneN) e< A\, <e+ =1, and

) 2 €
(bn a1 n Qg n

which, by (1.13), yields

1+e
4.17 <
@17 RO S Tl

In addition, it results from (4.15) that (Vn € N) A\, < 1/¢p, +e <2 —7,/(20) +e < 2+e.
Therefore,

(4.18) {ZHEN XnAnllernll = (2 +€) Xonen Xnllan|| < 400

Y nen XnAnlleznll 26(2+ )30 cn Xnllball < +oo,

which establishes (3.32) for case (a). Altogether, (4.16), Corollary 3.2(ii), and Corol-
lary 3.3(ii) imply that, for every z € zer (A + B),

(4 19) (Tl,n —1Id )Tg,nfn + (Tg,n — Id)z = (Tl,n —Id )Tgmfn — (Tl,n —Id )T27nZ —0
' (Tyn —1d)zy, — (Toy, —1d )z — 0.
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Now set

(420) (W €N) yp=J,a(@n — 1BFn), Un = @ — Bz,, and v, = BT,

and note that
4.21) (VneN) u, € Ay,.

(i): Let z € zer (A+ B). Then (4.19) yields J,, 4(Z,, — v B%y) — Tp = (11, —1d )12, 7T +
(To —1d)z + (Ton — 1d)Ty — (Ton — 1d )z — 0.
(ii): We derive from (4.19) that

(4.22) ||BZ, — Bz|| = v, | TonTn — Tn — Tonz + 2|| < e M| TonTn — Tn — Tonz + 2|| — 0.

(iii): Let (ky)nen be a strictly increasing sequence in N and let y € #H be such that 7, — .
In view of Corollary 3.2(iv) in case (a), and Corollary 3.3(iv) in case (b), it remains to show
that y € zer (4 + B). We derive from (i) that y, — T, — 0. Hence y;, — y. Now let
z € zer (A + B). Then (ii) implies that Bz,, — Bz. Altogether, v, — vy, vy, — Bz,
Yk, — Tk, — 0, ug, + v, — 0, and, for everyn € N, uy, € Ay, and v, € BTy, . It therefore
follows from Lemma 4.5(ii) that y € zer (A + B).

(iv): By (iii), there exists « € zer (A + B) such that 2, — x. In addition, we derive from
Corollary 3.2(iv) or Corollary 3.3(iii) that

(4.23) Tp—Tpy1 — 0 or T, —z, — 0.

Hence it follows from (4.20) and (i) that y,, — z, and, from (4.20) and (ii), that u,, — —Buz.
In turn, if A is demiregular on zer (A + B), we derive from (4.21) that y, — x. Since
Yn — Tp, — 0, (4.23) yields z,, — x. Now suppose that B is demiregular on zer (A + B). Since
T, — uz, (ii) implies that Z,, — = and it follows from (4.23) that z,, — x. l

Remark 4.10. As noted in Remark 3.4, we can allow errors in inertial multilayer methods
and, in particular, in the inertial forward-backward algorithm. Thus, suppose that, in Proposi-
tion 4.9, A\, = 1 and A has bounded domain. Then J,,.yranTy, = J,cyran (Id +4,4)~! =
dom A is bounded. Hence, it follows from Remark 3.4 that, if )y Xullan| < 400 and
> nen Xnllbn|| < 400, the conclusions of Proposition 4.9(b) under any of assumptions (a)-(c)
of Corollary 3.3 remain true for the inertial forward-backward algorithm

forn=0,1,...
(424) Tp = (1 + nn)xn — MTn—1
Tpt1 = Jry,a (En — Yn(BTy + bn)) + a,.

Remark 4.11. Let f € T'o(H), let g: H — R be convex and differentiable with a 1/3-
Lipschitzian gradient, and suppose that Argmin(f + g) # @. Then Vg is -cocoercive [10,
Corollary 18.17]. Upon setting A = 0f and B = Vg in Proposition 4.9, we see that, for every
n € N, (4.14) becomes

(4.25) i1 =Tn+A\ <prox%f (fn—'yn(Vg(Tn)—kbn)) +an—fn), where 7, = Zun,jxj,
j=0
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and we conclude that there exists = € Argmin(f + ¢) such that z,, — x and Vg(z,) — Vg(x).

Remark 4.12. Various results on the convergence of the forward-backward splitting algo-
rithm can be recovered from Proposition 4.9.

(i) Suppose that (Vn € N) A\, < 1 and (Vj € {0,...,n}) pn; = 6, . Then con-
ditions (a)-(d) in Algorithm 1.2 hold with y,, = 1 by [10, Lemma 5.31]. In
turn, Proposition 4.9(a)(iii) reduces to [19, Corollary 6.5]. In the context of Re-
mark 4.11, Proposition 4.9(a)(iii) captures [24, Theorem 3.4(i)]. In this setting,
under suitable conditions on the errors, it is shown in [23, Theorem 3(vi)] that
(f + 9)(@n) — min(f + g)(H) = o(1/n).

(ii) In the context of Remark 4.11, let (1, )nen be a sequence in [0, 1] that satisfies condition
(b) in Corollary 3.3, and set 1 = zgand g = 0. If v, = v < B and A\, = 1,
Proposition 4.9(b) (iii) covers the scheme

(4.26) (VneN) x4 = prox. ; (wn + 0 (Tn — Tp—1) — 'yng(wn + (T — wn_l))>

studied in [17, Theorem 4.1], where it was established that ), . n|/z, — z,—1|* <
+o0o. In this case, it is shown in [6, Theorem 1] that (f + g)(x,) — min(f + g)(H) =
o(1/n?) .

(iii) If A\, = 1, then Proposition 4.9(b) (iii) under hypothesis (c) of Corollary 3.3 establishes
a statement made in [33, Theorem 1]. Let us note, however, that the proof of [33]
is not convincing as the authors appear to use the weak continuity of some operators
which are merely strongly continuous.

(iv) Suppose that (Vn € N) A\, < (1 —¢)(2+ ¢ —7,/(20)) and (Vj € {0,...,n}) pn,; =
dn,;- Then items (a)(iii) and (a)(iv) of Proposition 4.9 capture respectively items (iii)
and (iv) (a)&(b) of [25, Proposition 4.4]. In addition, in the context of Remark 4.11,
Proposition 4.9(a) (iii) captures [25, Proposition 4.7 (iii)].

(v) Proposition 4.9 also applies to the proximal point algorithm. Indeed, when B = 0, it
suffices to allow 5 = 400 and ay, = 0, to set 1/4+00 = 0 and 1/0 = 400, and to take
(Yn)nen in [g, +o00[. In this setting, the proof remains valid and:

a) Proposition 4.9(b) (i) &(iii) under hypothesis (c) of Corollary 3.3 capture the error-
free case of [2, Theorem 3.1], while Theorem 3.1 covers its general case.
b) Let n € ]0,1/3[, set 0 = (1 — 3n)/2 and ¥ = 2/3, and suppose that \, = 1.
Then Proposition 4.9(b) under hypothesis (d) of Corollary 3.3 yields [3, Proposi-
tion 2.1].
Next, we derive from Corollary 3.2 a mean value extension of Polyak’s subgradient pro-
jection method [40] (likewise, an inertial version can be derived from Corollary 3.3).
Example 4.13. Let C' be a nonempty closed convex subset of H with projector Pc, let f: H —
R be a continuous convex function such that Argmin.f # @ and § = min f(C) is known.
Suppose that one of the following holds:

(i) f is bounded on every bounded subset of H.

(ii) The conjugate f* of f is supercoercive, i.e., limy|— o0 f*(u)/[|ul = 4-o00.

(iii) H is finite-dimensional.

Let n € 10,1[, let € € ]0,n/(2+n)[, let (pn,j)neno<j<n be an array in [0, +o0[ that satisfies
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conditions (a)-(d) in Algorithm 1.2, let (&,,)nen be in [n,2 — 1], let (Ap)nen be in [, (1 —€)(2 —
£,/2)], let s be a selection of Of, and let xg € C. Iterate

forn=0,1,...
Tn = i
4.27) j=0
T = 0 — f(fn) — _ . _ )
Tn4+1 = Tn + )\n <PC <fL’n + Snm‘g(zn)) - xn>7 lf S(.Z'n) 7& 07
L T, if s(Tn) = 0.

Then there exists x € Argmin, f such that z, — .
Proof. Let G be the subgradient projector onto D = {z € H | f(z) < 0} associated with s,
that is,
0— f(x) .
———=s(x), if > 0;
(4.28) GH otz T e @ @
x, if f(x)<86.

Then G is firmly quasinonexpansive [10, Proposition 29.41(iii)]. Now set (Vn € N) T}, =
Po, Ty = 1d +6,(G —1d), a1, = 1/2, and ag,, = &,/2. Then, for every n € H, T\,
is an a1 ,-averaged nonexpansive operator [10, Proposition 4.16], T5,, is an « ,-averaged
quasinonexpansive operator, [10, Proposition 4.49(i)] yields

(4.29) Fix TLnTQm = Fix Tl,n N Fix Tgm =CnNnD= Argmincf,

and Remark 1.3(i) asserts that 77,7y, is an averaged quasinonexpansive operator with con-
stant ¢, = 2/(4 — &,) and A\, < (1 — ¢)/¢,. Thus, the problem of minimizing f over C is a
special case of Problem 1.1(b) with m = 2, and (4.27) is a special case of Algorithm 1.2 with
e1,, = 0and ez, = 0. Now let (k;,),en be a strictly increasing sequence in N and let x € H be
such that 7;, — z. Then, by Corollary 3.2(iii), it remains to show that z € C'n D. We derive
from Corollary 3.2(ii) and (4.29) that T5 Tk, — PcTok, Tk, — 0 and Ty, — 1o, Tk, — 0.
Therefore C' 5 PcTs Tk, = (PoTok, Tk, — TonTk,) + (124, Tk, — Tk, ) + Tk,, —  and,
since C' is weakly closed, = € C. On the other hand, ||GZ,, — Z,| = ||T2nTn — Tnll/&n <
| T T, — Tnl|/n — 0. Since (iii)=-(ii)< (i) [10, Proposition 16.20] and (i) imply that Id —G
is demiclosed at 0 [10, Proposition 29.41(vii)], we conclude that = € FixG = D. B

Remark 4.14. Example 4.13 reverts to Polyak’s classical result [40, Theorem 1] in the case
when (Vn € N) A\, = 1 and (Vj € {0,...,n}) pnj = 0, ;. The unrelaxed pattern \, = 1
is indeed achievable because (Vn € N) A, € [g,(1 —¢)(2 — &,/2)] and (1 —€)(2 — &,/2) >
(1-2)2-02-n)/2)>1=n/2+n)(1+n/2)=1.
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