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Hard-Constrained Inconsistent
Signal Feasibility Problems

Patrick L. Combettes,Senior Member, IEEE, and Pascal Bondon,Member, IEEE

Abstract—We consider the problem of synthesizing feasible
signals in a Hilbert space in the presence of inconsistent convex
constraints, some of which must imperatively be satisfied. This
problem is formalized as that of minimizing a convex objective
measuring the amount of violation of the soft constraints over
the intersection of the sets associated with the hard ones. The
resulting convex optimization problem is analyzed, and numerical
solution schemes are presented along with convergence results.
The proposed formalism and its algorithmic framework unify
and extend existing approaches to inconsistent signal feasibility
problems. An application to signal synthesis is demonstrated.

Index Terms—Convex feasibility problem, fixed point, Hilbert
space, inconsistent constraints, monotone operator, optimization,
signal synthesis.

I. PROBLEM STATEMENT

T HROUGHOUT the signal space is a real Hilbert space
, with scalar product norm and distance .

The distance from a signal to a nonempty set
is defined as . denotes
the class of all lower semicontinuous proper convex functions
from into [9]. Given and , the
closed and convex set lev is the
lower level set of at height and the nonempty convex set
dom its domain.

The goal of a convex set theoretic signal synthesis (design
or estimation) problem in is to produce a signal that
satisfies convex constraints, say , where

is a finite index set, and .1 The problem can
simply be stated in the set theoretic format

Find where lev (1)

This convex feasibility framework has been applied to nu-
merous signal processing problems, e.g., [5]–[7], [10], [13],
[16]–[18]. Of course, in writing (1), it is tacitly assumed
that the problem is consistent in the sense that the con-
straints are compatible so that . However, signal
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1As is prevalent in optimization theory [1], [9], [14], functions are allowed

to take the value+1. Thus, a functiong defined onA � H can conveniently
be extended to the whole spaceH by settingg(x) = +1 if x =2 A.

feasibility problems may turn out to be inconsistent for a
variety of reasons. In design problems, this situation typically
results from the incorporation of specifications that are too
demanding and therefore conflicting. In estimation problems,
it may be due to inaccurate deterministic constraints, to overly
aggressive confidence levels on stochastic constraints, or to
inadequate data modeling [5]. Specific examples in the areas
of signal deconvolution, image recovery, data window design,
pulse shape design, and tomography will be found in [5],
[6], [10], and [13]. Naturally, when the feasibility problem
is inconsistent, , and (1) must be reformulated in a
physically meaningful way. Two frameworks emerge from the
literature.

• Framework 1 [10], [20]: Two constraints are present,
say . We seek a signal satisfying the first
constraint and closest to the set of signals satisfying the
second, i.e., and .

• Framework 2 [5]: The number of constraints is arbitrary.
We seek a signal in that is closest to all the con-
straint sets in a weighted least-squares sense, i.e.,
a minimizer of the function ,
where , and .

In this paper, we propose a broad convex programming
formulation for inconsistent problems that unifies and extends
the above frameworks. Underlying our formulation is the
splitting of the collection of constraints into hard and soft
constraints. Hard constraints may, for instance, arise from
imperative specifications in design problems, e.g., stability
in filter design, or from reliablea priori information in
estimation problems, e.g, non-negativity in image restoration.
The problem is then formulated as that of finding a signal

, which satisfies the hard constraints and least violates—in
some suitable sense—the soft ones.

The remainder of the paper is divided into four sections. The
hard-constrained signal feasibility problem is formalized and
analyzed in Section II, and its numerical solution is discussed
in Section III. Section IV is devoted to an application to pulse
shape design, and Section V concludes the paper with some
remarks. Technical proofs are relegated to Appendix A.

II. M ATHEMATICAL ANALYSIS

A. General Formulation

denotes the possibly empty hard constraints index
set, the nonempty soft constraints index set,

the hard feasibility set and, by convention,
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Fig. 1. S1 andS2 are the hard constraint sets;S3, S4, andS5 are the soft
constraint sets. The dashed lines represent level curves(lev=� �4)1�i�5 of
the objective�4 andx? an optimal signal, i.e., a minimizer of�4 overS .

we put if . Moreover, we define
dom , and assume henceforth that

. is the class of all increasing convex functions
from into that vanish (only) at 0; every
is extended to the argument by setting .
For every .

The amount of violation of the soft constraints
is measured by an objective function
taking the general form

where (2)

Such functions arise as exterior penalty functions in con-
strained optimization [14], [15], [21], and they possess all the
properties required for our purposes.

Proposition 1: Let be any objective constructed via (2),
and let and be any two points in . Then, we have the
following.

i) .
ii) .
iii) If and

, then .

In words, ii) states that vanishes only when satisfies
all the soft constraints; iii) states that if violates a soft
constraint more than does and, at the same time, does not
violate any soft constraint less thandoes, then will be
more penalized than.

Mathematically, the hard-constrained signal feasibility prob-
lem is to minimize the objective of (2) over the hard
feasibility set (see Fig. 1). If we set ,
the problem reads

Find (3)

The function is lower semicontinuous, convex, and proper
by Proposition 1(i), whereas the set is closed and convex
by construction. Hence, (3) is a standard convex optimization
problem, and powerful tools are available to analyze and solve
it. Thus, as is well known, any minimizer is global, and there-
fore, we do not have to contend with local minimizers outside

. Furthermore, relatively simple conditions are available for
the existence and the uniqueness of solutions, as well as for
their characterization.

In order to establish existence and uniqueness conditions,
some definitions need to be recalled [15], [21]. Take
and a convex set , and letÅ be the interior of . Then,

is strictly convex over if, for any two distinct points
and in dom ;
is strictly convex if, for any two distinct points and in

, Å. Finally, is weakly coercive over if
.

Proposition 2: The solution set in (3) is closed and
convex. It is nonempty if, for some , is weakly coercive
over . Finally, it contains at most one point if one of the
conditions below holds.

i) For some and some is strictly
convex over lev .

ii) has no free minimizer in and, for every
is strictly convex and continuous over .

Moving on now to the characterization of solutions, fix
arbitrarily , and . Let be
the projector onto , i.e., is the unique point in
such that . Then [1, Th. 2.3]

(4)

On the other hand, it follows from Proposition 1(i) and [9,
Prop. II.2.1] that, if is differentiable2 at , then

(5)

Upon comparing (4) and (5), we obtain
. This key fact is recorded below, where

Fix denotes the set of fixed points
of an operator and Id the identity operator
on .

Proposition 3: Suppose that is differentiable on
with derivative . Then, for any
Fix Id .

Finally, let us note that if the problem is consistent, i.e.,
, then , and (3) reverts to (1). Indeed,

implies , and Proposition 1(ii) then asserts that
is the set of minimizers of over . Hence, since

, we obtain , i.e., .

B. Application to Proximity Functions

An important special instance of (2) is the convex combi-
nation of halved squared distances

(6)

where , and . Such an objec-
tive will be called a proximity function.

2Differentiability will always be understood in the sense of Fréchet. Indeed,
we shall deal only with continuously differentiable functions hereafter and,
for such functions, Ĝateaux and Fréchet derivatives coincide [21].
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It is readily noted that has full domain: .
Moreover, for every , the function is
differentiable on with derivative Id , where is
the projector onto [1, Th. 5.2]. Consequently, is also
differentiable on and Id . Upon
taking in Proposition 3, the solution set can therefore
be written as

Fix (7)

We can further specialize this result to Frameworks 1 and 2
described in the Introduction and recover the characterizations
of [10] and [5], respectively. Thus, in Framework 1,

, and (7) therefore yields Fix . In
Framework 2, Id , and
(7) therefore yields Fix .

The next proposition furnishes existence and uniqueness
conditions in terms of properties of the constraint sets .

Proposition 4: The solution set in (7) is not empty if,
for some is bounded. It contains at most one point
if, for some is strictly convex, and .

III. SOLUTION METHODS

While there exists no universal method to solve the gen-
eral convex minimization problem (3), various schemes are
available that exploit certain properties of its constituents, e.g.,
[14] and [15]. As it is impossible to attempt a presentation of
all pertinent algorithms, we limit ourselves to a fixed-point
approach that will be seen to cover the algorithms employed
in Frameworks 1 and 2. It is assumed throughout this section
that the solution set is not empty (see Proposition 2) and
that is differentiable on .

A. Fixed-Point Iterations

Proposition 3 states that the hard-constrained signal fea-
sibility problem (3) is a fixed-point problem. In connection
with the numerical solution of such problems, the following
definitions are pertinent [8], [21]. Let and be two positive
real numbers, let , and let and be any two
points in . An operator is -lipschitzian on if

(8)

Furthermore, is strictly contractive or nonexpansive accord-
ingly as or in (8). is -strongly monotone
on if

(9)

Finally, is -cocoercive on if

(10)

and firmly nonexpansive if in (10).
In the following, given , we set Id

, and let and be any two points in . Since
is a projector onto a nonempty closed convex set, it is firmly

nonexpansive [1, Prop. 2.7.(i)] and, therefore, nonexpansive.
Hence

(11)

This inequality plays a central role in analyzing the properties
of . Thus, if we assume that is -lipschitzian and
-strongly monotone on , (11) implies

(12)

Therefore, is a strict contraction if
, and the Banach–Picard contraction theorem yields at

once the following result, where denotes the set of non-
negative integers (see also [21, Th. 46.C] for a more general
perspective).

Proposition 5: Suppose that is -lipschitzian and -
strongly monotone on . Take , and
let

(13)

Then, converges strongly to the unique point
in . More specifically, the convergence is linear with rate

, i.e.,

(14)

Although algorithm (13) displays nice convergence prop-
erties, its scope is limited by the stringent requirement that

be -strongly monotone on . To shed more light on
this strong convexity property of , let us describe a typical
situation in which it is fulfilled.

Proposition 6: Suppose that for some ,
and , where is a bounded
linear operator, , and . Given ,
suppose that

and (15)

Then, is -strongly monotone on with .
The type of constraint function described above is not

uncommon in signal synthesis problems, e.g., [6, Sec. IV.B]
and [18]. However, (15) may be difficult to fulfill in practice.

An inspection of (8)–(10) shows that lipschitzian strongly
monotone operators are cocoercive. Assuming that
belongs to this larger class of operators will lead us to a more
widely applicable algorithm. Indeed, if is -cocoercive
on , we derive from (11) the inequality

(16)

which shows that is nonexpansive if . The conver-
gence result stated below can then be established.
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Proposition 7: Suppose that is -cocoercive on ,
and take , and such that

. Let

(17)

Then, converges weakly to a point in . The con-
vergence is strong if is boundedly compact.3

A few remarks are in order concerning Algorithm (17).
First, we observe that it is well defined since is convex,
which forces . Second, if is contained in a
finite-dimensional affine subspace, it is boundedly compact,
and we obtain a simple instance of strong convergence.
Third, the algorithm allows for variable relaxation parameters

over the course of the iterations. Several theoretical
and numerical studies have shown that this flexibility could
be effectively exploited to enhance the progression of such
algorithms toward a solution, e.g., [5]–[7] and the references
therein.

The signals generated by Algorithm (17) are arbitrary points
in the solution set . In some problems, it may be desirable to
obtain the signal in , which is the closest to some reference
signal [4]. The next result describes a simple scheme for
generating such a solution.

Proposition 8: Let be the projector onto and, given
, let be the convex hull of . Suppose that

is differentiable on and that is -cocoercive on
. Take and such that

(18)

Let and

(19)

Then, converges strongly to .
An important example of sequence satisfying (18) is given

by .
Unlike Proposition 7, Proposition 8 offers strong conver-

gence without additional conditions on . Moreover, the limit
point is a specific signal, namely, the best approximation to
the reference signal from . However, algorithm (18)–(19)
is less flexible than (17), and it requires differentiability on
a larger set. The second limitation actually vanishes when

is an affine subspace. Indeed, the orthogonality property
of projections ensures and, therefore,

can be used in lieu of in Proposition 8.

B. Application to Proximity Functions

We now focus on the objective (6). According to Proposition
4, if is bounded for some . As noted in
Section II-B, Id . Consequently, since
the operatorsId are firmly nonexpansive [1, Prop.
2.7(ii)], so is the convex combination by convexity of

3Its intersection with every closed ball inH is compact, e.g., [6].

[see (A4)]. We derive immediately from Proposition 7
the following result.

Proposition 9: Suppose that is as in (6), and take
such that ,

and . Let

(20)

Then, converges weakly to a point in . The con-
vergence is strong if is boundedly compact.

It is noteworthy that the algorithms used in Frameworks 1
[10] and 2 [5], as well as their weak convergence results, are
encompassed by Proposition 9. In Framework 1, , and

. If we further specialize (9) by imposing
and , Proposition 9 secures the weak

convergence to a solution of the under-relaxed alternating
projection method

(21)

This is precisely the result given in [10]. On the other hand,
in Framework 2, , Id, and . It follows
from Proposition 9 with these parameters and that the
parallel projection method

(22)

converges weakly to a solution. This result is given in [5].
With regard to the alternating projection method, let us

remark that the unrelaxed scheme
also converges weakly to a fixed point of [12,

Th. 2]. However, although the -set extension of this scheme,
i.e., the so-called (unrelaxed) POCS algorithm

(23)

converges weakly to a point in [12, Th. 2], this point fails
in general to exhibit any degree of proximity with respect to
the other sets [2].

In the present context, Proposition 8 extends [5, Th. 5]
and [6, Th. 5.6]. We wind up this section by applying it to
the problem of synthesizing the -optimal hard-constrained
signal of minimum energy, i.e, .

Proposition 10: Suppose that is as in (6), and take
. Let , and

(24)

Then, converges strongly to .
Let us add that Algorithm (24) is of interest even in the

consistent case. We will then put Id and in
(24) and obtain strong convergence to the feasible signal of
minimum energy. This algorithm is easier to implement than
those presented in [4], which require the storage of outward
normals to the sets at each iteration.
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IV. NUMERICAL EXAMPLE: PULSE SHAPE DESIGN

We revisit a design problem presented in [5], whose goal is
to synthesize a pulse shape for digital communications over
European power lines under specifications that give rise to
four incompatible constraints:

• : The lines have a bandwidth of 300 Hz and are
contaminated by a DC component and the harmonic noise
of the 50 Hz power distribution system. To avoid DC
and harmonic noise and be compatible with the available
bandwidth, the Fourier transform of the pulse should
vanish at the zero frequency, at integer multiples of 50
Hz, and beyond 300 Hz.

• : The pulse is symmetric about its midpoint, and its
main lobe has amplitude 1.

• : The energy of the pulse does not exceed a prescribed
bound in order not to interfere with other systems.

• : The duration of the pulse is 50 ms, and it has periodic
zero crossings every 3.125 ms to avoid intersymbol
interference.

Numerically, the problem is discretized with an underlying
sampling rate of 2560 Hz, and the parent Hilbert space
is the euclidean space of -point signals

, with norm .
The associated sets and projections are defined as follows,
where denotes the complement of a set and its
characteristic function, i.e., if and
if (see [5] and [6] for details).

• is associated with the vector subspace

(25)

where is the -point discrete Fourier transform (DFT)
of and the set of frequencies at whichmust vanish.
The projection of onto is the inverse DFT of

.
• is associated with the affine subspace

and (26)

where . Now, let
. Then, the projection of onto is

.
• is associated with the closed ball

(27)

The projection of onto is

if
otherwise.

(28)

• is associated with the vector subspace

(29)

where is the set of time indices in the zero areas. The
projection of onto is .

Fig. 2. Pulse generated without hard constraint.

Fig. 3. Normalized spectral density of the pulse of Fig. 2.

Three design scenarios based on the objective (6) and
algorithm (20) are considered:

• Scenario 1: No hard constraint is imposed.
, and

Id in (20). The results are shown in Figs. 2 and 3.
• Scenario 2: is the hard constraint.

, and in (20).
The results are shown in Figs. 4 and 5.

• Scenario 3: is the hard constraint.
, and in (20).

The results are shown in Figs. 6 and 7.

It is important to observe that since is bounded, a solution
exists in each scenario by Proposition 4. In addition, (strong)
convergence of (20) to a solution is guaranteed by Proposition
9. In connection with Scenario 3, let us remark that a pulse
satisfying can also be obtained by implementing POCS
(23) in the form

(30)
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Fig. 4. Pulse generated withC1 as a hard constraint.

Fig. 5. Normalized spectral density of the pulse of Fig. 4.

Fig. 6. Pulse generated withC4 as a hard constraint.

Fig. 7. Normalized spectral density of the pulse of Fig. 6.

Fig. 8. Pulse generated by POCS.

However, as noted in Section III-B, there is no guarantee
that the pulse thus obtained is close to the other sets
in any sense. One can check in Figs. 8 and 9 thatdoes
indeed satisfy but is worse than the pulse produced
by Scenario 3 and displayed in Figs. 6 and 7 in terms of
satisfying the remaining constraints . Quantitatively,
this is confirmed by the fact that , whereas

. We conclude by pointing out that the pulse
shape design problem of [16] was treated within Framework
1 and was therefore limited to two constraints.

V. CONCLUDING REMARKS

In this paper, we have studied the problem of synthesiz-
ing signals in Hilbert spaces subject to inconsistent convex
inequality constraints. Our problem formulation, which con-
sists of minimizing an objective function penalizing the
violation of the soft constraints over the feasibility set
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Fig. 9. Normalized spectral density of the pulse of Fig. 8.

induced by the hard constraints, covers and extends existing
approaches. General conditions for the existence and the
uniqueness of solutions involving only the constraint functions
have been established.

In terms of numerical solution schemes, we have adopted a
fixed-point approach that led to gradient projection methods
for which we have provided convergence conditions under
various hypotheses. One such scheme was seen to include
as special cases the algorithms used in existing approaches
and to be adequate for the proposed pulse shape synthesis
problem. Naturally, these methods are by no means universally
applicable. Indeed, they impose that be differentiable on

, and furthermore, their efficient implementation implicitly
requires that be geometrically simple so that projections
onto this set be easily computable (see [6] and [17] for
examples of constraint sets admitting closed-form projectors).
Alternative schemes should therefore be investigated. In this
regard, let us notice that if a reasonably tight upper bound
is available for , then the above restrictions can be lifted to
the extent that the exact problem (3) can be approximated by

Find lev

lev lev (31)

This consistent feasibility problem can be solved via the block-
iterative extrapolated subgradient projection method of [7],
which requires only the ability to compute subgradients of
the functions and .

Our last remark concerns the fuzzy set theoretic signal
estimation framework proposed in [3]. The motivation behind
this approach to (1) is to introduce a graded transition between
the signals that satisfy a constraint and those that
violate it when the information inducing this constraint is
imprecise. Each constraint is associated with a fuzzy set, i.e., a
membership function taking value 1 on . The
fuzzy feasibility problem is then formulated as that of finding

a signal that maximizes the membership functionof the
intersection of the fuzzy constraint sets, say .
Now, let (resp. ) be the index set of the
constraints based on hard (resp. imprecise) information. Then,
for , is simply the characteristic function of

, and for , we can take , where
. Consequently, (2) gives

(32)

which casts this fuzzy signal feasibility problem in the general
format (3).

APPENDIX A
PROOFS

Proof of Proposition 1: i) Fix . Since dom
dom in (2), dom , and is therefore
proper. It remains to show that is convex and lower
semicontinuous, i.e., in light of [1, Props. 1.5(a) and 2.2(a)],
that is convex and lower semicontinuous. The convexity
of follows from [1, Prop. 2.2(d) and (e)]. To establish
its lower semicontinuity, it suffices to show that lev
is closed for an arbitrary [1, Prop. 1.4(c)]. If ,
lev is certainly closed. Now, suppose .
Since , it is continuous relative to [14, Sec.
I.3.1] with [14, Sec. I.2.3]. Hence,
is an increasing bijection from onto and so is
its inverse . Accordingly, lev lev
lev . However, since is lower semicontinuous,
lev is closed. Assertions ii) and iii) follow at once
from (2).

Proof of Proposition 2: In view of (3), can be written
as an intersection of closed and convex sets, namely,

lev , and it is thereby closed and convex.
In connection with the existence of solutions, let us recall a
fundamental fact [9, Prop. II.1.2]: Any function in achieves
its infimum over any nonempty, closed, convex, and bounded
set over which it is proper. Now, fix , and set

lev . Note that is nonempty, closed,
and convex and that minimizing over is equivalent
to minimizing it over . By virtue of Proposition 1(i), it
therefore suffices to show that is bounded if, for some

, is weakly coercive over . Suppose first that .
Then, by the weak coercivity of

(A1)

We thus obtain the boundedness of and, in turn, that of
. Suppose next that . By (2), .

Hence, since is weakly coercive and

(A2)
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Therefore

(A3)
Hence, lev is bounded and so is . We now turn
to uniqueness. i) Since is strictly convex over

lev , so are and, by virtue of (2),
. The claim therefore follows from [9, Prop. II.1.2] since

minimizing over is equivalent to minimizing it over
. ii) Suppose that contains two distinct points, say

and , and let . As shown above, is
convex, and therefore, , i.e., is a minimizer of
over . Now, fix . Then, ,
and it follows from the strict convexity of over that

. The continuity of at

then yields . Since is finite, we obtain

, say for some ball . However, since
, minimizes over . In other words, is a

local minimizer of and, therefore, by convexity of , a
global one [21, Prop. 42.3]. This contradicts the assumption
that has no free minimizer in . We conclude that
contains at most one point.

Subsequently, we shall need the well-known parallelogram
identity

(A4)

Proof of Proposition 4: follows from Proposition
2 and the observation that if is bounded, then is
weakly coercive. Let us now prove that the second assertion
follows from Proposition 2(i) by proving that is
strictly convex over . Let and be any two distinct points
in , and . Since

, (A4) implies

(A5)

(A6)

If then, since is strictly convex, .

However, since and, in turn, .
Therefore, the inequality in (A5) is strict. On the other hand,
if , then , and
we obtain a strict inequality in (A6). In both alternatives, we
obtain , and the claim is
proved.

Proof of Proposition 6: Let and be any two points in
. Then, using (A4) and the properties of, we obtain

(A7)

However, under our hypotheses, on . It then
follows from the convexity of the functions
and (2) that

(A8)

This inequality translates the fact that is strongly convex
with modulus on , and it implies that is
-strongly monotone on [14], [15].
Proof of Proposition 7: The first assertion is a direct ap-

plication of [8, Prop. 9] with the nonexpansive operator
Id . This result also asserts that lies in

some closed ball . Hence, by construction, lies in
, which is compact if is boundedly compact. The

proof is completed by noting that the notions of weak and
strong convergence coincide in compact sets [11, Th. 7.69].

Proof of Proposition 8: This proof is a direct application of
[19, Th. 2] with the nonexpansive operator Id .
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de Paris XI, Orsay, France, in 1998.

He is currently a Research Scientist at the
CNRS, Laboratoire des Signaux et Syst`emes,
Gif-sur-Yvette, France.


