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Hard-Constrained Inconsistent
Signal Feasibility Problems

Patrick L. CombettesSenior Member, IEEEand Pascal Bondomember, IEEE

Abstract—We consider the problem of synthesizing feasible feasibility problems may turn out to be inconsistent for a
signals in a Hilbert space in the presence of inconsistent convexyariety of reasons. In design problems, this situation typically
constraints, some of which must imperatively be satisfied. This yag1ts from the incorporation of specifications that are too
problem is fﬁrmahzed asfthatlof mlnl;nll’z]lng itconvex objective demanding and therefore conflicting. In estimation problems
measuring the amount of violation of the soft constraints over | X o _ '
the intersection of the sets associated with the hard ones. Theit may be due to inaccurate deterministic constraints, to overly
resulting convex optimization problem is analyzed, and numerical aggressive confidence levels on stochastic constraints, or to
solution schemes are presented along with convergence resultsinadequate data modeling [5]. Specific examples in the areas
The proposed formalism and its algorithmic framework unify ot gignal deconvolution, image recovery, data window design
and extend existing approaches to inconsistent signal feasibility | h desi ’ dt h ' il be f din 5 '
problems. An application to signal synthesis is demonstrated. FGL]I S([elos] a;:d [(]a.gl]gnl\,la?lrjrallyc/)mviﬁgiptf)(eV\flleaSiEilit?/u;rolirI]er[n],

Index Terms—Convex feasibility problem, fixed point, Hilbert is ,incon,sistentS : & and &1) must be reformulated in a

space, inconsistent constraints, monotone operator, optimization, . .
; . physically meaningful way. Two frameworks emerge from the
signal synthesis. litorat
iterature.

e Framework 1 [10], [20]: Two constraints are present,
say I = {1,2}. We seek a signat* satisfying the first
HROUGHOUT the signal space is a real Hilbert space constraint and closest to the set of signals satisfying the

|. PROBLEM STATEMENT

‘H, with scalar product- | -}, norm|| - || and distancel. second, i.e.z* € S andd(z*, S2) = inf,cs, d(z, S2).
The distance from a signal € 7 to a nonempty sel C X » Framework 2 [5]: The number of constraints is arbitrary.
is defined asd(x,A) = inf{||lx —y|| | v € A}. I' denotes We seek a signat* in H that is closest to all the con-
the class of all lower semicontinuous proper convex functions straint setg S, );y in a weighted least-squares sense, i.e.,
from H into |—oo, +o0] [9]. Giveng € T and « € R, the a minimizerz* of the functionz — >, ; w;d(x, S;)?,
closed and convex set lexg = {z € H | g(z) < a} is the where (w;)ic; €10,1], and} ", w; = 1.
lower level set Ofg at hEighta and the nonempty convex set |n this paper, we propose a broad convex programming
domg = {z € H | g() < +oo} its domain. formulation for inconsistent problems that unifies and extends

The goal of a convex set theoretic signal synthesis (desigie above frameworks. Underlying our formulation is the
or estimation) problem ir#{ is to produce a signat* that splitting of the collection of constraints into hard and soft
satisfies convex constraints, s@yi € I) g;(x*) < 0, where constraints. Hard constraints may, for instance, arise from
I'is a finite index set, andg;)ic; C I'.* The problem can imperative specifications in design problems, e.g., stability
simply be stated in the set theoretic format in filter design, or from reliablea priori information in

. x . ‘ g L ‘ estimation problems, e.g, non-negativity in image restoration.
Find 2™ € 5 = ZDIS“ where(vi € 1) S = levogi- (1) The problem is then formulated as that of finding a signal
z*, which satisfies the hard constraints and least violates—in
This convex feasibility framework has been applied to Nnugme suitable sense—the soft ones.
merous signal processing problems, e.g., [5}-{7], [10], [13], The remainder of the paper is divided into four sections. The
[16]-{18]. Of course, in writing (1), it is tacitly assumednard-constrained signal feasibility problem is formalized and
that the problem is consistent in the sense that the Cofhalyzed in Section II, and its numerical solution is discussed
straints are compatible so th#t # <. However, signal i section III. Section IV is devoted to an application to pulse
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@G. Furthermore, relatively simple conditions are available for
the existence and the uniqueness of solutions, as well as for
their characterization.

In order to establish existence and uniqueness conditions,
some definitions need to be recalled [15], [21]. Take I’
and a convex sett C H, and letA be the interior ofA. Then,
g is strictly convex overA if, for any two distinct pointse
andy in Andomg, g((z +)/2) < (9(z) +9(y))/2; A
is strictly convex if, for any two distinct points andy in
A, (z +v)/2 € A. Finally, g is weakly coercive ovef{ if
lim)|z )| 400 9(x) = +00.

Proposition 2: The solution setG in (3) is closed and
convex. Itis nonempty if, for somee I, g; is weakly coercive
over H. Finally, it contains at most one point if one of the

conditions below holds.
Fig. 1. S; andS2 are the hard constraint setS;, S4, and S5 are the soft

. A . A + . .
constraint sets. The dashed lines represent level clwes.., 22 )1 <; <5 of i) Forsomey € S4#ND= and some € 1=, g;" is strictly
the objectiveP andz* an optimal signal, i.e., a minimizer &f& over S4. convex overS4 N |eV§¢,A(u)<I>A.

i) ®* has no free minimizer i54 and, for everyi € 14,
we putSA = H if IA = @. Moreover, we defines?® — g is strictly convex and continuous ovér*.

ﬂ‘cIA S;, DA~ = ﬂ‘UA domyg;, and assume henceforth that Moving on now to the characterization of solutions, fix

SANDA # @. Fis the class of all increasing convex functiongrbitrarily z* € 5‘; y € H’A andy €]0,4oof. Let P4 bf

from [0, +oc[ into [0, +oc] that vanish (only) at 0; ever € #  the projector ontas®, i.e., P (92 is the unique point in5

is extended to the argumentoo by setting f(+oc) = 400, Such thatljy — P4(y)[| = d(y, 5*). Then [1, Th. 2.3]

For everyg € I', gt = max{0, g}. *_ pA() o (Vo e 54 * *_ ) <0 4
The amount of violation of the soft constraintg;(z) < * W) & (Ve )@ mefat o) <0 ()

0);c7» is measured by an objective functich™ : H — On the other hand, it follows from Proposition 1(i) and [9,

[0, +0oc] taking the general form Prop. 11.2.1] that, if®2 is differentiablé at z*, then
4 =Y fiogh, where(fi)icra C F. 2) P2 (z%) = a* &
S (Vx € 5%) (a"—2|VO2(a") <0 (5)

Such functions arise as exterior penalty functions in con- (vz € S%) (z* —z|a* — (¥ —yVO2(2*))) < 0.

strained optimization [14], [15], [21], and they possess all the ) .

properties required for our purposes. Upon comparing (4) and (5), we obtairt € G & z* =
Proposition 1: Let ®* be any objective constructed via (2)2* (z* —7V®(z*)). This key fact is recorded below, where

and letz andy be any two points inD2. Then, we have the FiXT = {z € A |z = T(x)} denotes the set of fixed points

following. of an operatofl’ : A C ‘H — H and Id the identity operator
i) &2 e I. onr. e
i) ®2(z) = 0 & x € 52, Proposition 3: Suppose thatb~ is differentiable onS4
iy If (3i € 1) gty) > gf(z) and (vi € I2) with derivative V@i. Then, for any~y €]0,+o0c[,G =
7 o ? 1 A
gj_(y) > gj'(x), then@A(y) > (I)A(.Z‘) Fix P* o (ld — ’YV(I) )

Finally, let us note that if the problem is consistent, i.e.,
S # J, thenG = S, and (3) reverts to (1). Indeed;, # &
implies S© # @, and Proposition 1(ii) then asserts that
%2 s the set of minimizers ofb® over M. Hence, since
S4 NS4 £, we obtainG = S4 NS4, ie.,G=S5.

In words, ii) states tha®* () vanishes only when satisfies
all the soft constraints; iii) states that if violates a soft
constraint more tham does and, at the same time, does n
violate any soft constraint less thandoes, theny will be
more penalized tham.

Mathematically, the hard-constrained signal feasibility pro

lem is to minimize the objectivab® of (2) over the hard % Application to Proximity Functions

feasibility setS4 (see Fig. 1). If we set* = inf, s 2 (), An important special instance of (2) is the convex combi-
the problem reads nation of halved squared distances
Findz* € G = {z € 5% | @2(z) = o*}. 3 a_1 (- S)?
ind z* € {z € §* | 2% (x) = o™} 3) e =3 > wid(-, S;) (6)

The function®® is lower semicontinuous, convex, and proper ers

by Proposition 1(i), whereas the sgt is closed and convex where (w;);c7~ CJ0,1], and > icro wi = 1. Such an objec-
by construction. Hence, (3) is a standard convex optimizatigie will be called a proximity function.
problem, and powerful tools are available to analyze and SOIV%Differentiability will always be understood in the sense oééfret. Indeed,

it. Thus, as is well known, any mlnilmlzer 1S gllo_ba.l' and ther%e shall deal only with continuously differentiable functions hereafter and,
fore, we do not have to contend with local minimizers outsider such functions, Gteaux and Frchet derivatives coincide [21].
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It is readily noted thatd® has full domain:D® = H. nonexpansive [1, Prop. 2.7.(i)] and, therefore, nonexpansive.
Moreover, for everyi € I#, the functiond(-,S;)?/2 is Hence
differentiable on’H with derivative Id— F;, where F; is

the projector ontoS; [1, Th. 5.2]. Consequentlyp® is also 17(z) = T(y)||?
differentiable on and V&4 = Id — 3;c;a wi ;. Upon = ||PA(x — VP2 (z)) — PA(y — yVE2 (y)|?
tbaekmg_fy = 1 in Proposition 3, the solution set can therefore <llw—y-— ,Y(V(I)A(x) _ V(I)A(y))HQ
wrtten as =llz —ull? — 2y — y | V4 (2) — VEA(y))
G=FixP*o Y wF,. 7) + 2| VE=(x) — V= (y)||°. (11)

icel>

- This inequality plays a central role in analyzing the properties
We can further specialize this result to Frameworks 1 ando? 7. Thus, if we assume tha’®* is j-lipschitzian and
described in the Introduction and recover the characterizatiopstrongly monotone ors, (11) implies
of [10] and [5], respectively. Thus, in Framework2$ = P,

I2 = {2}, and (7) therefore yields? = FixP; o P,. In |T(z) = TW)II* < 1= ~v2n— 8Nz —vll*>.  (12)
Framework 2,/4 = &, S4 = H, PA = 1d, I = I, and _ _ o
(7) therefore yieldsi = Fix 3, w; ;. Therefore, T : 54 — 5% is a strict contraction ify <

The next proposition furnishes existence and uniquenedy/ %, and the Banach—Picard contraction theorem yields at
conditions in terms of properties of the constraint $&t3,;. once the following result, wher&N denotes the set of non-

Proposition 4: The solution set7 in (7) is not empty if, Negative integers (see also [21, Th. 46.C] for a more general
for somei € I, S; is bounded. It contains at most one poinP€rSpective).
if, for somei € I, S is strictly convex, ands; N §4 = &. Proposition 5: Suppose that/®* is f-lipschitzian andy-

strongly monotone ois4. Takey €]0,2n/3%[, 7o € S*, and
[ll. SoLUTION METHODS et

While there exists no universal method to solve the gen- (Vn eN) zpp1 = PA(z, — VO (2,)).  (13)
eral convex minimization problem (3), various schemes ar% . .
available that exploit certain properties of its constituents, e_(%,en, (@n)nz0 CONVerges strongly to the.un.lque pqlmt
[14] and [15]. As it is impossible to attempt a presentation G. More specm(;aIQIy,. the convergence is linear with rate
all pertinent algorithms, we limit ourselves to a fixed-poinf = V1 —2yn+5%7% Le,
approach that will be seen to cover the algorithms employed (Vn € N)
in Frameworks 1 and 2. It is assumed throughout this section

that the solution sefs is not empty (see Proposition 2) and Although algorithm (13) displays nice convergence prop-

lzn — 2" < 671 = K)o —zol. (14)

that @4 is differentiable ons*. erties, its scope is limited by the stringent requirement that
V&4 be n-strongly monotone ois. To shed more light on
A. Fixed-Point Iterations this strong convexity property ab2, let us describe a typical

Proposition 3 states that the hard-constrained signal fé4uation in which it is fulfilled.
sibility problem (3) is a fixed-point problem. In connection Proposition 6: Suppgse that for somee IA? fiit—t,
with the numerical solution of such problems, the foIIowin?"”in ta v || L(z) —r||* =&, whereL : H — 7 is a bounded
definitions are pertinent [8], [21]. Let ands be two positive linear operatory € H, and¢ €0, +oo[. Given x €]0, 4-o0f,
real numbers, e # C C A C 'H, and letr andy be any two SUPPOS€ that
points inC. An operator” : A — H is 3-lipschitzian onC if (Vo€ S8 L@ > xllell and [|Lz) —r|? > £ (15)

— < — . . .
1) = Tl < Blle = ] (8) Then, V&4 is n-strongly monotone o4 with n = 2x2.

Furthermore is strictly contractive or nonexpansive accord- | € type of constraint functiop; described above is not
ingly as3 €]0,1[ or 8 = 1 in (8). T is 7-strongly monotone uncommon in signal synthesis problems, e.g., [6, Sec. IV.B]

on C if and [18]. However, (15) may be difficult to fulfill in practice.
An inspection of (8)—(10) shows that lipschitzian strongly
(x—y | T(x) = T(y)) > nllz — y||% (9) Mmonotone operators are cocoercive. Assuming (L
belongs to this larger class of operators will lead us to a more
Finally, 7" is n-cocoercive onC if widely applicable algorithm. Indeed, W&~ is 5-cocoercive

on S*, we derive from (11) the inequality

1T (x) - T(y)|I?
and firmly nonexpansive ify = 1 in (10). < lz =yl = v(2n = PIIVES(2) — VO (y)|I*  (16)
In the following, giveny €]0, +oof, we setl’ = P*o(ld —
yV®4), and letz andy be any two points in54. Since P4  which shows thaf’ is nonexpansive ify < 2n. The conver-
is a projector onto a nhonempty closed convex set, it is firmfyence result stated below can then be established.

(z =y | T(x) = T(y)) 2 nllT(x) = T(y)>  (10)
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Proposition 7: Suppose thal’®* is n-cocoercive ons*, || - ||* [see (A4)]. We derive immediately from Proposition 7
and takey €]0,27], o € S*, and(\,).>0 C [0,1] such that the following result.
Y onsoAn(l = Ay) = +oo. Let Proposition 9: Suppose tha* is as in (6), and take, €

S84, (M)nzo0 C [0,1] such thatd” -, A(1 — A,) = 400,
(Vn €N} zni1 = (1= Aa)an + A P4 (2 — ’VV(I)A(xn))- and y €]0,2]. Let B

17 (VneN) zp41
Then, (z,,).>0 converges weakly to a point i¥. The con-
vergence is strong i is boundedly compact. =1 =A)zn + P4 (1 —Y)zp + Z w; Py(xy,)
A few remarks are in order concerning Algorithm (17). iers
First, we observe that it is well defined siné& is convex, (20)

which forces(z,,),>0 C S*. Second, ifS* is contained in a

finite-dimensional affine subspace, it is boundedly compa g N

and we obtain a simple instance of strong convergend&rdence is strong i&* is boundedly compact.

Third, the algorithm allows for variable relaxation parameters 't IS noteworthy that the algorithms used in Frameworks 1

(An)n=0 Over the course of the iterations. Several theoreticgiC] @nd 2 [5], as well as their weak convergence results, are

and numerical studies have shown that this flexibility Cou@zcompassed by Proposition 9. In Framework?,= P, and

be effectively exploited to enhance the progression of suth = {2} If we further specialize (9) by imposing'n € N)

algorithms toward a solution, e.g., [5]-[7] and the referencds = * €10,1[ and~ = 1, Proposition 9 secures the weak

therein. convergence to a solution of the under-relaxed alternating
The signals generated by Algorithm (17) are arbitrary poinfgojection method

in the solution seG. In some problems, it may be desirableto  (vn € N)  z,41 = (1 — Na, + AP 0 Po(wy,). (21)

obtain the signal in7, which is the closest to some reference

signal » [4]. The next result describes a simple scheme erhiS is precisely tfe result E]iven in [10].A0n the other hand,
generating such a solution. in Framework 2,54 = H, P* = Id, andI= = 1. It follows

Proposition 8: Let P be the projector ont@? and, given from Propo;itio_n 9 with these parameters ane: 2 that the
r € H, let C be the convex hull of} U S4. Suppose that Parallel projection method

dihen, (zn)n>0 coOnverges weakly to a point i¥. The con-

&2 is differentiable onC' and thatV®# is n-cocoercive on (vn € N) Tngr = (1= An)n 4+ An 2 ey wiPi(2n) 22)
C. Take €]0,2n] and (X\,,),>0 C [0,1] such that 0<e< A, <2 —¢
limy,— oo Ap = 1 converges weakly to a solution. This result is given in [5].
Y oasoll = An) =+ (18) With regard to the alternating projection method, let us
> om0 Pt = An| < oo remark that the unrelaxed scherf¥r € N) 2,41 = Py o
- P,(x,,) also converges weakly to a fixed point Bf o P» [12,
Let zp = = and Th. 2]. However, although the:-set extension of this scheme,
(VR €N) g1 = (1= A7 + A P2 (20 — ,YV(I)A(x ). i.e., the so-called (unrelaxed) POCS algorithm
(19) (\V/TL S N) .Tn+1 = Pl [e] PQ Q-0 P,n(fl'n) (23)
Then, (z,,)n>0 CONverges strongly td%; (r). converges weakly to a point ifi; [12, Th. 2], this point fails
An important example of sequence satisfying (18) is givdl 9eneral to exhibit any degree of proximity with respect to
by (Vn € N) A, = n/(n + 1). the other sets [2].

Unlike Proposition 7, Proposition 8 offers strong conver- IN the present context, Proposition 8 extends [5, Th. 5]
gence without additional conditions ai*. Moreover, the limit @nd [6, Th. 5.6]. We wind up this section by applying it to
point is a specific signal, namely, the best approximation (g€ Problem of synthesizing th'EA-opnmal hard-constrained
the reference signal from G. However, algorithm (18)—(19) Signalz* of minimum energy, i.ex* = PG(_O)-
is less flexible than (17), and it requires differentiability on Proposition 10: Suppose tha® is as in (6), and take
a larger set. The second limitation actually vanishes whan€l0,2]. Let zo = 0, and
54 is an affine subspace. Indeed, the orthogonality property (vn e N) 2,44
of projections ensure®;(r) = Pg o P4(r) and, therefore,

- <<

PA(r) € S4 can be used in lieu of in Proposition 8. __n
n+1

= 1=z, +7v Z w7P7($n)> . (24)
iCIN
B. Application to Proximity Functions
Wi ; he obiective (6). Accordi P .. Then, (z,),>0 converges strongly t@:(0).
e now focus on the objective (6). According to Proposition’ o 15 add that Algorithm (24) is of interest even in the

g’ Ci 7 I?Bifvizis_bounded fci[j S(])Dme'ce L As ntclJted. " consistent case. We will then pdt* = Id andI> = I in
ection 1-5, = 2icra wi(ld—1;). Consequently, since (24) and obtain strong convergence to the feasible signal of

tzhg _(_)perato_r$lﬂ — Piicra are S.”"'Y noq?gxgansive [1_' Pr(;p'minimum energy. This algorithm is easier to implement than
-7(in], so is the convex combinatiow y convexity of 05 presented in [4], which require the storage of outward

3Its intersection with every closed ball i is compact, e.g., [6]. normals to the sets at each iteration.
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IV. NUMERICAL EXAMPLE: PULSE SHAPE DESIGN

We revisit a design problem presented in [5], whose goal is
to synthesize a pulse shape for digital communications over
European power lines under specifications that give rise to
four incompatible constraints:

e C1: The lines have a bandwidth of 300 Hz and are

contaminated by a DC component and the harmonic n0|ge
of the 50 Hz power distribution system. To avoid DG

and harmonic noise and be compatible with the availabfe
bandwidth, the Fourier transform of the pulse should

vanish at the zero frequency, at integer multiples of 50

Hz, and beyond 300 Hz.

C,: The pulse is symmetric about its midpoint, and its

main lobe has amplitude 1.

Cj3: The energy of the pulse does not exceed a prescrlbed05 . . . s . ‘ . ‘ .
bound in order not to interfere with other systems. 100 imegmey 0%
Cj4: The duration of the pulse is 50 ms, and it has periodic

zero crossings every 3.125 ms to avoid intersymbol
interference.

Numerically, the problem is discretized with an underlying
sampling rate of 2560 Hz, and the parent Hilbert spate
is the euclidean space a¥-point (N = 512) signalsz :

0.5

100

Fig. 2. Pulse generated without hard constraint.

{0,....N -1} = R, with norm |lz]| = (C 55 =),

The associated sets and projections are defined as follows,
where (Q denotes the complement of a st and 1g its g s
characteristic function, i.elo({) =1if I € Q and1lg(l) =0 %-20—
if 1 € CQ (see [5] and [6] for details). E .
e (; is associated with the vector subspace g %
Sy ={z € H |4l =0} (25) -

wherez is the N-point discrete Fourier transform (DFT)
of z andK the set of frequencies at whighmust vanish.

Tﬂe\ projection ofz € H onto S; is the inverse DFT of

Pl(.’lj) = ‘fjlﬂﬂ\"

C, is associated with the affine subspace

L .
300 500
frequency (Mz)

. L
100 200 400 600

Fig. 3. Normalized spectral density of the pulse of Fig. 2.
={zeH|x(N/2)=1andz =&} (26)

algorithm (20) are considered:

wherei : [ — z(N —1—1). Now, letA = {N/2 — - hard o gs -
1,N/2}. Then, the projection oft € H onto S, is * Scenario 1. NAO ard constraint 'S IMpose -
_ ¥ {1,2,3,4}, @] x (1/8)2 Ld(z,5;)?, and
Py(z) = 1a + (1/2)(x + &) 1pa. J
. P4 =Id in (20). The results are shown in Figs. 2 and 3.

C5 is associated with the closed ball - . N
» Scenario 2: C; is the hard constrainti= = {2,3,4},

Three design scenarios based on the objective (6) and

Sy = {l’ cH | ||l’||2 < 5} (27) (I)QA A (1/6) 2?22 d(.’L’,SZ)Q, andP* = P, in (20)
The results are shown in Figs. 4 and 5.
The projection ofz € H onto Sz is . ScAenario 3:C, is the hard constrainti/® = {.1,2,3},
% x> (1/6) 30 d(x,5;)?, and PA = Py in (20).
P [VEz/||lz]| i ||l)? > € 28 The results are shown in Figs. 6 and 7.
5(x) = {x otherwise. (28) It is important to observe that sinég is bounded, a solution
exists in each scenario by Proposition 4. In addition, (strong)
« (4 is associated with the vector subspace convergence of (20) to a solution is guaranteed by Proposition
9. In connection with Scenario 3, let us remark that a pulse
Sy={z € H |zl =0} (29) satisfying C; can also be obtained by implementing POCS

(23) in the form

wherelL is the set of time indices in the zero areas. The

projection ofz € H onto Sy is Py(x) = x1g .

(\V/TLGN) IP4OP10P20P3(.’L'n). (30)

Ln+1
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-5
-10
0.5F : ) -15

-20

amplitude
normalized magnitude (dB)

-05 L L I L L L L L n -50 L L L L L
-f00 -80 -0 -40 20 0 20 40 60 80 100 0 100 200 300 400 500 600

time (ms) frequency (Hz)

Fig. 4. Pulse generated with; as a hard constraint. Fig. 7. Normalized spectral density of the pulse of Fig. 6.

b M L L |
w (=] U (=] (4] o
— T T T
L L . L L .
amplitude

]
w
=]

2

normalized magnitude (dB)

L L . _05 L 1 1 L L . ) L L
100 200 300 400 500 600 -100 ~80 -60 -40 -20 0 20 40 60 80 100

frequency (Hz) time (ms)

Fig. 5. Normalized spectral density of the pulse of Fig. 4. Fig. 8. Pulse generated by POCS.

However, as noted in Section IlI-B, there is no guarantee
that the pulsey* thus obtained is close to the other sets
in any sense. One can check in Figs. 8 and 9 ffatloes
indeed satisfyCy but is worse than the pulse* produced

by Scenario 3 and displayed in Figs. 6 and 7 in terms of
satisfying the remaining constrair(S; )1 <;<3. Quantitatively,
this is confirmed by the fact thait5 (z*) = 0.0165, whereas
<I>3A(y*) = 0.0206. We conclude by pointing out that the pulse
shape design problem of [16] was treated within Framework
1 and was therefore limited to two constraints.

amplitude

V. CONCLUDING REMARKS

In this paper, we have studied the problem of synthesiz-
o5 , ) , ) ) ‘ , , . ing signals in Hilbert spaces subject to inconsistent convex
-100 -80  -60 40  -20 timeo(ms) 20 40 60 80 100 jnequality constraints. Our problem formulation, which con-

sists of minimizing an objective functio®” penalizing the
Fig. 6. Pulse generated witf; as a hard constraint. violation of the soft constraints over the feasibility set
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T T - T a signalz* that maximizes the membership functiprof the
intersection of the fuzzy constraint sets, say= [[,; -
Now, let 74 (resp. I~ = I\ I*) be the index set of the
constraints based on hard (resp. imprecise) information. Then,
for ¢ € I*, u; = 1g, is simply the characteristic function of

g S;, and fori € I*, we can take; = exp(—f; o g;7), where

3 f: € F. Consequently, (2) gives

g

3 sup pu(z) = sup [ [ pi(z) = sup [[ wil=)

E z€H sE€H ;F w54 TTA

€ = sup exp(—®=(z)) = inf ®>(z) (32)
2CSA TESA

which casts this fuzzy signal feasibility problem in the general

format (3).
=0 100 200 300 200 500 600
frequency (Hz)
APPENDIX A
Fig. 9. Normalized spectral density of the pulse of Fig. 8. PrROOES

Proof of Proposition 1:i) Fix i € I°. Since dony; og;” =
induced by the hard constraints, covers and extends existifig' 'Y in (2), dpm@A = D% # %,.and % is therefore
approaches. General conditions for the existence and farer. l? remains to show thab® is convex and lower
uniqueness of solutions involving only the constraint functio mmoth:quous, I.e., in light of [l’. Props. 1.5(2) and 2'2(6.1)]’
have been established. that f;og;™ is convex and lower semicontinuous. The conve_X|ty

In terms of numerical solution schemes, we have adopted)fafi °g; follows from [1, Prop. 2.2(d) and (e)]. To eStaE“Sh
fixed-point approach that led to gradient projection methodls lower semicontinuity, it suffices to show that levf; o g;
for which we have provided convergence conditions und& closed ch)rr an a.rbltraryx_e R [1, Prop. 1.4(c)]. Ifa <0,
various hypotheses. One such scheme was seen to incl (Yé“fi © 9 :,®. IS certalnly closeq. Now, suppose > 0.
as special cases the algorithms used in existing approacﬁ&ce f’l € ]: it is continuous relative tq0, +oof [14, Sec.
and to be adequate for the proposed pulse shape synthigid] With lime—.i.cc fi(#) = +oc [14, Sec. 1.2.3]. Hencef;
problem. Naturally, these methods are by no means universéﬁf_‘n mcreafllng b|Ject|_on frof0, +oof Oﬂto [0, +oc[ and fo 1S
applicable. Indeed, they impose thaf be differentiable on 'S INVersef; . Accordingly, levq fiog,” = lev ;1,9 =
S4, and furthermore, their efficient implementation implicitl)}evéffl(a)gi', However, smce:qi |s“Iower .§em|cont|nuous,
requires thatS4 be geometrically simple so that projectiond®V< s~ (4)9: iS closed. Assertions ii) and iii) follow at once
onto this set be easily computable (see [6] and [17] féiom (2).
examples of constraint sets admitting closed-form projectors). 0
Alternative schemes should therefore be investigated. In thisProof of Proposition 2:In view of (3), G can be written
regard, let us notice that if a reasonably tight upper baiind@s an intersection of closed and convex sets, nantely:
is available fora*, then the above restrictions can be lifted t&* N Nasq- 18V<a®>, and it is thereby closed and convex.

the extent that the exact problem (3) can be approximated Iyconnection with the existence of solutions, let us recall a
fundamental fact [9, Prop. I1.1.2]: Any function in achieves
Find z* € G = S* Nleve;d4 its infimum over any nonempty, closed, convex, and bounded
B set over which it is proper. Now, fix € $4 N D®, and set
_ ﬂ leveog: | N IeVS&(I)A' (31) Sh =54 mev@A(u)@A._ I\_Iot_e_thais,; is none_mpty, _closed,
and convex and that minimizing~ over S* is equivalent
to minimizing it over S4. By virtue of Proposition 1(i), it
This consistent feasibility problem can be solved via the blockderefore suffices to show that is bounded if, for some
iterative extrapolated subgradient projection method of [7],€ I, ¢: is weakly coercive oveH. Suppose first thate 4.
which requires only the ability to compute subgradients g}hen, by the weak coercivity of;
the functions(g;);cz» and 4.
Our last remark concerns the fuzzy set theoretic signal (37 €10, +oc[)(Vx € H) gi(x) <0 = |lzf| <.  (AL)
estimation framework proposed in [3]. The motivation behind ) .
this approach to (1) is to introduce a graded transition betwe¥fg thus obtain the boundedness %f and, in turn, that of
the signals that satisfy a constraipt=) < 0 and those that Si C Si. Suppose next thate I°. By (2), f; o g < @%.
violate it when the information inducing this constraint i§ence, sincey;” is weakly coercive and; € F
imprecise. Each constraint is associated with a fuzzy set, i.e., a
membership functiop, : H — [0, 1] taking value 1 orf;. The ]| = 400 = fio g (z) = +oo
fuzzy feasibility problem is then formulated as that of finding = &2 (z) — +oo. (A2)

iel4
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Therefore Proof of Proposition 6:Let z andy be any two points in
S4. Then, using (A4) and the properties bf we obtain

3y €0, +xD(Ve € H) 82(x) < 24 (w) = || < 7. 2

(A3) T+y L(z)—r+L(y)—r
Hence, Ie\éq)A(u)(I)A is bounded and so iS4. We now turn gi( 2 ) - H 2 -
to uniqueness. i) Sincg;" is strictly convex overS4 = y y
5% N levega, @2, so aref; o gf and, by virtue of (2), _ IECe) = 7P 4+ 11 L(y) —
®%. The claim therefore follows from [9, Prop. 11.1.2] since 2
minimizing &2 over S4 is equivalent to minimizing it over I
SA. i) Suppose that? contains two distinct points, say* — H (z—y) H —¢
and y*, and letz* = («* 4+ y*)/2. As shown above(7 is 2
convex, and therefore;* € G, i.e., z* is a minimizer of®= (o ; 2
over 4. Now, fix i € I*. Then,(z*,5*) € G2 C S4° c S2, < w - XIHﬂ? —yl*. (A7)

and it follows from the strict convexity of; over S* that
gi(z*) < (gi(z*) + gi(y*))/2 < 0. The continuity ofg; at However, under our hypotheseg,= f; o gi on S4. It then

2* € S* then yieldsz* € S,. Since I* is finite, we obtain follows from the convexity of the function&f; o ;") jer2\ (i)

° . and (2) that
z* € 54, sayz* € B C 5S4 for some ballB. However, since )

z* € G, z* minimizes ®* over B. In other words,z* is a Afz+y 2 (z) + 22 (y)
local minimizer of®% and, therefore, by convexity ab®, a ¢ < ) < 5
global one [21, Prop. 42.3]. This contradicts the assumption

A ol T
that &= has no free minimizer in5*. We conclude thali  1s inequality translates the fact th&® is strongly convex
contains at most one point. with modulusn = 2x? on S, and it implies thatv®?® is

2
~ Xl —yl®  (A8)

Subsequently, we shall need the well-known paralIeIogra,;]‘r_1stmng|y monotone oS4 [14], [15]. 0
identity Proof of Proposition 7: The first assertion is a direct ap-
2 2 plication of [8, Prop. 9] with the nonexpansive operator
2y ||ty x—y 1 + llwl* N AN Thi ies |
(Y(z,y) € H?) H = . P*o(ld—+V®~). This result also asserts that, ),> lies in
2 2 2 some closed balB. Hence, by constructior{sz,, ),.>o lies in

(A4) B Sa which is compact ifS4 is boundedly compact. The
proof is completed by noting that the notions of weak and

Proof of Propositipn 4G # @ follows from PropOSQitipn strong convergence coincide in compact sets [11, Th. 7.69].
2 and the observation that f; is bounded, therl(-, S;)* is 0O

weakly coercive. Let us now prove that the second assertions ot of proposition 8: This proof is a direct application of

follows from Proposition 2(i) by proving thatl(-, S;)? is [19, Th. 2] with the nonexpansive operatBt o(Id—vV&2).
strictly convex overS*. Letz andy be any two distinct points

in 84, z = (z +y)/2, andz; = (Fi(z) + Fi(y))/2. Since
z; € S;, (A4) implies

REFERENCES

zZ— Z 2

z— Pi(x) +y— Piy)
2

d(zv SZ)2 <

2 [1] J.-P. Aubin, L’Analyse Non Lieaire et Ses MotivationEconomiques
(A5) Paris: Masson, 1984)ptima and Equilibria—An Introduction to Non-
linear Analysis. New York: Springer-Verlag, 1993.
[2] H. H. Bauschke, J. M. Borwein, and A. S. Lewis, “The method of cyclic
||31j _ R($)||2 + ||y _ R(y)||2 projections for closed convex sets in Hilbert spadgdntemp. Math.
= vol. 204, pp. 1-38, 1997.
2 [3] M. R. Civanlar and H. J. Trussell, “Digital signal restoration using fuzzy
sets,” IEEE Trans. Acoust., Speech, Signal Processiaj. ASSP-34,
z—Px)—y+ P | pp. 919-936, Aug. 1986.
2

[4] P.L.Combettes, “Signal recovery by best feasible approximati&tE
Trans. Image Processingol. 2, pp. 269-271, Apr. 1993.

[5] , “Inconsistent signal feasibility problems: Least-squares solutions

d(z,S:)* +d(y, S;)? in a product space,TEEE Trans. Signal Processingvol. 42, pp.

5 (A6) 29552966, Nov. 1994.
[6] , “The convex feasibility problem in image recovery,” Ad-
o vances in Imaging and Electron Physid3. Hawkes, Ed. New York:
If Pi(x) # Pi(y) then, sinceS; is strictly convex,z; € S;. Academic, 1996, vol. 95, pp. 155-270. o
: ° , “Convex set theoretic image recovery by extrapolated iterations
However, sincex € 54, 2 ¢ S; and, in turn,P;(z) € S;)\S;. of parallel subgradient projectiondZEE Trans. Image Processingol.
i TP ; ; 6, pp. 493-506, Apr. 1997.
Therefore, the inequality in (A5) is strict. On the other handIg] “Fejer-monotonicity in convex optimization.” iEncyclopedia
if P(z) = Pi(y), thenz — Fy(z) —y + Fi(y) # 0, and of Optimization C. A. Floudas and P. M. Pardalos, Eds. Boston, MA:
we obtain a strict inequality in (A6). In both alternatives, we__ Kluwer, 2000.

. - I. Ekeland and R. TemamAnalyse Convexe et Prabties Variation-
2 2 2 )
obtaind(z, 5;)* < (d(z, ;)" + d(y, 5:)*)/2, and the claim is nels Paris: Dunod, 1974Convex Analysis and Variational Problems

proved. | Amsterdam, The Netherlands: North-Holland, 1976.

<




2468

(20]

[11]
[12]
(23]
[14]
(18]
[16]

[17]

(18]

[29]

[20]

[21]

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 47, NO. 9, SEPTEMBER 1999

M. Goldburg and R. J. Marks, Il, “Signal synthesis in the presen(ﬁm

of an inconsistent set of constraintdEEE Trans. Circuits Systvol. |
CAS-32, pp. 647-663, July 1985. ﬁ;:
D. H. Griffel, Applied Functional Analysis New York: Halsted, 1981.  §
L. G. Gubin, B. T. Polyak, and E. V. Raik, “The method of projections -
for finding the common point of convex setdJSSR Comput. Math. |
Math. Phys. vol. 7, pp. 1-24, 1967. |
G. T. Herman)mage Reconstruction from Projections—The Fundamer
tals of Computerized TomographyNew York: Academic, 1980. f |
J.-B. Hiriart-Urruty and C. Lema&chal,Convex Analysis and Minimiza-
tion Algorithms New York: Springer-Verlag, 1993.

E. S. Levitin and B. T. Polyak, “Constrained minimization methods,”
USSR Comput. Math. Math. Physol. 6, pp. 1-50, 1966.

R. A. Nobakht and M. R. Civanlar, “Optimal pulse shape design for
digital communication systems by projections onto convex s¢EEE
Trans. Commun.vol. 43, pp. 2874-2877, Dec. 1995.

H. Stark, Ed.,Image Recovery: Theory and ApplicationSan Diego,
CA: Academic, 1987.

H. J. Trussell and M. R. Civanlar, “The feasible solution in signa'
restoration,1EEE Trans. Acoust., Speech, Signal Processing ASSP-

32, pp. 201-212, Apr. 1984.

R. Wittmann, “Approximation of fixed points of nonexpansive map
pings,” Arch. Math, vol. 58, pp. 486—-491, May 1992.

D. C. Youla and V. Velasco, “Extensions of a result on the synthesis
signals in the presence of inconsistent constrainEEE Trans. Circuits
Syst, vol. CAS-33, pp. 465-468, Apr. 1986.

E. Zeidler, Nonlinear Functional Analysis and lts Applications IIl:
Variational Methods and Optimization New York: Springer-Verlag,
1985.

Patrick L. Combettes (S’84-M'90-SM’'96)
received the Habilitatiora Diriger les Recherches
degree from the Univerdt de Paris Xl, Orsay,
France, in 1996.

He is currently a Professor with the Department of
Electrical Engineering, City College and Graduate
School of the City University of New York, New
York.

Pascal Bondon(M'91) received the Habilitatiora "
Diriger les Recherches degree from the Univérsit
de Paris XI, Orsay, France, in 1998.

He is currently a Research Scientist at the
CNRS, Laboratoire des Signaux et SysEs,
Gif-sur-Yvette, France.



