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A Block-Iterative Surrogate Constraint Splitting
Method for Quadratic Signal Recovery

Patrick L. Combettes, Senior Member, IEEE

Abstract— A block-iterative parallel decomposition method is proposed
to solve general quadratic signal recovery problems under convex con-
straints. The proposed method proceeds by local linearizations of blocks of
constraints and it is therefore not sensitive to their analytical complexity. In
addition, it naturally lends itself to implementation on parallel computing
architectures due to its flexible block-iterative structure. Comparisons with
existing methods are carried out and the case of inconsistent constraints is
also discussed. Numerical results are presented.

I. INTRODUCTION

Solving a signal recovery (restoration or reconstruction) prob-
lem as a convex feasibility problem consists of finding a signal
x in a suitable Hilbert space (H, ‖ · ‖) that satisfies all the con-
vex constraints derived from a priori knowledge and from the
observed data [12], [48], [52]. Quadratic constraints, i.e., con-
straints of the form ‖Ljx − rj‖2j ≤ ξj , where Lj is a linear
operator fromH into a Hilbert space (Hj , ‖ · ‖j) and rj a signal
in Hj , have proven especially useful in a number of signal re-
covery applications, e.g., [12], [31], [34], [36], [41], [46], [48].
In some problems, however, reliable bounds (ξj)1≤j≤p may not
be available for p of the quadratic constraints. If (Si)i∈I denotes
the family of precisely defined constraint sets, a sensible option
is then to find a signal x in the “hard” feasibility set

S =
⋂

i∈I
Si (1)

that least violates the p uncertain quadratic constraints. This
can be achieved by minimizing a weighted average of the func-
tions x 7→ ‖Ljx − rj‖2j (1 ≤ j ≤ p) over S, i.e., by solving
the following general quadratic signal recovery problem: given
weights (αj)1≤j≤p in ]0,+∞[,

find x ∈ S such that J(x) = inf J(S),

where J : x 7→
p∑

j=1

αj‖Ljx− rj‖2j . (2)

Practically speaking, a solution to (2) is a feasible signal
x whose linear transformations (Ljx)1≤j≤p are the closest,
in a weighted least-squares sense, to the reference signals
(rj)1≤j≤p. This formulation, which naturally fits within the
hard-constrained feasibility framework of [15], covers a broad
spectrum of signal recovery problems. For instance, a mini-
mum energy feasible signal is obtained by choosing J : x 7→
‖x‖2 in (2) [7], [38], [44]. More generally, (2) yields the
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smoothest feasible signal relative to some high-pass filtering op-
erator L : H → H with J : x 7→ ‖Lx‖2 [31], [49], and the
best feasible approximation to a reference signal r ∈ H with
J : x 7→ ‖x − r‖2[9], [20], [49]. Other special cases of (2) arise
in connection with noisy linear recovery problems, in which the
observed signal y1 lies in some Hilbert space (H1, ‖ · ‖1) and is
related to the original signal x via the equation y1 = L1x+ u1,
where L1 : H → H1 is linear and u1 ∈ H1 represents noise.
In the absence of precise statistical information on ‖u1‖21, it is
customary to minimize over the feasibility set S the function
J : x 7→ ‖L1x − y1‖21 [39] or, more generally, the function
J : x 7→ ‖L1x− y1‖21 +γ1‖M1(x− r1)‖2, where M1 : H → H
is linear, r1 ∈ H, and γ1 ∈ [0,+∞[ [1], [7], [22], [29],
[30], [47]. In other problems [23], [34], [40], q linear mea-
surements of x, say yj = Ljx + uj (1 ≤ j ≤ q), may have
been recorded in unknown noise environments. In such in-
stances, the quadratic objective will be extended to J : x 7→∑q
j=1 βj‖Ljx − yj‖2j + γj‖Mj(x − rj)‖2, where (βj)1≤j≤q

are weights in ]0,+∞[.

In the literature, several methods can be found that solve (2)
under certain conditions. In practice, however, these methods
suffer from several limitations and they can seldom be imple-
mented efficiently due to the specific challenges posed by signal
recovery problems, which not only involve a sizable amount of
data and unknowns, but also a wide variety of constraints that
lead to intricate feasibility sets with no explicit analytical de-
scription. In this paper, we propose a new constrained quadratic
minimization method that alleviates these limitations and is par-
ticularly well suited for large-scale signal recovery applications
in the presence of complex convex constraints. The method is an
adaptation of an outer approximation scheme recently proposed
in [14]. It has a block-iterative parallel structure and can there-
fore fully take advantage of parallel processing architectures. Its
computational efficiency is further enhanced by the fact that it
does not require exact enforcement of the constraints but merely
approximate enforcement by means of local linearizations.

The remainder of the paper consists of six sections. The as-
sumptions and notation used in the paper are formally intro-
duced in Section II. In Section III, existing quadratic minimiza-
tion methods are reviewed and their limitations in the context of
signal recovery applications are discussed. The new method is
presented in Section IV. In Section V, the behavior of the algo-
rithm in the presence of inconsistent constraints is analyzed. Nu-
merical applications to signal deconvolution and image restora-
tion are demonstrated in Section VI. Section VII concludes the
paper. The proofs of our results have been placed in the Ap-
pendix.
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II. NOTATION, ASSUMPTIONS, AND MATHEMATICAL
BACKGROUND

A. Notation
The signal spaceH is a real Hilbert space with scalar product
〈· | ·〉, norm ‖ · ‖, and distance d. The distance from a signal
x ∈ H to a nonempty set C ⊂ H is dC(x) = inf{‖x− y‖ | y ∈
C}. Given a continuous convex function f : H → R and η ∈ R,
the closed and convex set lev≤η f = {x ∈ H | f(x) ≤ η}
is the lower level set of f at height η. A vector t ∈ H is a
subgradient of f at x ∈ H if the continuous affine function
y 7→ 〈y− x | t〉+ f(x), which coincides with f at x, minorizes
f , i.e.,

(∀y ∈ H) 〈y − x | t〉+ f(x) ≤ f(y). (3)
Clearly,

0 ∈ ∂f(x) ⇔ f(x) = inf f(H). (4)
As f is continuous, it always possesses at least one subgradient
at each point x. If f happens to be (Gâteaux) differentiable at
x, then it possesses a unique subgradient at this point which
is simply its gradient ∇f(x). The set of all subgradients of f
at x is the subdifferential of f at x and is denoted by ∂f(x).
Finally, a sequence (xn)n≥0 in H converges to x ∈ H strongly
if (‖xn−x‖)n≥0 converges to 0 and weakly if, for every y ∈ H,
(〈xn − x | y〉)n≥0 converges to 0.

B. Subgradient projections
The reader is referred to [12], [13] for a tutorial account of

subgradients and signal recovery examples (see also [17] and
[51] for recent applications of these concepts and further exam-
ples). We provide here some essential facts.

Let C be a nonempty closed and convex subset of H and let
x be a point in H. Then there exists a unique point PCx ∈ C
such that ‖x− PCx‖ = dC(x); PCx is the projection of x onto
C and is characterized by

PCx ∈ C and (∀y ∈ C) 〈y − PCx | x− PCx〉 ≤ 0. (5)

Computing the projection onto C amounts to solving a con-
strained quadratic minimization problem, which usually in-
volves some iterative procedure. A notable exception is when
one deals with a half-space, say H =

{
y ∈ H | 〈y | u〉 ≤ η

}
,

where u ∈ H r {0} and η ∈ R. The projection of x onto H is
given explicitly by

PHx =




x+

η − 〈x | u〉
‖u‖2 u, if 〈x | u〉 > η;

x, if 〈x | u〉 ≤ η.
(6)

Therefore, if C can be approximated at x by a half-spaceHx, an
economical approximation to PCx will be PHxx. We shall now
describe a general context in which it is possible to do so.

Suppose C = lev≤0 f 6= Ø, where f : H → R is continu-
ous and convex (this level set representation of a closed convex
set is quite general since one can always put C = lev≤0 dC).
Fix x ∈ H and a subgradient t ∈ ∂f(x). Then (3) provides
a linearization of f at x and it implies that, if f(y) ≤ 0, then
〈y − x | t〉+ f(x) ≤ 0. Now define

Hx =

{{
y ∈ H | 〈x− y | t〉 ≥ f(x)

}
, if f(x) > 0;

H, if f(x) ≤ 0.
(7)

The projection of x onto Hx is a subgradient projection of x
onto C. Observe that, if f(x) > 0, then t 6= 0 by (4) since
C 6= Ø. Hence, it follows from (6) that

PHxx =




x− f(x)t

‖t‖2 , if f(x) > 0;

x, if f(x) ≤ 0.
(8)

To sum up,

C ⊂ Hx =
{
y ∈ H | 〈y − PHxx | x− PHxx〉 ≤ 0

}
. (9)

We also note that if f = dC the notion of subgradient projection
reverts to the usual notion of projection, i.e., PHxx = PCx [3,
Rem. 7.6].

C. Assumptions
Our standing assumptions on the quadratic cost J in (2) will

be the following.

Assumption 1 J : H → R : x 7→∑p
j=1 αj‖Ljx− rj‖2j , where

i) for every j ∈ {1, . . . , p}, Lj is a continuous linear operator
fromH into a real Hilbert spaceHj with norm ‖ · ‖j , rj ∈ Hj ,
and αj ∈ ]0,+∞[ ;
ii) L1 has a continuous left inverse.

Some immediate consequences of these assumptions are
recorded below.

Proposition 2 (See Appendix) Let R =
∑p
j=1 αjL

∗
jLj : H →

H, where L∗j denotes the adjoint of Lj . Then
i) R is bounded and continuously invertible.
ii) The form 〈· | ·〉R : H2 → R : (x, y) 7→ 〈Rx | y〉 is a scalar
product onH.
iii) The norm ‖ · ‖R : x 7→

√
〈Rx | x〉 associated with 〈· | ·〉R

is equivalent to ‖ · ‖.

Definition 3 HR is the Hilbert space obtained by renormingH
with the norm ‖ · ‖R of Proposition 2.

Our assumptions on the feasibility set in (1) will be essentially
the same as in [13] and [15].

Assumption 4 S =
⋂
i∈I Si, where:

i) I is a finite or countably infinite index set.
ii) For every i ∈ I , Si = lev≤0 fi 6= Ø, where fi : H → R is
convex and continuous.

III. EXISTING SOLUTION METHODS

Throughout this section it is assumed that the problem is con-
sistent, i.e., S 6= Ø.

A. Equivalent best approximation problem
The analysis of Problem (2) is greatly simplified by the fol-

lowing fact, which establishes an equivalence between (2) and a
projection problem in the alternate Hilbert spaceHR.

Proposition 5 (See Appendix) Let r = R−1
∑p
j=1 αjL

∗
jrj .

Then
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i) (∀x ∈ H) J(x) = ‖x− r‖2R − ‖r‖2R +
∑p
j=1 αj‖rj‖2j .

ii) Problem (2) is equivalent to projecting r onto S in HR, i.e.,
to

find x ∈ S such that (∀x ∈ S) ‖x− r‖R ≤ ‖x− r‖R. (10)

iii) Problem (2) admits a unique solution x, which is character-
ized by the variational inequality

x ∈ S and (∀x ∈ S)

〈
x− x

∣∣∣∣∣∣

p∑

j=1

αjL
∗
j

(
rj − Ljx

)
〉
≤ 0.

(11)

B. General overview
Several algorithms have been proposed in the signal recovery

literature that can solve (10) and, therefore, (2) in specific cases.
Thus, the algorithm of [39] is restricted to a nonnegativity con-
straint whereas the approach of [20] provides a finite parame-
terization for linear data models which it is limited in practice
to simple constraints, as projections onto the feasibility set S
are required (the same limitation is also found in the projected
gradient method of [15] and the projected Landweber method
of [22]). On the other hand, the algorithm of [38] is restricted
to minimum norm problems with two sets and is numerically
demanding.

In the quadratic programming literature, algorithms have been
proposed for certain types of constraint sets such as half-spaces,
cones, affine subspaces, hyperslabs (see [9] and the references
therein). To our knowledge, there are two main parallel methods
to solve (10) in the general context defined by Assumptions 1
and 4. We shall now review these two methods and comment
on their numerical limitations. Hereafter, (Pi)i∈I and (PRi )i∈I
denote the projectors onto the sets (Si)i∈I in the spaces H and
HR, respectively, and (ωi)i∈I are strictly positive weights such
that

∑
i∈I ωi = 1. The structure of these methods will be seen

to be akin to that of the parallel projection method (PPM)

x0 = r and (∀n ∈ N) xn+1 =
∑

i∈I
ωiP

R
i xn, (12)

which is known to converge weakly to an undetermined point
in S in general [13], and to converge strongly to the solution
x of (10) if (Si)i∈I is a family of closed vector subspaces [37]
(see also [43]). The parallelism of this method stems from the
fact that the projections

(
PRi xn

)
i∈I can be computed simulta-

neously.

C. Dykstra’s algorithm
Dykstra’s algorithm was originally proposed in [21] and [5]

as a periodic POCS-like scheme with modified projection oper-
ators to solve (10) with I finite [9]. A parallel version of this
algorithm was subsequently developed in [24] (see also [2] and
[32]), which takes the following form inHR.

Algorithm 6 x0 = r, (∀i ∈ I) zi,0 = x0, and for every n ∈ N
{
xn+1 =

∑
i∈I ωiP

R
i zi,n

(∀i ∈ I) zi,n+1 = xn+1 +
(
zi,n − PRi zi,n

)
.

(13)

Algorithm 6 differs from (12) in that for every i ∈ I the vector
zi,n − PRi zi,n (the outward normal to Si at PRi zi,n) generated
at iteration n is added to the next iterate xn+1 before projecting
onto Si. If all the Si’s are closed affine subspaces, however,
PRi zi,n = PRi xn and (13) reverts to (12) [9].

Theorem 7 [2], [24] Suppose I is finite. Then the sequence
generated by Algorithm 6 converges strongly to the solution x
of (10).

D. Anchor point method

The first anchor point method was proposed in [27] for min-
imum norm problems. Parallel versions were devised in [10],
[11], and [12] for best approximation problems and recently ex-
tended to more general quadratic problems in [50].

Algorithm 8 x0 = γRr and for every n ∈ N

xn+1 = κnx0+

(Id −κnγR)

(
xn + λ

(∑

i∈I
ωiPixn − xn

))
, (14)

where γ ∈
]
0, 2/‖R‖

[
, λ ∈ ]0, 2], and (κn)n≥0 is a sequence

in [0, 1] such that




lim
n→+∞

κn = 0
∑
n≥0 κn = +∞∑
n≥0 |κn+1 − κn| < +∞.

(15)

As n becomes large, κn tends to 0 and the influence of the
“anchor point” x0 fades away, making the iteration process (14)
increasingly similar to (12) when R = Id and λ = γ = 1.

Theorem 9 (See Appendix) Every sequence (xn)n≥0 gener-
ated by Algorithm 8 converges strongly to the solution x of (10).

IV. PROPOSED SURROGATE CONSTRAINT SPLITTING
ALGORITHM

The proposed algorithm, which is an off-spring of a general
outer approximation scheme for constrained convex minimiza-
tion recently proposed in [14], aims at alleviating the shortcom-
ings of the methods discussed in Section III. We continue to
assume that S 6= Ø. The following notation will be convenient.

Definition 10 Given (u, v, w) ∈ H3 such that

A =
{
y ∈ H | 〈y − v | u− v〉R ≤ 0

}

∩
{
y ∈ H | 〈y − w | v − w〉R ≤ 0

}
6= Ø,

QR(u, v, w) denotes the projection of u onto A in HR, i.e.,
QR(u, v, w) = PRA u.
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A. Geometrical construction
When faced with a complex minimization problem, a com-

mon strategy in optimization is to try and replace it by a se-
quence of simpler problems. The proposed method adopts this
strategy and its principle is to decompose (2) into a sequence
of minimization problems over simple outer approximations
(An)n≥0 to the feasibility set S, which is split into its elemen-
tary components (Si)i∈I .

The algorithm is initialized with x0 = r and, at iteration
n ∈ N, the outer approximation An is constructed as the inter-
section of (at most) two closed half-spaces containing S. More
specifically, An = Dn ∩Hn, where

Dn =
{
y ∈ H | 〈xn − y | ∇J(xn)〉 ≤ 0

}

=
{
y ∈ H | 〈y − xn | x0 − xn〉R ≤ 0

}
(16)

and
Hn =

{
y ∈ H | 〈y − zn | xn − zn〉R ≤ 0

}
. (17)

The point zn is chosen so that Hn contains the intersection of a
finite block of constraint sets (Si)i∈In , where the set of indices
In ⊂ I is chosen by the user. Hn is called a surrogate half-
space (or cut) for the block (Si)i∈In . The update xn+1 is then
computed as the minimizer of J overAn, i.e., by Proposition 5i),

xn+1 = QR(x0, xn, zn). (18)

This process is depicted in Fig. 1. An essential feature of this
algorithm is that the subproblem (18) is straightforward to solve,
as shown below.1

Lemma 11 [14, Eq. (6.9)] Set πn = 〈x0 − xn | xn − zn〉R,
µn = ‖x0 − xn‖2R, νn = ‖xn − zn‖2R, and ρn = µnνn − π2

n.
Then

QR(x0, xn, zn) =





zn, if ρn = 0 and πn ≥ 0;

x0 + (1 + πn/νn)(zn − xn),

if ρn > 0 and πnνn ≥ ρn;

xn +
νn
ρn

(
πn(x0−xn)+µn(zn−xn)

)
,

if ρn > 0 and πnνn < ρn.
(19)

Let us now discuss the construction of Hn, i.e., how to define
zn in (17) so that

⋂
i∈In Si ⊂ Hn. For every i ∈ In, we first

compute a subgradient projection pi,n of xn onto Si via (8), i.e.,

pi,n =




xn −

fi(xn)ti,n
‖ti,n‖2

, ti,n ∈ ∂fi(xn), if fi(xn) > 0;

xn, if fi(xn) ≤ 0.
(20)

As seen in (9), the set

Si,n =
{
y ∈ H | 〈y − pi,n | xn − pi,n〉 ≤ 0

}
(21)

1This lemma is essentially [28, Thm. 3-1], which also states that (ρn = 0 and
πn < 0)⇔ Dn ∩ Hn = Ø . Note that since ρn ≥ 0 (Cauchy-Schwarz) and
Ø 6= S ⊂ Dn ∩ Hn in our construction, all the possible cases are therefore
exhausted in (19).

serves as an outer approximation to Si = lev≤0 fi. Hence, if
(ωi,n)i∈In are nonnegative weights adding up to one, the in-
equality

∑
i∈In ωi,n〈y− pi,n | xn− pi,n〉 ≤ 0 is a surrogate for

the block of inequalities maxi∈In fi(y) ≤ 0 at xn and the half-
space H̃n =

{
y ∈ H |∑i∈In ωi,n〈y − pi,n | xn − pi,n〉 ≤ 0

}

serves as an outer approximation to
⋂
i∈In Si. Now define

un = xn −
∑

i∈In
ωi,npi,n and

Ln =





∑

i∈In
ωi,n‖pi,n−xn‖2

〈R−1un | un〉
, if xn /∈

⋂

i∈In
Si;

1/‖R−1||, otherwise.

(22)

Proposition 12 (See Appendix) Ln ≥ 1/‖R−1||.

For more flexibility, instead of H̃n, we shall actually use the
relaxed half-space

Hn =

{
y ∈ H

∣∣∣∣
∑

i∈In
ωi,n〈y − pi,n | xn − pi,n〉 ≤

(Ln − λn)〈R−1un | un〉
}
, (23)

where the relaxation parameter λn lies in [εLn, Ln], for some
ε ∈ ]0, 1[. We are now ready to evaluate zn in (17).

Proposition 13 (See Appendix) zn=PRHnxn=xn−λnR−1un.

In summary, the proposed algorithm for constructing a se-
quence (xn)n≥0 of approximate solutions to (2) can be de-
scribed as follows.

Algorithm 14
À Fix ε ∈ ]0, 1[ . Set x0 = r and n = 0.
Á Take a nonempty finite index set In ⊂ I .
Â Set zn = xn + λnR

−1
(∑

i∈In ωi,npi,n − xn
)
, where

a) for every i ∈ In, pi,n is as in (20);
b) (ωi,n)i∈In lies in [0, 1] and

∑
i∈In ωi,n = 1;

c) λn ∈ [εLn, Ln], where Ln is as in (22).
Ã Compute xn+1 = QR(x0, xn, zn) via (19).
Ä Set n = n+ 1 and go to Á.

B. Convergence
The following mild conditions will be imposed on the index

control sequence (In)n≥0, the weights
(
(ωi,n)i∈In

)
n≥0

, the re-
laxation parameters (λn)n≥0, and the subdifferentials (∂fi)i∈I .

Assumption 15
i) For every i ∈ I , there exists a strictly positive integer Mi

such that, for every n ∈ N, i ∈ ⋃n+Mi−1
k=n Ik.

ii) There exists δ ∈ ]0, 1[ such that, for every n ∈ N,

(∃ j ∈ In)

{
‖pj,n − xn‖ = max

i∈In
‖pi,n − xn‖

ωj,n ≥ δ.
(24)
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iii) There exists z ∈ S such that, for every i ∈ I , the set
∂fi
(
lev≤J(z) J

)
is bounded.

Let us briefly comment on this set of assumptions.
• Condition i) imposes that every index i be used at least once
within any Mi consecutive iterations, Mi being left to the user’s
choice. This control rule provides great flexibility in the man-
agement of the constraints and the implementation of the algo-
rithm. Specific examples are supplied in [12], [13].
• Condition ii) asks that the weight assigned to one of the sub-
gradient projections that induces the maximum step be bounded
away from zero.
• Condition iii) asks that the subdifferential of each fi be
bounded on a lower level set of J intersecting with the feasi-
bility set S. Since the lower level sets of J are bounded, iii) is
satisfied under the standard assumption that ∂fi maps bounded
sets into bounded sets, which is always true in finite dimensional
spaces [6, Thm. 9.2.3].

Theorem 16 (See Appendix) Suppose Assumption 15 is satis-
fied. Then every sequence (xn)n≥0 generated by Algorithm 14
converges strongly to the solution x of (10).

Two special cases of this theorem can be found in [33] and
[42], where they were obtained via a different analysis. In [42,
Thm. V.1], I is finite, R = Id , In ≡ I , λn ≡ Ln, ωi,n ≡
1/ card I , and exact projections are required, i.e., fi = dSi . In
[33, Thm. 3], dimH < +∞, I is finite, R = Id , In ≡ I ,
λn ≡ Ln, and ωi,n ≡ ωi.

C. Implementation
In best approximation problems and, in particular, in mini-

mum norm problems, R = Id . In general quadratic problems,
however, since the operatorsR andR−1 appear in several places
in Algorithm 14, it is important to organize the computations so
as to minimize their use. By executing the nth iteration as indi-
cated below, it is possible to apply R and R−1 only once.
• For every i ∈ In, set ai = −fi(xn)ti/‖ti‖2, where ti ∈
∂fi(xn), if fi(xn) > 0; ai = 0 otherwise.2
• Choose convex weights (ωi)i∈In conforming to (24). Set v =∑
i∈In ωiai and L =

∑
i∈In ωi‖ai‖2.

• If L = 0, set xn+1 = xn and exit iteration. Otherwise, set
b = x0 − xn, c = Rb, d = R−1v, and L = L/〈d | v〉.
• Choose λ ∈ [εL, L] and set d = λd.
• Set π = −〈c | d〉, µ = 〈b | c〉, ν = λ〈d | v〉, and ρ = µν−π2.

• Set xn+1 =





xn + d, if ρ = 0 and π ≥ 0;

x0 + (1 + π/ν)d, if ρ > 0 and πν ≥ ρ;

xn +
ν

ρ
(πb+ µd), if ρ > 0 and πν < ρ.

D. Discussion
In view of Theorems 7, 9, and 16, Algorithms 6, 8, and 14 all

produce sequences (xn)n≥0 converging strongly to the solution
of (10) and, therefore, of (2) by Proposition 5ii). Nonetheless,
they differ in important respects.

2Recall from Section II-B that if the projection Pixn of xn onto Si is easy to
compute, one can set fi = dSi , which yields ai = Pixn − xn.

• Algorithms 6 and 8 have a static parallel structure in that all
the sets must be activated at each iteration with constant weights.
As a result, if the number of sets exceeds the number of avail-
able concurrent processors, the implementation will not be op-
timal. By contrast, Algorithm 14 has the ability to process vari-
able blocks of constraints. It is therefore possible to closely
match the computational load of each iteration to the parallel
processing architecture at hand. More details on the importance
of block-processing for task scheduling on parallel architectures
will be found in [8].
• Algorithm 6 demands that auxiliary vectors (zi,n)i∈I be
stored at each iteration, which complicates its implementation
in terms of memory allocation and management.
• Algorithm 6 operates with the projectors (PRi )i∈I . Imple-
menting such operators amounts to solving costly quadratic sub-
problems. For instance, if x /∈ Si and fi is differentiable on Si
with lev<0 fi 6= Ø, a straightforward application of the Karush-
Kuhn-Tucker Theorem [53, Thm. 47.E(2)] shows that PRi x is
obtained by solving the system

PRi x = x− λR−1∇fi
(
PRi x

)
, fi(P

R
i x) = 0, λ > 0 (25)

for (PRi x, λ). This system has no closed-form solution in gen-
eral and represents in itself a nontrivial optimization problem
that must typically be solved iteratively.3 Algorithm 8 is some-
what less demanding as it employs the natural projectors (Pi)i∈I
(whence R = Id in (25)). In comparison, a decisive advantage
of Algorithm 14 is that it activates the constraints via approx-
imate (subgradient) projections rather than exact projections.
The former are significantly easier to implement than the lat-
ter, as they require only the computation of subgradients (gradi-
ents in the differentiable case) in the original spaceH (see (20))
as opposed to solving (25). Analytically complex constraints
can therefore be incorporated in the recovery algorithm and pro-
cessed at low cost.

Additional attractive features of Algorithm 14 are listed be-
low:
• In other optimization problems, surrogate half-spaces of type
(23) have been reported to induce deep cuts and to yield algo-
rithms with very good convergence speeds [12], [13], [25], [26],
[35].
• It possesses a convenient stopping rule, namely feasibility:
xn = x⇔ xn ∈ S [14, Prop. 3.1(v)].
• It allows for the weights and the relaxations to vary at each
iteration.
• It can handle a countably infinite number of constraints.
It follows from the above discussion that, overall, Algorithm 14
emerges as the most flexible and efficient method to solve (2).

We close this section by observing that Algorithm 14 is
closely related to the EMOPSP algorithm of [13]: EMOPSP
is obtained for R = Id by replacing c) in Step Â by “λn ∈
[ε, (2− ε)Ln]” and Step Ã by “Set xn+1 = zn”. Note, how-
ever, that under Assumption 15 EMOPSP guarantees only weak
convergence to an unspecified signal in S [13, Thm. 3] rather
than strong convergence to the solution of (2) (see also [4] for
deeper insights).

3In the nondifferentiable case, the problem is even more involved as PRi x =`
Id +R−1λ∂fi

´−1
(x), where λ is any solution in ]0,+∞[ of the equation

fi
`
PRi x

´
= 0.
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V. INCONSISTENT CONSTRAINTS

In some problems, the feasibility set S may turn out to be
empty due to conflicting constraints. Such situations may be
caused, for instance, by inaccurate deterministic constraints, by
overly aggressive confidence levels on stochastic constraints, or
by inadequate data modeling (see [10], [15], and the references
therein).

In this section we discuss the behavior of the algorithms of
Sections III and IV when S = Ø. Our working assumptions are
as follows.

Assumption 17
i) I is finite.
ii) For some i ∈ I , Si is bounded.
iii) {ωi}i∈I ⊂ ]0, 1] and

∑
i∈I ωi = 1.

In [10], it was proposed to replace the (possibly empty) fea-
sibility set S by the set G of signals that best approximate the
constraints in a weighted least square-distance sense, that is

G =

{
x ∈ H

∣∣∣∣∣ (∀y ∈ H)
∑

i∈I
ωidSi(x)2 ≤

∑

i∈I
ωidSi(y)2

}
.

(26)
By virtue of Assumption 17, G is nonempty, closed, convex,
and bounded and, if S 6= Ø, then G = S [10, Prop. 7]. Thus,
Problem (2) can be restated as

find x ∈ G such that J(x) = inf J(G),

where J : x 7→
p∑

j=1

αj‖Ljx− rj‖2j . (27)

As in Proposition 5, it possesses a unique solution, namely,
PRG r, the projection of r = R−1

∑p
j=1 αjL

∗
jrj onto G inHR.

In general, the orbits of Algorithm 14 will not converge to the
solution of (27) when S = Ø. We shall therefore consider a
variant of this algorithm.

Algorithm 18
À Fix ε ∈ ]0, 1[ . Set x0 = r and n = 0.
Á Set vn =

∑
i∈I ωiPixn − xn and

Λn =

{
‖vn‖2/〈R−1vn | vn〉, if xn /∈ G;

1/‖R−1||, otherwise.
Â Set zn = xn + λnR

−1vn, where λn ∈ [εΛn,Λn].
Ã Compute xn+1 = QR(x0, xn, zn) via (19).
Ä Set n = n+ 1 and go to Á.

Theorem 19 (See Appendix) Let (xn)n≥0 be an arbitrary se-
quence generated by any of the following:
i) Algorithm 6.
ii) Algorithm 8.
iii) Algorithm 18.
Then (xn)n≥0 converges strongly to the solution x of (27).

Algorithms 6, 8, and 18 are similar to the extent that they
use exact projections and have a static parallel structure. Al-
gorithms 8 and 18 are nonetheless easier to implement because
they require only projections in H (as opposed to HR) and do

not impose the storage of auxiliary vectors. Let us also note that,
for R = Id , the PPM algorithm (12) is obtained by altering Al-
gorithm 18 as follows: use the relaxation interval [ε, 2 − ε] in
lieu of [εΛn,Λn] = [ε, 1] in Step Â, and replace Step Ã by “Set
xn+1 = zn”. Under Assumption 17, PPM guarantees only weak
convergence to an unspecified signal in G [10, Thm. 4] whereas
Algorithm 18 secures strong convergence to the solution of (27).

VI. NUMERICAL EXAMPLES

We compare the numerical performance of the proposed Al-
gorithm 14 with that of Algorithms 6 and 8. The algorithms
have been tested on various other signal and image recovery
(denoising, reconstruction, restoration) problems, with similar
conclusions.

A. Signal deconvolution
We revisit a benchmark digital signal deconvolution problem

arising in spectroscopy and initially proposed in [48].

A.1 Experiment
The N -point (N = 1024) emission spectrum x shown in

Fig. 2 is blurred by convolution with a Gaussian impulse re-
sponse with mean zero and a standard deviation of 28 points.
The degraded signal y shown in Fig. 3 is obtained by adding
uniformly distributed i.i.d. noise to the blurred signal. The noise
range is [−ξ, ξ], where ξ = 0.5. The signal space H is the stan-
dard Euclidean space RN and (ei)0≤i≤N−1 denotes its canoni-
cal basis. The degradation model is y = Lx+u, where the blur-
ring matrix L and the distribution of the entries of the noise vec-
tor u are assumed to be known. The blurred signal-to-noise ratio
is 20 log10(‖Lx‖/‖u‖) = 7.56 dB. For reference, the Wiener
filtering solution for this problem is displayed in Fig. 4.

The following closed convex constraint sets considered in
[48] are used:
• S1 =

⋂N−1
i=0

{
z ∈ H | 〈z | ei〉 ≥ 0

}
is the set of nonnegative

signals.
• S2 =

{
z ∈ H | ‖y − Lz‖2 ≤ ζ

}
is the set of signals produc-

ing a residual whose sample second moment is consistent with
that of the noise. Here L is the impulse response matrix and the
bound ζ is computed so as to yield a 95 percent confidence level
(see [18] for details).
• (Si)3≤i≤N+2 are the sets of signals producing a residual
whose pointwise amplitude is consistent with that of the noise,
i.e.,

Si =
{
z ∈ H | |〈y − Lz | ei−3〉| ≤ ξ

}
. (28)

The set of feasible signals is S =
⋂N+2
i=1 Si. A feasible

solution is shown in Fig. 5. Clearly, the feasibility set de-
fined on the basis of the above constraints contains unsatis-
factory solutions due to the low SNR and the severity of the
blur. Next, we approach this problem via (2) with L1 = Id ,
L2 = ∇ = circ([1, 0, . . . , 0,−1]) (first order, circulant, finite-
difference matrix), r1 = r2 = 0, and α1 = α2 = 1. The
quadratic recovery problem (2) therefore amounts to finding the
smoothest feasible signal relative to the discrete Sobolev H1-
norm, which yields r = 0 and R = circ([3,−1, 0, . . . , 0,−1])
in the equivalent formulation (10). The solution x to this prob-
lem is the signal shown in Fig. 6.
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A.2 Projections
The projectors P1 and (Pi)3≤i≤N+2 can be obtained in closed

form [12] and will therefore be used by all algorithms. On the
other hand, the projectors PR2 and P2 must be implemented iter-
atively [48]. Since Algorithms 6 and 8 require exact projections,
they must activate S2 by means of PR2 and P2, respectively. By
contrast, Algorithm 14 can activate S2 by means of subgradient
projections, which is much more economical computationally.
Indeed, the subgradient projection of xn onto S2 is simply

p2,n =




xn +

‖qn‖2 − ζ
2 ‖L∗qn‖2

L∗qn, if ‖qn‖2 > ζ;

xn, otherwise;
(29)

where qn = y−Lxn, and it can be computed in the DFT domain
efficiently [13].

A.3 Numerical performance
The algorithms are run on a computer with eight parallel pro-

cessors. The products involving the dense circulant matrix R−1

are computed with the FFT. Specific details concerning the im-
plementation follow.
• Dykstra’s algorithm: Algorithm 6 is implemented with
equal weights (ωi)1≤i≤1026 on the projections.
• Anchor point method: Algorithm 8 is implemented with
γ = 1/‖R‖, λ = 1.9, and κn = 1/(2 + n). Moreover, equal
weights (ωi)1≤i≤1026 are used on the projections.
• Proposed method: The index control sequence (In)n≥0 of
Algorithm 14 is designed so as to sweep through the sets in
conformity with Assumption 15i). At iteration n, In selects
the following block of sets: S1, S2, and bn consecutive sets
in (28), starting with Sj (3 ≤ j ≤ N + 2 modulo N ), where
Sj−1 is the last set used at iteration n − 1. The number bn is
determined so that the block contains ln = min{8,mn} vio-
lated constraints, where mn is the total number of violated con-
straints. The weight is ωi,n = 1/ln on each violated constraint
and ωi,n = 0 on the nonviolated ones (Assumption 15ii) is thus
satisfied). Each violated constraint is assigned to a separate pro-
cessor. Finally, the relaxation parameter is set to be λn = Ln.
In view of Proposition 13, this relaxation parameter maximizes
‖zn − xn‖R = dRHn(xn), i.e., the depth of the cut generated
by the surrogate half-space Hn. This maximal relaxation strat-
egy has been found to yield faster convergence consistently (this
observation about the superiority of large relaxations in parallel
(subgradient) projection algorithms concurs with those made for
convex feasibility algorithms in [12], [13], [25], [26], [35]).

The figure of merit used to compare the algorithms in Fig. 7
is the normalized mean square error ‖xn−x‖2/‖x‖2 in terms of
the combined CPU time n (expressed in arbitrary units). Note
that an iteration of Algorithm 14 requires merely the computa-
tion of 8 subgradient projections whereas an iteration of Algo-
rithms 6 and 8 requires the computation of N + 2 = 1026 exact
projections. It would therefore not be meaningful to compare
the algorithms in terms of iteration count. For this reason, we
use actual CPU time to give a direct assessment of the compu-
tational load of the algorithms. As seen in Fig. 7, the proposed
method, which uses subgradient projections and efficient block-
iterative cuts, is extremely fast compared with Dykstra’s algo-
rithm and the anchor point method. Dykstra’s algorithm, which

must compute the projections inHR and manageN +2 = 1026
outer normals, is actually significantly slower than the anchor
point method.

B. Image restoration
We consider a digital image restoration problem similar to

those of [12], [13], and [48].

B.1 Experiment
TheN×N -point (N = 128) original image x shown in Fig. 8

is blurred by convolution with a uniform rectangular 7 × 7 ker-
nel. The degraded image y shown in Fig. 9 is obtained by adding
zero mean Gaussian white noise to the blurred image, with a
blurred image-to-noise ratio of 30.0 dB. Using standard column
stacking for the images, the signal space H is the standard Eu-
clidean space RN2 . Thus, y = Lx + u, where the point spread
function matrix L and the distribution of the entries of the noise
vector u are assumed to be known. For reference, the Wiener
filtering solution for this problem is displayed in Fig. 10.

Four constraint sets are used in this experiment.
• S1 is the set of nonnegative images.
• S2 =

{
z ∈ H | ‖y − Lz‖2 ≤ ζ

}
is the set of images produc-

ing a residual whose sample second moment is consistent with
that of the noise.
• S3 =

{
z ∈ H |

∣∣〈y − Lz | 1 〉
∣∣ ≤ χ} is the set of images

producing a residual whose sample mean is consistent with that
of the noise (1 is the vector whose entries are all equal to 1).
• S4 is the set of images producing a residual whose peri-
odogram is consistent with that of the noise, i.e.,

S4 =
⋂

(k,l)∈D

{
z ∈ H |

∣∣ŷ − Lz
∣∣2(k, l) ≤ ξ

}
, (30)

where D = {1, . . . , N/2 − 1} × {1, . . . , N − 1} and ·̂ stands
for the 2-D DFT.
The bounds ζ, χ, and ξ are computed so as to yield a 98.33
percent confidence level on the sets S2, S3, and S4, respectively
(see [12, Section VI.D.2] and [18] for details). Following the
analysis of [16], the global confidence level on the feasibility
set S = S1 ∩ S2 ∩ S3 ∩ S4 is 95 percent. Because the only
a priori information about the true image is nonnegativity, S
contains rough images, such as that displayed in Fig. 11. To
select a smoother feasible image, we look for a minimal energy
solution, which amounts to taking r = 0 and J : x 7→ ‖x‖2 in
(2). The solution x to this problem is shown in Fig. 12.

B.2 Projections
The projectors P1, P3, and P4 can be obtained in closed form

and are therefore used by all algorithms. Expressions for P1 and
P4 can be found in [12] and, for every z ∈ H, [12, Eq. (2.24)]
yields

P3z =





z +
〈y − Lz | 1〉 − χ

‖d‖2 d, if 〈y − Lz | 1 〉 > χ;

z, if
∣∣〈y − Lz | 1〉

∣∣ ≤ χ;

z +
〈y − Lz | 1 〉+ χ

‖d‖2 d, if 〈y − Lz | 1 〉 < −χ;

(31)
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where d = L∗1. On the other hand, as in Section VI-A.2, S2 will
be activated via the subgradient projection (29) in Algorithm 14,
whereas Algorithms 6 and 8 must use the exact projector P2.

B.3 Numerical performance

The algorithms are implemented on a 4-processor machine.
This experiment is much more favorable to Algorithms 6 and 8
than the previous one since the number of processors matches
exactly the number of constraints. Hence, all three algorithms
can be efficiently implemented in parallel by assigning one (sub-
gradient) projection to each processor at each iteration.
• Dykstra’s algorithm: Equal weights (ωi)1≤i≤4 are used on
the projections.
• Anchor point method: As in Section VI-A.3, Algorithm 8 is
implemented with γ = 1/‖R‖, λ = 1.9, κn = 1/(2 + n), and
equal weights (ωi)1≤i≤4 on the projections.
• Proposed method: At every iteration n of Algorithm 14,
In = I and λn = Ln.

Fig. 13 shows the value of the normalized mean square error
‖xn − x‖2/‖x‖2 versus the combined CPU time n (expressed
in arbitrary units). The proposed method is seen to be faster
than Dykstra’s algorithm and the anchor point method. Here,
however, Dykstra’s algorithm performs better than the anchor
point method. This better performance is due to the fact that,
since J = ‖ · ‖2, R = Id and standard projections can therefore
be used. In addition, the low number of constraints makes the
management of the outer normals much less demanding than in
the previous experiment.

VII. CONCLUSION

Quadratic objectives arise in a variety of signal recovery prob-
lems. We have proposed an efficient algorithm to solve such
problems under very general assumptions on the underlying
constraints. The algorithm possesses two distinguishing fea-
tures that make it more attractive than existing quadratic min-
imization methods. First, it can easily be implemented on mod-
ern parallel computing architectures due to its flexible block-
iterative structure. Second, it relies on a surrogate constraint
scheme that allows for the local linearization of complex convex
constraints. This algorithm complements the EMOPSP method
of [13], which features the same block-iterative surrogate con-
straints handling capabilities but is limited to feasibility prob-
lems.

APPENDIX A – PROOFS

The standard facts from linear functional analysis used below
can be found in [19] and [45].

Proof of Proposition 2: Let x be an arbitrary point in H. i):
It follows from Assumption 1i) that the operators (Lj)≤j≤p are
bounded. Upon defining η2 =

∑p
j=1 αj‖Lj‖2, we get

‖Rx‖ ≤
p∑

j=1

αj‖L∗jLjx‖ ≤
p∑

j=1

αj‖L∗jLj‖ · ‖x‖ = η2‖x‖.

(32)
Hence R is bounded. Furthermore, it follows from Assump-
tion 1ii) that there exists a constant β1 ∈ ]0,+∞[, independent

from x, such that ‖L1x‖21 ≥ β1‖x‖2 [45, p. 420]. Now let
η1 = α1β1. Then, by Cauchy-Schwarz,

η1‖x‖2 ≤ α1‖L1x‖21 ≤
p∑

j=1

αj‖Ljx‖2j

=

p∑

j=1

αj〈L∗jLjx | x〉 = 〈Rx | x〉 ≤ ‖Rx‖ · ‖x‖. (33)

Hence, ‖Rx‖ ≥ η1‖x‖ and R is therefore continuously invert-
ible. ii): Since R is self-adjoint, 〈· | ·〉R is a symmetric bilinear
form. Moreover, by (33), 〈x | x〉R ≥ 0 and 〈x | x〉R = 0 ⇔
x = 0. Thus, 〈· | ·〉R is a scalar product. iii): Combining (32)
and (33), we get η1‖x‖2 ≤ ‖x‖2R ≤ η2‖x‖2, i.e., the norms ‖ · ‖
and ‖ · ‖R are equivalent. �

Proof of Proposition 5: i): Let x be an arbitrary point in H
and put η =

∑p
j=1 αj‖rj‖2j . Then, since R−1 is self-adjoint,

J(x)− η =

p∑

j=1

αj‖Ljx− rj‖2j − η

=

p∑

j=1

αj
(
‖Ljx‖2j − 2〈Ljx | rj〉j

)

=

p∑

j=1

αj
(
〈L∗jLjx | x〉 − 2〈x | L∗jrj〉

)

= 〈Rx | x〉 − 2〈Rx | R−1

p∑

j=1

αjL
∗
jrj〉

= ‖x− r‖2R − ‖r‖2R. (34)

i)⇒ ii): Clear. ii)⇒ iii): Since S is a nonempty closed convex
set, x exists, is unique, and, by (5), is characterized by x ∈ S
and (∀x ∈ S) 〈x− x | r − x〉R ≤ 0, that is, by (11). �

Lemma 20 [50, Thm. 2]: Let T : H → H be a nonexpansive4

operator such that Fix T = {x ∈ H | Tx = x} 6= Ø and
let M : H → H be a bounded, self-adjoint, strongly positive5

operator such that ‖ Id −M‖ < 1. Let x0 ∈ H, let (κn)n≥0 be
a sequence in [0, 1] that satisfies (15), and set

(∀n ∈ N) xn+1 = κnx0 + (Id −κnM)Txn. (35)

Then (xn)n≥0 converges strongly to the unique minimizer of
f : x 7→ 〈Mx | x〉 − 2〈x | x0〉 over Fix T .

Proof of Theorem 9: Let T = Id +λ(
∑
i∈I ωiPi − Id ) and

M = γR in Lemma 20. Then the iterative scheme (14) is equiv-
alent to (35). Let us now show that T and M meet the required
conditions. First, by combining arguments of [10] and [11], we
get that T is nonexpansive with Fix T = S. Next, since R is
linear, bounded (by Proposition 2i)), self-adjoint, and strongly
positive (by (33)), so is M . Now let U = {x ∈ H | ‖x‖ =
1}. Then, by self-adjointness, ‖R‖ = supx∈U |〈Rx | x〉|.
Hence, for every x ∈ U , (33) ⇒ η1 ≤ 〈Rx | x〉 ≤ ‖R‖
⇒ −1 + (2 − γ‖R‖) ≤ 1 − γ〈Rx | x〉 ≤ 1 − γη1 ⇒

4(∀(x, y) ∈ H2) ‖Tx− Ty‖ ≤ ‖x− y‖.
5(∃α ∈ ]0,+∞[)(∀x ∈ H) 〈Mx | x〉 ≥ α‖x‖2.
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|1−γ〈Rx | x〉| ≤ 1−min{2−γ‖R‖, γη1} < 1. Consequently,
‖ Id −M‖ = supx∈U |〈x − γRx | x〉| = supx∈U |1 − γ〈Rx |
x〉| < 1. Furthermore, upon setting x0 = γRr, we get
(∀x ∈ H) ‖x − r‖2R = (f(x)/γ) + 〈Rr | r〉. Hence, mini-
mizing ‖ · −r‖R over Fix T is equivalent to minimizing J over
S and the result follows from Lemma 20. �

Proof of Proposition 12: We first observe that Ln is well de-
fined since [14, Prop. 4.5]

xn ∈
⋂

i∈In
Si ⇔ un = 0. (36)

It is enough to assume xn /∈ ⋂i∈In Si. By convexity of ‖ · ‖2,∑
i∈In ωi,n‖pi,n − xn‖2/‖un‖2 ≥ 1. On the other hand, since

R−1 is strictly positive, the Cauchy-Schwarz inequality yields
0 < 〈R−1un | un〉 ≤ ‖R−1‖ · ‖un‖2. Altogether, Ln =
(
∑
i∈In ωi,n‖pi,n − xn‖2/‖un‖2)(‖un‖2/〈R−1un | un〉) ≥

1/‖R−1‖. �
Proof of Proposition 13: Let us first rewrite (23) as

Hn =
{
y ∈ H | 〈y | un〉 ≤ ηn

}
, where

ηn =
∑

i∈In
ωi,n〈pi,n | xn − pi,n〉+ (Ln − λn)〈R−1un | un〉.

(37)

If xn ∈
⋂
i∈In Si, then (20) implies that, for all i ∈ In, pi,n =

xn and, in turn, that Hn = H. The claim is therefore trivial. We
now assume xn /∈

⋂
i∈In Si. Using the characterization (5), it is

easy to verify that

PRHnxn =




xn +

ηn − 〈xn | un〉
〈R−1un | un〉

R−1un, if 〈xn | un〉 > ηn;

xn, if 〈xn | un〉 ≤ ηn.
(38)

Replacing un and ηn by their values we therefore obtain
PRHnxn = xn − λnR

−1un. Since, in view of (5) and (17),
zn = PRHnxn, the proof is complete. �

Proof of Theorem 16: We apply [14, Thm. 6.4(i)]. First let
us note that, by virtue of Proposition 5, we can consider that the
objective in Problem (2) is x 7→ 〈Rx | x〉/2− 〈x | Rr〉. Hence,
it follows from (33), [14, Prop. 2.1(iii)], Assumption 4, and [14,
Prop. 2.2(ii)] that assumptions [14, (A1)–(A3)] are satisfied with
E = H. Next, we observe that, since εLn ≤ λn ≤ Ln, it
follows from (22) that (23) can be written as

Hn =

{
y ∈ H

∣∣∣∣∣
∑

i∈In
ωi,n〈y − pi,n | xn − pi,n〉 ≤ γn

}
,

(39)
where 0 ≤ γn ≤ (1 − ε)∑i∈In ωi,n‖pi,n − xn‖2. In view of
Assumption 15ii), Algorithm 14 is therefore a special case of
[14, Algorithm 6.4]. Since by Assumption 15i)&iii) and [14,
Prop. 4.7(ii)] all the conditions of [14, Thm. 6.4(i)] are fulfilled,
the proof is complete. �

Proof of Theorem 19: Put T =
∑
i∈I ωiPi. Then [10]6

T is firmly nonexpansive and Fix T = G. (40)

i): [2, Thm. 6.1] (see also [32, Section 5] for the finite dimen-
sional case). ii): Identical to the proof of Theorem 9 since (40)
yields Fix

(
Id +λ(

∑
i∈I ωiPi− Id )

)
= G. iii): We apply [14,

Thm. 6.4(i)], considering once again that the objective in Prob-
lem (27) is x 7→ 〈Rx | x〉/2− 〈x | Rr〉. To this end, fix n ∈ N
and let Hn =

{
y ∈ H | 〈y − zn | xn − zn〉R ≤ 0

}
. Then the

identities zn = xn + λnR
−1vn and vn = Txn − xn, together

with the inequalities εΛn ≤ λn ≤ Λn yield

Hn=
{
y ∈ H | 〈y − zn | −vn〉 ≤ 0

}

=
{
y ∈ H | 〈y − Txn | −vn〉 ≤ 〈Txn − zn | vn〉

}

=
{
y ∈ H | 〈y − Txn | −vn〉 ≤ (Λn − λn)〈R−1vn | vn〉

}

=
{
y ∈ H | 〈y − Txn | xn − Txn〉 ≤ γn

}
, (41)

where 0 ≤ γn ≤ (1−ε)‖Txn−xn‖2. Therefore, it follows from
(33), [14, Prop. 2.1(iii)], (40), and [14, (4.10) & Example 4.3]
that Algorithm 18 is a special case of [14, Algorithm 6.4] with
E = H and one set, namely Fix T . On the other hand, by (40)
and [14, Prop. 4.7(iii)], all the conditions of [14, Thm. 6.4(i)]
are fulfilled. The announced result is thus proved. �
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Fig. 1. Proposed algorithm: The ellipses centered at x0 are the level curves
of the objective function J and xn+1 = PRAnx0 minimizes J over the shaded
area An = Dn ∩Hn.
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Fig. 2. Original signal.
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Fig. 3. Degraded signal.
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Fig. 4. Deconvolution by Wiener filtering.
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Fig. 5. A feasible signal.
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Fig. 6. Optimal quadratic solution x.

-60

-50

-40

-30

-20

-10

0

0 20 40 60 80 100

No
rm

al
ize

d 
m

ea
n 

sq
ua

re
 e

rro
r (

dB
)

CPU time (arbitrary units)

A

B

C

Fig. 7. Convergence patterns. A: Dykstra’s algorithm; B: anchor point method;
C: proposed method.
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Fig. 8. Original image.

Fig. 9. Degraded image.

Fig. 10. Wiener filtering restoration.

Fig. 11. A feasible image.

Fig. 12. Optimal minimum energy solution x.
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Fig. 13. Convergence patterns. A: anchor point method; B: Dykstra’s algorithm;
C: proposed method.


