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The Use of Noise Properties in Set Theoretic
Estimation

Patrick L. Combettes, Member, IEEE. and H. Joel Trussell, Senior Member, IEEE

Abstract—In most digital signal processing problems, the goal
is to estimate an object from noise corrupted observations of a
physical system. In this paper, we describe how a wide range
of probabilistic information pertaining to the noise process can
be used in a general set theoretic estimation framework. The
basic principle is to constrain the sample statistics of the esti-
mation residual to be consistent with those probabilistic prop-
erties of the noise which are available and to construct sets ac-
cordingly in the solution space. Adding these sets to the
collection of sets describing the solution will yield a smaller fea-
sibility set and, hence, more reliable estimates. Pieces of infor-
mation relative to quantities such as range, moments, absolute
moments, second and higher order probabilistic attributes are
considered and properties of the corresponding sets are estab-
lished. Simulations are provided to illustrate the theoretical de-
velopments. i

I. INTRODUCTION

AT the very core of most digital signal processing con-
cepts lies an estimation problem. Indeed, a typical
digital signal processing problem can be abstracted into
estimating an object 4 (e.g., a single parameter, a collec-
tion of parameters, a function) from the data provided. by
observing some discrete stochastic process (X,),<z. These
problems are usually approached via conventional esti-
mation techniques, i.e., techniques that generate a solu-
tion which is optimal with respect to some predefined cri-
terion. Such techniques are open to criticism in that, too
often, they rely on questionable criteria of optimality and
involve subjective statistical hypotheses. As a result, they
may produce solutions which violate known information
about the problem. Set theoretic estimation is a technique
which does not provide an optimal solution but, rather, a
set of solutions defined as the class of objects consistent
with all information arising from a priori knowledge and
the observed data. If (¥)); < < m is the collection of prop-
ositions representing such information and Z the solution
space, a collection of so-called property sets I' =
($)1<j<m is constructed in a propositional manner,
namely,

S; = {a € E|¥; holds for a}. (N
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A set theoretic estimate is any object consistent with all
available information, i.e., any point in the set

S=NS="{aeEMel{l, -, m})¥; holds for a}.
j=1

@

The set § is interchangeably called the solution or the fea-
sibility set. The set theoretic estimation problem is then
to find a point in S. This can be achieved via the method
of successive projections [6] or the method of random
search [7]. It is noted that the set theoretic estimation
problem is posed as a feasibility problem rather than an
optimality problem.

In digital signal processing, there are numerous prob-
lems which have been formulated within the framework
of set theoretic estimation. We can mention in particular
filter design [1], processing of electron microscopy data
[4], signal restoration [5], [35), [37], speech prediction
[9], linear system identification [14], [15], signal recon-
struction [21], [36], image coding [29], and tomography
[31].

A central issue in set theoretic estimation is the con-
struction of a collection I' of property sets from available
information. Such sets can usually be formed from con-
straints pertaining to the object to be estimated or to the
physical system that generated the data. In this paper, it
is shown how to construct property sets in a quite general
estimation problem from various pieces of information
relative to the noise process that corrupts the data. The
basic principle is, for each known property ¥; of the noise,
to construct the set S; of estimates which yield an esti-
mation residual whose sample statistics are consistent with
¥;. Through the addition of these sets, one incorporates
the a priori knowledge pertaining to the noise, thereby
refining the feasibility set and improving the quality of the
estimates. The idea of imposing noise-based constraints
on the estimation residual was first formulated in a ver-
sion of the constrained least squares problem in [25] and
then applied to least squares image restoration in [18].
There, the sample second moment of the residual was

“forced to match that of the noise. This particular con-

straint has also been employed in other restoration tech-
niques [34], [35], and in linear system identification [14].

'A tutorial account of some aspects of set theoretic estimation can be
found in [10].

1053-587X/91/0700°1630$01.00 © 199} IEEE




COMBETTES AND TRUSSELL: NOISE PROPERTIES IN SET THEORETIC ESTIMATION 1631

Constraints arising from bounds on the amplitude of the
noise were first employed in control [30] and then in sev-
eral signal processing problems [9], [15], [17]. In the set
theoretic restoration problem posed in [35], new con-
straints were introduced by considering other pieces of
noise information (mean, spectral density) under the as-
sumption that the noise was white and Gaussian.

The purpose of this paper is to generalize the approach
taken in [35] in three respects. First, the analysis is ex-
tended to arbitrary set theoretic estimation problems with
noise corrupted data. Second, one departs from the as-
sumption that the noise is white and Gaussian. Third, it
is shown how probabilistic attributes such as range, mo-
ment, and absolute moments of arbitrary order, second-
and higher order properties can be used to create property
sets in the solution space. The paper is organized as fol-
lows. The methodology is described in Section IT and sig-
nal processing examples are given in Section III. Sets
based on various pieces of noise information are con-
structed and analyzed in Sections 1V through IX. The
question of redundant noise information is addressed in
Section X. Simulation results are provided in Section XI.
Our conclusions appear in Section XII. All the proposi-
tions are proven in the Appendix.

II. METHODOLOGY

Throughout this paper, Z has the structure of a topo-
logical vector space. All the random variables (r.v.’s) are
defined on a probability space (Q, L, P). Lowercase let-
ters are used to denote the value of a r.v. at a given ele-
mentary event w in {, representing a particular realization
of the underlying stochastic process. The set of integers
is denoted by . the set of positive real numbers by IRT,
and the chi-square distribution with n degrees of freedom
and mean n by x;. For all p in IR%, [”(P) denotes the
vector space of r.v.’s with finite pth absolute moment,
a.s. stands for P-almost surely, and i.i.d. for independent
and identically distributed.

Following Loeve [23], the probability theoretic prop-
erties of a family of r.v.’s are defined as those properties
that can be expressed in terms of the joint distribution
functions (d.f.’s) of its finite subfamilies. The following
basic result is central to the subsequent developments.

Proposition 1: 1f two stochastic processes (Y,),cz and
(U, <z are equivalent, i.e.,

(vne ) Y, =U, as 3)

then they possess the same probability theoretic proper-
ties.

In digital signal processing, a general probabilistic
model for the generation of the data process (X,), < is the

discrete stochastic equation
(Vne ) X, =T,(h) + U, a.s. 4)

In that model, T, is the signal formation operator and
(U)nez is the noise process. Given an estimate a for A,

the estimation residual is defined as
Yn = Xn -

In an ideal situation where the true object would be esti-
mated with no error, i.e., a = h, one would get T,(a) =
T,(h), for every integer n. Then, it follows easily from (4)
and (5) that the residual and noise processes are equiva-
lent. Hence, by Proposition 1, if ¥; is a known probability
theoretic property of the noise process, the estimate a
should lie in the subset S; of the solution space E defined
by

(Vne ) T(a). ®)

S; = {a € E|(Y,),¢z satisfies v} (6)

In practice, however, only a finite number of samples of
the data process are observed, yielding a finite sample path
(x; = X;(w));. Consequently, the residual process is trace-
able only through some sample path (y; = x; —
T,(a)), <, <, and the set which will actually be employed
is

S, = {a € E[(y, Y, is consistent with ¥;}.  (7)

In the next sections, such sets will be constructed from
various pieces of noise probabilistic information. Set
properties such as closedness and convexity will be estab-
lished since, as discussed in [6], they are of great impor-
tance in connection with the synthesis of set theoretic es-
timates by successive projection methods.

Henceforth, n will be the length of the residual path.
The n-tuples with ith component x; and y; are denoted by
x and y, respectively. Moreover, the operator T is defined
by
- IR”

= (T(a), - -+, T(@). ®

T:

1

IS

III. EXAMPLES
In order to motivate the forthcoming analysis, we shall
provide four examples of digital signal processing prob-
lems whose data generation model is that displayed in (4).

A. Digital Signal Restoration
A common model assumes that the degraded signal is
an observation of a data process (X,), obtained by con-
volving the original signal h = (hy, - * * , hy) with some
blurring kernel (¢_,, * -+ , ;) and by addition of noise.
The nth sample of the degraded signal is given by
!

Xn = kZ / tk’hn—k + Un' (9)

The goal is to restore the original signal, i.e., to estimate
h.

B. Autoregressive Estimation

The nth data sample of an autoregressive information
signal (X,), of order ¢ is given by
9

X, = % X, + U, (10



1632

where (U,), is a random excitation sequence. The prob- -

lem is then to identify the regression parameters, i.e., to
estimate h = (hy, - - -, hg). :

C. Processing of Radar Signals

A typical sample of a returned radar signal can be writ-
ten as

X, = A cos (M (n — hy) + d>> + U, (11)
where 4 is the amplitude of the received signal,  the sam-
pling period of the receiver, » the frequency of the trans-
mitted signal, A, the Doppler shift induced by the motion
of the target, h, some delay which is proportional to the
distance to the target, ¢ some phase reference, and (U,),
the noise process. Here, one seeks to estimate the velocity
and the range of the target, i.e., h = (h,, h,).

D. Harmonic Retrieval
A model for the nth sample of a harmonic data process
is '

. bk sin (271'/“."1 + d)A) + Un
=1

X, (12)
where g is the number of sinusoids, b, their amplitude, ¢,
their phase, and (U,), the noise process. The harmonic
retrieval problem is to estimate the unknown frequencies,
i.e., h = (hl* e, hq)-

The general data formation model (4) is also encoun-
tered in problems such as system identification, parame-
tric spectral estimation, signal reconstruction, and array
processing.

IV. SETs BASED ON RANGE INFORMATION

It is assumed that all the r.v."s in the noise process
(Unez are i.i.d., all distributed as a nondegenerate r.v.
U with known d.f. F. Let us fix a confidence coefficient
1 ~ €in ]O, 1. Then it is always possible to find two real
numbers « and A such that

(-6 =PloeQk < Uw < \}. (13
Since (Y,),.zand (U,), ., are equivalent, with probability
1 — ¢, all the points in the residual path should lie in the
confidence interval [«, A]. The set of estimates which sat-
isfy this constraint is

n
S, =N {aeE«
i=1
Proposition 2: S, is closed in & if T is continuous and
S, is convex in Z if T is linear.
In cases where F is not available but where, for some
p in IR¥, the pth absolute moment of U is known, a con-
fidence interval can be found by invoking Markov’s in-
equality [23]

(VX € IR¥)

<<

< x;, — Ti(a) < \}. (14)

P{we 0l|Uw)| > N} < NTE|UP.
(15)
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It is seen that, for a given confidence coefficient 1 — e,
all the residual samples should lie in the interval [—X\, A],
where N = (E|UJP/(1 — (1 - €)'/")!/?. Finally, note
that S, can be used with a 100% confidence coefficient
provided the U,’s are a.s. uniformly bounded, even if they
are not i.i.d.

V. SETS BASED ON ABSOLUTE. MOMENT INFORMATION

It is assumed that the noise sequence (U,),.z consists
of i.i.d.r.v.’s, all distributed as a nondegenerate r.v. U.
Moreover, it is supposed that, for a fixed positive real
number p, U belongs to L??(P), and the pth and 2pth
absolute moments of U are known. The functional N, is
defined as follows:

n 1/p
(vxeR") N,(x) = <,-§. |x,~|"> . (16)

- Since the residual and the noise processes are equivalent,
the ¥,’s are i.i.d.r.v.’s with p th absolute moment E|U|”.

\

The pth sample absolute moment of the residual is de- )

fined as

1 n
M, =~ 2 Y. an
ni=1
Under the above hypotheses, as the sample size n tends
to infinity, M, is asymptotically normal with mean and
standard deviation, respectively, given by [13]

. E|UI*» — EJUP
EM, = E|Uf and o, = — ¥

Therefore, by invoking the limiting distribution, given a
confidence coeflicient, one can compute a confidence in-
terval [~a, a] for (M, — E|U|")/a, from the tables of
the normal distribution. The value of the sample absolute
moment at the elementary event w can be written as

1
=-N(y) =

LN - Ty, (19)
n n

1 n
My(@) = — 2 |y’

ni=I1
Hence, after some algebra; the subset of Z of estimates
which yield an observed residual sample absolute moment
within the desired confidence interval is found to be

S, = {a e Eln, = NJx — T@) = &} 20)
where
n'PEUP - agy)'’? i E|UP > ao,
= . 2D
0 otherwise
and
& = n'?EUP + ag,)'/”. 22)

Let S, denote the deficiency of S, and S; its hull, i.e.,
{S,; = {a € EIN,(x — T@) < 9,} @3
S, = {a € EIN,(x — T) = §,}.

We can write S, = S, — S, .
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Proposition 3: S, and S, are closed in E if T'is contin-
uous and S, is convex in  if T is linear and p = 1.

When n is small, the set S, is usually empty for real-
istic values of the confidence coefficient (say at least 90%)
and we need not distinguish the absolute moment set S,
from its hull S, . Finally, let us note that in the particular
case when p = 2 and U is zero mean Gaussian, the exact
distribution of nM,/E|U| is a x; [13]. Thus, from the
tables of the x2, one can obtain a value of > which is more
accurate than that resulting from the normal approxima-
tion, especially if n is small.

VI. SETs BASED ON MOMENT INFORMATION

It is assumed that the noise sequence (U,),cz consists
of i.i.d.r.v.’s, all distributed as a nondegenerate r.v. U.
It is also supposed that, for a fixed positive integer k, U
belongs to L**(P); and that the kth and 2 kth moments of
U are known. In many instances, moments and absolute
moments coincide and, therefore, the results of Section V
apply. Such is the case when U is nonnegative or when k
is even.

The kth sample moment of the residual process is de-
fined as

™M=

Mk=

Y~ (24)

S =

i=1

Under our assumptions, M; is asymptotically normal with
mean and standard deviation, respectively, given by [13]

| o eu
EM, = EU" and o, = e
n

Hence, given a confidence coefficient, a confidence inter-
val [—«, a] for (M, — EU*) /g, is determined by making
the normal approximation. The set of estimates which
yield an observed residual sample moment within this
confidence interval is

(25)

S = {a €Ely = _ZI (x; — Ti(a))A < & (26)

where
vi = n(EU* — agp) and & = n(EU* + aoy). (27)

Proposition 4: S, is closed in E if T is continuous and
S, is convex in % if T is linear.
Proposition 5: Let F be the d.f. of U and suppose that

(VcelR) F() + F(—c¢) = 1 — P{w € Q|U(w) = c}.
(28)

Then, if k is odd, §; can be written as

<« nEUﬂ. 29)

v

% (= Ti@)

Sk={aeE|

The conditions of Proposition 5 are satisfied, in particu-
" lar, when the r.v. U is absolutely continuous with an even

density (e.g.. zero mean uniform, Laplacian, or Gauss-
ian). :

VII. SETS BASED ON SECOND-ORDER INFORMATION

~ In this section. second-order properties of the noise,
i.e., properties which can be defined by means of its
mixed second-order moments, are investigated (see Doob
{12] for related definitions and results). The processes
being real-valued, the spectral distributions are defined on
[0. 1/2]. It is assumed that n is even (if not, n/2 should -
be replaced by (n — 1)/2 thereafter).

A. The Case of Gaussian White Noise

Let us first recall a basic result of spectral analysis.
Theorem 1 [26]: Let (Y,),cz be-a zero mean Gaussian
discrete white noise process with power o2, Define

.n/2})
2 Y exp <*j 27 ki>
i=1 n

(vk € {0, - - -
2

(30

IL==
_ n

Then

i) I,. + -+ .1, are independent r.v.’s.
i) 1,/20%and I,,,/20” have a x; distribution.
iii) 1,/0% -~ .1,/» /0" have a xj distribution.

If (U,), <z satisfies the assumptions of Theorem 1, so does
(Y,),cz- Hence, for a confidence coefficient (1 — e/,
from Theorem 1 and the tables of the x; and x3 distribu-
tions, one can determine confidence intervals [0, 8] and
[0, B,] for the r.v.’s in ii) and iii), respectively. The ob-
served values of the periodogram are given by

(vke {0, -+ ,n/2})

@31

n 42
212, 2
Iw) = = 1 3 ~ Ti@) exp <—j ’—:' ki>
F = N

Consequently, the set of estimates which produce a resid-
ual path consistent, to within a 1 — e confidence coeffi-
cient, with the whiteness and normality of the noise pro-
cess is .

n/2 ¢ i
s,= NYaeq|S & - T
k=0 ( i=l
exp @%m)‘ < gA} (32)
where '
(Vk e {0, -+ .n/2H
‘no’B, ifk=0o0rn/2
=1, - 33)
50232 if0 < k < n/2
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Proposition 6: S, is closed in E if T is continuous and
S, is convex in E if T is linear.

B. The Case of Non-Gaussian White Noise

Suppose that (U,),z is a discrete white noise process
consisting of i.i.d.r.v.’s all distributed as a zero meanr.v.
U in L*(P), with variance ¢%. Then the r.v.’s in ii) and
iii) of Theorem 1 are symptotically distributed as a x; and
a x%, respectively [19]. Thus, under relatively mild con-
ditions, the conclusions of Theorem 1 hold in an asymp-
totic sense. Consequently, provided that n is large, the set
S, of Section VII-A can be used.

C. The General Case of Correlated Noise

In this section, we further generalize the analysis by
dropping the whiteness assumption. We shall base the
construction of a spectral set in this case on the following
theorem.?

Theorem 2 [28]: Let (Y,),.z be a zero mean strictly
stationary strongly mixing process with summable sec-
ond- and fourth-order cumulant functions and spectral
density g. Let0 = »y < », < - - * < »,, = 5and

n 2

2
(vkef{0, -+ ,m})) I = - gl] Y. exp (—j2mwd)| .
(3%
Then
i) Iy, -+ + , I, are asymptotically independent r.v.’s.

ii) 1y/g(0) and I,,/g(3) are asymptotically distributed
as a x.

iii) 21,/g(), * -, 2I,_,/g(,_,) are asymptoti-
cally distributed as a x3.

Loosely speaking, Theorem 2 states that if the span of
dependence of the process is small enough, the results of
Theorem 1 can be generalized for large n. Now suppose
that (U,), .z satisfies the hypotheses of Theorem 2 and that
its spectral density g is known at points 0 < p, < »; <

<y, < % Then, (U,),ez and (Y,),z being equiv-
alent, given a confidence coefficient, one can compute the
confidence intervals [0, §8,] and [0, 8,] for the r.v.’s in ii)
and iii), respectively, by invoking their asymptotic prop-
erties. This leads to the set

n

2 (0 — T(@)

=< Ekz

2A strictly stationary process (Y,), .~ is strongly mixing if lim, _ , . sup
{IPA N B — PAPB||[Ae E5,Be L'} = 0, where L, and L; are the sub
g-algebras of I generated by (Y)), <, and (Y)), . ,, respectively.

m
Sd: n {aeEl
k=0

2

- exp (—j27rwi) (35)
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with

S OB ifr =0

EO — (36.3)
E g(V())Bz if Yo > 0
4

(ke {l, -~ m=1) &=7g0B (6

g g(Vm)BZ lf Vi < %

gm = (36C)
n .
E g(%)ﬁl if Vi = 21

It is noted that Proposition 6 still holds.

In instances when no knowledge of the spectral distri-
bution of the noise is available, second-order properties
can be enforced if the value of the correlation function,
r(-), of the noise is known at some lag m. Let R,, be the
sample correlation coefficient of the residual for lag m.
Then the residual path should yield an observed value of
R,, within some confidence interval around r(m) deter-
mined by the d.f. of R,. Unfortunately, the distribution
theory for the sample correlations is extremely compli-
cated. Under relatively involved assumptions, it can be
shown that the r.v.’s defined by

2 Y, G7)

I |-

(vme {0, ---,n—1}) R, =
are asymptotically jointly Gaussian [28]. Exact results
have also been established for low order correlation lags
of special processes [26]. For an approximate general re-
sult based on simpler assumptions, we now follow [26].
Suppose (U,), ¢z is a zero mean wide-sense stationary pro-
cess. Let us define the normalized correlation function of
the equivalent process (Y,),czas 7(*) = r(+)/r(0) and its
normalized sample correlation function as

(vme{-n+1,---,n—1}
n—|m|
. Z YiYiﬂm\
R, = —’:'” ) (38)
2 |yf
i=1

Now suppose that |F(i)| goes to zero as |i | goes to infin-
ity. Then a crude estimate for the asymptotic distribution
of R, is a normal distribution with mean 7(m) and vari-
ance

n—|m| 2
1 o] ,;1 YiYi+ im|
4= (39)

n
,Z |)’f|2
i=1

It follows that the set of estimates which produce a resid-
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ual consistent with 7(m) is

n— |m|

[gl x; = T'(a)) i + fm] ™ T [m] (@)
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(40)

ae k|

Again, « is determined from the tables of the normal dis-
tribution in accordance with some confidence coefficient.
Finally, let us mention that in the particular case when the
U/Ssarei.i.d.r.v.’sin LXP), if m # 0, 7(m) = 0 and (39)
may be reduced to 6% = 1/n [26].

VIII. SETS BASED ON HIGHER ORDER INFORMATION

If a process (U,),ez is Gaussian, all of the information
about (U,),z is contained in the means and the second-
order mixed moments. First- and second-order probabi-
listic attributes, however, do not provide a complete de-
scription of non-Gaussian (in particular nonlinear) pro-
cesses. In this section, we indicate how to construct sets
based on information available via mixed moments of or-
der greater than two. Thereafter, the term polyspectral es-
timate refers to the class of asymptotically normal
smoothed higher order periodograms discussed in [28] (for
an account of the Fourier analysis of higher order cumu-
lants, see [28]).

A. The Normality Set

If (U,), <z is a Gaussian process, all of its cumulants of
order greater than two are zero and it follows that all of
its spectral densities of higher order than the second van-
ish. Thus, for every integer k greater than two, the ob-
served value of the kth order polyspectral estimate based
on the residual path y should be within some interval
around zero. Given a confidence coefficient, the bounds
of this interval can be computed by invoking the asymp-
totic normal distribution of the polyspectral estimate. The
corresponding set is that of all a’s which yield a residual
whose observed polyspectral estimate falls in the confi-
dence interval.

B. The Linearity Set

Here, we use the linearity test of [33]. Suppose that
(U,), ez is a linear process, i.e.,
+ 0o + oo
(Vvne ) U,= 2 bV,_, with 2 b < 4o

i=—o0 i

(41)

where the V,’s are zero mean i.i.d.r.v.’s in L3(P) with
EV? = u, and EV? = p;. Then, if g(+) and g(-,*) denote
respectively the spectral and the bispectral density of
(U nez» it can be shown that for every frequency », and
Vs

|g(ulv V2)|2 - "L_%

) gw)gn + 1) wy

vy, »y) = (42)

— r(m)| < ao,

2 lx — Tl |

Let 3(»,, »,) be the estimate of z(v,, »,) computed from y.
Then, the constancy of 2(»,, ;) over some grid G in the
frequency plane can be used to test the linearity of the
residual process. The corresponding set is that of all a’s
which produce a residual such that £(v,, »,) is within some
confidence interval around the constant 3/, for all (v;,
V2) in G.

C. The Independence Set

Suppose that (U,), ¢z consists of i.i.d.r.v.’s distributed
as a r.v. U whose cumulants at all order exist and are
finite, the kth being denoted by ¢,. The cumulant function
of this process is given by

e N

y =1
L) =
¢ 0

Hence, the real part of the kth order spectral density is
the constant ¢, and the imaginary part is zero [3]. It is
noted that the flatness of the spectral density merely trans-
lates the uncorrelatedness of the U,’s. On the other hand,
the independence of the U,’s shows up in the flatness of
the higher order spectral densities. For a given k, the cor-
responding set is that of all a’s which produce a residual
whose kth order polyspectral estimate falls within some
confidence interval around the expected constant value.
Again, given a confidence coefficient, the bounds of this
interval can be computed by invoking the asymptotic nor-
mal distribution of the polyspectral estimate.

(V(n|, “ e

itn, =+ =n=90

C(n|, « .. .
otherwise.

(43)

D. The Reversibility Set

Suppose that (U,),.7 is time reversible, meaning that
the finite dimensional d.f.’s of (U_,),cz are the same as
that of (U,),cz. Then its cumulant function satisfies [3]

(V(np c L ) E A)

clny, ~ 0 m) = (=i Ty (44)

and the imaginary part of the kth order spectral density is
therefore identically zero. For a given k, the correspond-
ing set is that of all a’s which produce a residual whose
observed polyspectral estimate has an imaginary part in
some confidence interval (determined as above) around
Zero.
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IX. SETsS BASED ON OTHER INFORMATION

In statistics, procedures exist to test various hypotheses
concerning a discrete stochastic process. Therefore, if ¥,
is a piece of a priori knowledge pertaining to the noise
process, we can construct the property set §; of all a’s
which yield a residual path y that passes the test associ-
ated with ¥; within some significance level. For instance,
if it is known that (U,), .z is stationary, the procedure de-
scribed in [27] can be used to test the residual path for
stationarity; if it is known that the U,’s are i.i.d., the tests
of randomness discussed in [20] can be applied to the re-
sidual path. In other instances, the U,’s may all be known
to be distributed as a r.v. U with d.f. F, some attributes
of which are known. Thus, the residual path can be tested
for departure from various functional forms of F (e.g.,
uniformity [22], normality [24], or exponentially [32]) or
from some of its properties (e.g., symmetry [8]).

X. REDUNDANCY OF NOISE INFORMATION

In some problems, noise information is scarce and few
property sets can be constructed. Nonetheless, there are
many situations in which several pieces of a priori infor-
mation about the noise process are available and, natu-
rally, the question of redundancy arises. To illustrate this
point, consider a problem where it is known that the noise
sequence consists of zero mean Gaussian i.i.d.r.v.’s.
From the knowledge of some absolute moment of order
P, one can infer the value of any other absolute moment
and, therefore, infinitely many absolute moment sets can
be created. One has then to decide which of these sets
should be used.

In our framework, a piece of information ¥; is redun-
dant in the presence of a piece of information ¥, if the
property sets §; and ; formed in accordance with (1) are
such that §; C S;. In other words, in the presence of §;,
S; does not contribute to a smaller feasibility set in (2). In
general, the question of identifying analytically redundant
information is a delicate one. A partial answer is brought
by the following propositions where S, denotes the range
set of Section IV, S, the pth absolute moment set of Sec-
tion V, §; the kth moment set of Section VI, and S, the
spectral set of Sections VII-A and B.

Proposition 7: If k is odd, S, C S, if nk* = v, and 8,
nN. S, C 87 if ¢, = n'/” max {|x|, |\]}.
Proposition 8: Let p < q be two positive real num-
bers. Then S, C S, if ¢, < n'/47/p¢,.

Proposition 9: Fork = 1, S, C S, if v, < —\/E—o and
8 = V&

It is worth noting that Proposition 9 also holds for the
spectral set of Section VII-C if y, = 0. It is also pointed
out that Propositions 7 through 9 involve merely sufficient
conditions. Consequently, they may fail to detect redun-
dancy in some cases. In such instances, the selection of
noise property sets should be guided by experience with
similar problems.

=
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XI. SIMULATION RESULTS

The goal of these simulations is not to demonstrate the
usefulness of the sets constructed above, since particular
cases of these sets have already been successfully em-
ployed in previous studies. For instance, sets similar to
S, (for p = 2), S, (for k = 1), and S, have been used in
set theoretic restoration [5], [35]. Rather, the intent here
is to illustrate some of the general statements made earlier
via direct pictorial representation of some of the sets. This
will also provide insight into the actual value of various
pieces of noise information.

In order to give a pictorial representation of the sets in
the Cartesian plane, estimation problems with two real
unknown parameters h; and h, are considered: autore-
gressive estimation (problem A) and harmonic retrieval
(problem B). In each problem, points (x;); of a data pro-
cess of the form (4) are generated. To represent a given
noise property set S; in the (k,, h;) solution plane, the
following Monte Carlo experiment is performed. A large
number of estimates of & = (h, hy), a = (a,, a,), are
drawn at random from a uniform distribution over some
compact region G, called search region. For each a, the
residual path is computed according to y, = x; — T;(a).
A simple acceptance/rejection procedure then takes place.
Only those a’s which produce a residual path consistent
with the noise property in question are retained. The scat-
ter plot of these points in the solution plane represents
approximately the set S;. In the simulations the noise se-
quence consists of zero mean i.i.d.r.v.’s distributed as a
r.v. U with known density type (uniform in problem A
and Gaussian in problem B) and variance. This informa-
tion is sufficient to compute the parameters of all the sets
constructed above. The number of residual samples is n
16. By centering the confidence interval at zero, the
range set of Section IV can be written as

S, =N {aeR|x; - Ti(@)| =< \}.

i=1

(45)

From Section V, the absolute moment set of order p reads
S, ={aeR’n, < Nx — T(a)) < (,}. (46)

By Proposition 5, the expression of the moment set of odd
order k is

&=&ewy§m—ﬂ@f

< oz\/nEUZk}. @7

Finally, the spectral set of Sections VII-A and B is given
by

/
n/2

S, =N {a € IR?| ‘Z] x; — Ti(@)
k=0 i=

© exp <—j 2’1—7r ki) Sk}.

For both problems, we shall represent S,, S, forp = i1,
2,and 4, S, fork = 1 and k = 3, and S,. The confidence

2

<

(48)




COMBETTES AND TRUSSELL: NOISE PROPERTIES IN SET THEORETIC ESTIMATION 1637

-2 L 2 ) N L L
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Fig. 1. AR estimation problem: Range set.

-2 N L . 1 i n

-2 -1 0 1 2

Fig. 2. AR estimation problem: Absolute moment set—p = i

-2 -1 0 1 2

Fig. 3. AR estimation problem: Absolute moment set—p = 1.

coefficient is fixed to 95% and, since n is small, §, =
+

S, .

A. Autoregressive Estimation

We consider a second-order AR process with two un-
known coefficients k; and h,, driven by a noise sequence
(U)nez- The signal formation operator is given by

Ti(h) = hxi_y + hyxi_y. 49)

The true regression coefficients are h; = 0.45 and h;, =
0.50; U is uniformly distributed with variance o> = 0.05.

i
-2 -1 0 1 2

Fig. 4. AR estimation problem: Absolute moment set—p = 2.

-2 " ) L N .
b3 =1 1- 2

Fig. 5. AR estimation problem: Absolute moment set—p = 4.

-2 : . i , A .
2 =1 0 1 2

|
—

Fig. 6. AR estimation problem: Moment set—k =

The search region is G = [—2, 2] X [—2, 2]. The range
set is displayed in Fig. 1, the absolute moment sets in
Figs. 2-5, the moment sets in Figs. 6, 7, and the spectral
set in Fig. 8.

B. Harmonic Retrieval

We now consider a harmonic data process with two
phaseless sinusoids of unit amplitude and unknown fre-
quencies h, and h, corrupted by a noise process (Up)nez-
For such a problem, the signal formation operator is non-
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Fig. 7. AR estimation problem: Moment set—k = 3.
2
1
0
-1 4
-2 L " ) s " "
-2 -7 0 1 2
Fig. 8. AR estimation problem: Spectral set.
0.18 , )
0.14 ]
J
1
0.10 A s , 4 s N .
0.06 0.10 0.14
Fig. 9. Harmonic retrieval problem: Range set.
linear
Ti(h) = sin 2wh,i) + sin Qhyi). (50)

The true frequencies are #; = 0.10 and 4, = 0.14; U is
normally distributed with variance 6> = 0.05. The search
region is G = [0, %] x [0, 3]. The range set is displayed
in Fig. 9, the absolute moment sets in Figs. 10-13, the
moment sets in Figs. 14 and 15, and the spectral set in
Fig. 16 (since the problem is symmetric in a, and a,, only
the points with a, > a, need be represented).

C. Discussion
In problem A, the signal formation operator is linear.
From Figs. 1, 3 through 6, and 8, it is seen that the range
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0.18

0.14

0.06 0.10 0.14

Fig. 11. Harmonic retrieval problem: Absolute moment set—p = 1.

0.06 0.10 - 0.14

Fig. 12. Harmonic retrieval problem: Absolute moment set—p = 2.

set, the absolute moment sets (for p = 1), the moment
set of order 1, and the spectral set are convex, which
agrees with Propositions 2-4, and 6, respectively. In
problem B the signal formation operator is nonlinear. This
gives rise to sets which are geometrically more complex
such as the moment sets in Figs. 14 and 15. Note also that
other sets are nonconvex such as the absolute moment sets
of order 3 in Figs. 2 and 10, the third moment set of Fig.
7, the range set in Fig. 9. As was indicated in Section X,
Propositions 7 to 9 may fail to detect some redundancies.
For instance, the range set of Fig. 1 is contained in the
absolute moment set of order 4 of Fig. 5 while &, < n'/*\
in problem A. It should also be noted that moment sets of
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Fig. 13. Harmonic retrieval problem: Absolute moment set—p = 4.
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Fig. 16. Harmonic retrieval problem: Spectral set.
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different order may carry nonredundant information. The
same remark also applies to absolute moment sets. As a
general conclusion, these simulations show that one type
of information (range, moment, absolute moment, spec-
tral density) is not necessarily redundant with another
type. Therefore, leaving aside any computational aspect,
one should seek to use as much of the available noise in-
formation as possible to reduce the feasibility set.

XII. CONCLUSIONS

In the literature, the use of noise properties in estima-
tion procedures has been limited to few probabilistic at-
tributes and to particular problems such as system iden-
tification and signal restoration. In this paper, it has been
shown how a wide range of information relative to the
noise can be incorporated in a general set theoretic esti-
mation problem. The incorporation of noise information,
which is seldom possible with conventional estimation
techniques, is very simple in set theoretic estimation as it
amounts to adding the corresponding property sets to the
collection of sets describing the solution. The addition of
these sets will translate into a smaller feasibility set and,
thereby, more reliable estimates.

Among the pieces of information considered to con-
struct property sets were the range of the r.v.’s, the mo-
ments and absolute moments of arbitrary order, the cor-
relation function at some lags, and the spectral density at
some points. It was also indicated how to create sets based
on properties available through higher order spectral den-
sities and, via the use of statistical tests, on other prob-
abilistic information. Properties of these sets such as
closedness and convexity were also discussed and the
question of redundant information was addressed. Be- .
cause of the generality of the data formation model used
in the analysis, the results presented here can be applied
to a vast body of estimation problems in digital signal
processing and systems theory, in particular to those men-
tioned in Section III.

APPENDIX

The basic elements of mathematical analysis needed in
the following proofs can be found in Berge [2] and Dieu-
donné [11].

Proof of Proposition 1: It simply needs to be
checked that (Y,),cz and (U,),.z have the same finite di-
mensional d.f.’s. This is easily done by letting k£ be an
arbitrary but fixed positive integer and then fixing arbi-
trary k-tuples (n(, * *+ , n) in “*and (kg, *+ -, k) in
IR¥. Consider the events

k
A= N4, where 4, = {we Y, (w = U,(}

i=1

k
B= 0 {we Y, (w) < &}

i=

k
C= ﬂ {wteU,,,.(w) < K,'}. (A.D

=1
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Note that, since (Y,),.z and (U,),z are equivalent, PA°
= P Uf., A7 < Zf_, PA{ = 0. Consequently, PA° N B
=PA° N C = 0. Moreover,A N B = A N C. Hence,

PB=PANB+PANB
=PANC+PA NC=PC (A.2)
and the proof is complete. O

Proof of Proposition 2: Let i be an arbitrary integer
in {1, -+ -, n} and let f: a = x; — T:(a). Since T, is
continuous, so is f;. Hence, each C; = f7'([x, \]) is closed
in Z and so is their intersection S,. To prove the second
assertion, let a and b be two arbitrary vectors in S, and let
« be an arbitrary real number in ]0, 1[. Clearly, a and b
both belong to C; and thus

{ak < alx; — Ti(@) < or A3

-k =(1-a)x—-Td) <1 -\

<<

Since T; is linear, (A.3) yields « < x; — Ti(aa + (1 —
a)b) < . Therefore, each C; is convex and so is their
intersection S,. O

Proof of Proposition 3: Letf,:a — Ny(x — T(a)). If
T is continuous, 5o is f,. Therefore S, = f; '([n,, {,]) and
S, = f,'0—o, §]) are closed. To establish that Sy is
convex, it is enough to prove that £, is a convex function.
Let « be an arbitrary real number in ]0, 1[ and let a and
b be two arbitrary vectors in Z. By linearity of T

flaa + (1 = a)b)
Nyfa(x — T(a)) + (1 — oy(x — T(B)Y)).

(A4)

But, forp = 1, N, is a norm on IR" and it is therefore
convex. Whence

Nyax = T@) + (1 = 0)(x — T(b)))

= aN,x — T@) + (1 — a)N,(x — T(h)). (A.5)
Consequently,

flaa + (1 — aw)b) < affa@) + (1 — a)f,b) (A.6)

which is the desired result. ]

Proof of Proposition 4: Similar to that of Proposi-
tion 2. d
Proof of Proposition 5: The odd moments of a r.v.
U satisfying (28) are zero [13]. Therefore (26) reduces to

(29). O
Proof of Proposition 6: Let f,: a — |L'_(x; — T,(a))
exp (—j (27 /n)ki)|?, for an arbitrary k in {0, - - - | n/2}.

If T is continuous so is f,. Therefore, each D, = f;'
(J—o0, &) is closed in Z and so is their intersection Sy
To prove the second assertion, it is enough to show that
Ji is convex (if it is, then D, = f7'(]—oo, £,]) will be
convex and so will the intersection S,). Let o be an ar-
bitrary real number in ]0, 1[ and let ¢ and b be two arbi-
trary vectors in E. Forevery iin {1, - - -, n} let w; =
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exp (—j (2w /n)ki). Then, by linearity of T,
flaa + (1 — a)b)

= |l ‘;] (x,» - ]-i(a))wl'/\’
2

A= 2= Tiow| . (AT)

Since z — |z|? is a convex function on it follows that

flaa + (1 — a)b) < afi(a) + (1 — &) fub). (A.8)

Thus, f; is convex. O

Proof of Proposition 7: Let a be an arbitrary point
in §, and i an arbitrary point in {1, - - - , n}. Then, since
kis odd, nk* < L'_| (x; — T;(a))* < nA\*. Thus, nk* =
v¢ and 8, = n\* yield @ € S;. On the other hand, |x;, —
T:(@)|” = max {|«|”, |[A\|’}. Summing over all i’s and
taking the pth root gives N,(x — T(a)) < n'/? max {|«|,
IN}. Hence n'/? max {|«[, [N|} < ¢, yieldsae S, . O

Proof of Proposition 8: Let a be an arbitrary point
in S, and let y = x — T(a). Then Ny(y) < $q- But N(y)
< n'/p"'/qu(y) [16]. Hence, N,(y) =< n'/""/"fq. By
hypothesis, n'/?~'/9¢, < ¢,. Hence N,(y) < ¢,. There-
foreae S, . O

Proof of Proposition 9: Let a be an arbitrary point
in S;. Then certainly —\/g s, x —Ti(a) < \/E_o-
Thus, the hypotheses v, < —\/E_O and 6; = ‘/f_o givea €
S, fork = 1. [
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