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Inconsistent Signal Feasibility Problems:
Least-Squares Solutions in a Product Space

Patrick L. Combettes, Member, IEEE

Abstract—In this paper, we present parallel projection methods
to find least-squares solutions to inconsistent convex set theoretic
signal synthesis problems. The problem of finding a signal that
minimizes a weighted average of the squares of the distances
to constraint sets is reformulated in a product space, where it
is equivalent to that of finding a point that lies in a particular
subspace and at minimum distance from the Cartesian product
of the original sets. A solution is obtained in the product space
via methods of alternating projections which naturally lead to
methods of parallel projections in the original space. The con-
vergence properties of the proposed methods are analyzed and
signal synthesis applications are demonstrated.

I. INTRODUCTION

HE goal of a set theoretic signal synthesis (estimation or
design) problem is to produce a signal a* that satisfies
simultaneously a collection (¥;)1<i<,, of constraints. In a
suitable signal space =, each constraint ¥; is associated with a
property set S; = {a € Z | a satisfies U;} and the feasibility
problem is then stated as
m
Find o* € [ S. (1)
i=1
The pair (Z, (S;)1<i<m) is called a set theoretic formulation.
In this work, it will be assumed that = is a Hilbert space and
that the S;s are closed and convex. This convex set theoretic
feasibility framework has been applied to a wide range of
signal processing problems including signal deconvolution,
tomographic reconstruction, image restoration, band-limited
extrapolation, and image synthesis. The reader is referred to [9]
for an in-depth account of the field and an extensive survey
of applications. In set theoretic signal estimation problems,
€.g., reconstruction [19], enhancement [25], restoration [33],
recovery from bispectrum [5] or phase [22] information, the
goal is to produce an estimate of the true signal which is
consistent with all a priori knowledge and the data. (¥;)1<; <
then represents the available information for the problem.
On the other hand, in signal design problems, e.g., pulse
shape design [8], image construction [24], filter design [26],
the goal is to produce a signal that meets a collection of
requirements and (¥;);<;<,, then represents a collection of
design specifications.
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There may be cases when (1) has no solution because
incompatible constraints are present, which forces N, S =
. In estimation problems, this situation may be due to
inaccurate or imprecise information. For instance, consider the
sets proposed in [36]. Most of them depend on attributes of '
the original signal, e.g., amplitude bounds, region of support,
band-limitedness, energy, that may not be known exactly.
The same remark also applies to the attributes of the noise
that are required to construct the sets described in [12], e.g.,
bounds, moments, spectral properties, distribution. In addition,
such sets based on stochastic information take the form of
confidence regions and their construction depends on the
specification of a confidence level. If the confidence level is
unrealistically low, the sets may not .intersect. Inconsistencies
may also be due to inadequate data modeling, for instance
when random variations in the impulse response of a system
[11] or noise perturbations in the measurements [19], [32] are
not taken into account. In design problems, inconsistencies are
even more likely, as the specifications of the constraints are left
to the user. An example is the data window design problem of
[17], which involves conflicting time and frequency domain
constraints.

Because of the possibility of encountering inconsistent set
theoretic formulations, one must be aware of the convergence
behavior of existing solution algorithms when they are applied
to them. In almost all of the fields of application of set theoretic
methods, the so-called POCS (projections onto convex sets)
algorithm has prevailed to solve (1). Let P; be the projection
operator onto S;. In the general form of POCS, an initial
estimate ag is projected sequentially onto the sets in a cyclic
manner according to the iterations [3], [18]

(Vn € N) —ay)

)

Op41 = Gp + /\n(pn(modulo m)+l(a'n)
where

(An)n>0 C [e.2—¢] with 0<e <. 3)

If N2y Si # 0, any sequence (a,),>0 generated by POCS
converges weakly to a signal in ﬂ:’;l S;. The convergence
properties of the unrelaxed version of POCS, that is

(V’(L € N) An+1 = Pn(modu]o m)+1(an) 4)

in inconsistent problems were studied in [18]. It was shown
there that, if one of the sets is bounded, there exist points
(@i)1<i<m such that Pi(d,,) = @ and Pi(a;_;) = a; for
every i in {2,---,m}. Moreover, the cyclic subsequence
(@mn+i)n>0 converges weakly to such a point @; in S;. In
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the particular case when = 2. this result simply states
that the sequence (a2,41)n>0 converges weakly to a point
dp in S; such that P (FP(@,)) = @;. ie., to a signal that
satisfies property ¥, and which is closest to satisfying W,
(this result is also discussed in [6], [17]. and [35]). Beyond
two sets, however, the above result has no useful interpretation
and little practical value. It merely indicates that the limit
signal @, lies in S; and, thereby, satisfies ¥;. Aside from ¥;,
however, the properties of @, are totally unknown and there
is no guarantee that any of the remaining constraints will be
satisfied, even in an approximate sense. Such a solution clearly
constitutes a poor approximation of a feasible signal. Thus,
the convergence behavior of POCS in the inconsistent case is
generally unsatisfactory.

In inconsistent problems, there exists no signal possessing
exactly all the properties (¥;)1<;<, but one can look for a
signal that satisfies them in some approximate sense. Let us
consider the basic feasibility problem of solving a system of
m linear equations in R¥. If the system is overdetermined, it is
customary to look for a least-squares solutions. In set theoretic
terms, if (S;)1<i<m represents the family of hyperplanes of
R* associated with the equations, this is equivalent to looking
for a point a* which minimizes >_;" | d(a. S;)?, the sum of the
squares of the distances to the S;s. Along the same lines, the
exact feasibility problem (1) can be replaced by the weighted
least-squares feasibility problem

m

1
Minimize ®(a) = 3 Z; wid(a. ;)% over = (5)
where (“’i)lgigm are strictly convex weights, that is
Zwizl and (Vie{l.---.m})w; >0. (6)
=1

We shall call @ the proximity function. The smaller ®(a),
the closer the signal « to satisfying all the properties in
the above weighted least-squares sense. To that extent, ®(a)
measures the degree of unfeasibility of a. Thus, in instances
when consistency is not guaranteed, the goal will be to find
a minimum of the proximity function ®, i.e., to solve (5) or,
equivalently

Finda" € G={a€e=Z|(VheZ) &(a)<B)}. ()

Of course, if ()i, S; # 0, the minimum value of the proximity
function is 0 which is attained only on G = ()., S;, so
that (1) and (7) coincide. In general, (7) can be viewed as
an extension of (1) and G is the set of least-squares solutions
of the (possibly inconsistent) signal feasibility problem.

In finite dimensional spaces, and under certain conditions
on the problem, it is known that (2) can solve (7) if the
sequence of relaxation parameters (), ),,»o approaches zero
[4], [29]. Experimental evidence first suggested this property
in the inconsistent tomographic reconstruction problems of
[20], where POCS was reported to provide better results
with strong underrelaxations than without relaxations, as in
(4). From a practical viewpoint, however, strong underrelax-
ations are not desirable as they impose very small step sizes
(llan+1—anll)n>0 and. overall, excessively slow convergence.
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In this paper, we propose simultaneous projections al-
gorithms to solve the least-squares feasibility problem (7).
Instead of approaching (7) directly in the original signal space
=, we shall reformulate it in the mn-fold Cartesian product
space 2 = =™, where it will be posed as a simple 2-
set problem and solved via alternating projection schemes.
These schemes will in turn directly lead to parallel projection
methods once transposed back in =. The paper is organized
as follows. In Section II, we review relevant material and
establish preliminary theoretical results. In Section III, we
recast (7) in the product space = and develop the convergence
analysis in this simpler setting. This analysis is brought back
to the original space = in Section IV, where the convergence
properties of the parallel projection methods are presented.
Section V is devoted to applications to set theoretic signal
synthesis. The paper is concluded in Section VI.

II. THEORY

In this section, we lay the theoretical foundation of the
paper. Most developments require only a modest background
of standard hilbertian analysis, as can be found in [15] and
[31]. To keep the focus on the results, the proofs of this section
have been placed in the Appendix.

A. Notations and Assumptions

N is the set of nonnegative integers and R, the set of
nonnegative reals. All the signals to be considered belong
to a real Hilbert space = with scalar product (- | -), norm
Il -1, and distance d. A sequence of signals (a,, }n>0 is said to
converge to a signal a strongly if (]|a, — a||),>0 converges to
0, and weakly if ({an — a | b))n>0 converges to 0, for every
b in Z. In Z, the constraints (¥;)1<;<,, defining the signal
to be synthesized are represented by closed and convex sets
(Si)i1<i<m- The distance from a point a in = to the set S; is
d(a.S;) = inf{d(a.b) | b € S;}. The proximity function ®
for the problem is defined by

d: = >Ry

1 m
a 5 Z w;d(a, S;)? ®)
=1

where (w;i)i1<i<m are strictly convex weights, as in (6).
Moreover, G denotes the set of minimizers of &, i.e., the set
of weighted least-squares-feasible signals.

As discussed in the Introduction, the problem of finding a
minimum of the proximity function will be recast in another
real Hilbert space = (the m-fold Cartesian product of Z). Its
scalar product will be denoted by ({- | )}, its norm by ||| - [{],
and its distance by d. T will denote the identity operator on
Z. A fixed point of an operator T: 2 — = is any point a
such that T'(a) = a.

B. Nonexpansive lterations

Let (a.b) be an arbitrary pair in 22, An operator T: & — =
is said to be nonexpansive if

7 (a) = T(b)|I| < [lla - blf| ©
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and firmly nonexpansive if

{((a—b|T(a) = T(b))) > [[[T(a) - T(B)[II>.  (10)

It is easy to see that (10) = (9). If T is nonexpansive, then its
set of fixed points is closed and convex. Moreover, if T} and
T, are nonexpansive operators, so are the composition 77 o Ty
and the convex combination (1—a)T; +aTy, where o € [0, 1].

Proposition I1: Let T: & — = be a firmly nonexpansive
operator with nonempty set of fixed points F, let (A,)n>0
be as in (3), and let ag be an arbitrary point in Z. Then the
iterations

(VneN) a 1 =a, + A (T(a,) —ay,) an

converge weakly to a point in F. a

Proposition 2: [23] Let T : E — = be a nonexpansive
operator with nonempty set of fixed points F, let ag be an
arbitrary point in E, and take any sequence (ct,)n>0 C [0,1]
such that

limn_.+oo p = 1,
D nso(l = an) = +oc.
liInn—»+ac(an+l - Ufn)(l - (Y,1+1)72 = 0.

(12)

Then the iterations

(Vn eN) a,q1 = (1 —an)ag + a,T(a,) (13)

converge strongly to the point in F which is at minimum
distance from ag. O

Note that an example of sequence (c)n>o that satisfies
(12) is

(VneN) a,=1-(n+1)7" where 0 <k < 1. (14)

C. Projections

A detailed account of the properties of projections onto
convex subsets of Hilbert spaces can be found in [1] and [37].
We review here a few basic facts.

Let D and S be nonempty closed and convex subsets of =.
The distance between D and S is defined to be d(D,S) =
inf{d(a,8) | a € D}. The function d(-,S) is continuous
and convex on E. Every a in & admits a unique projection
onto S, i.e., there exists a unique point Ps(a) in S such
that d(a, Ps(a)) = d(a,S). The projection operator Ps is
characterized by the variational inequality

(V(a,b) €E%) ((a— Ps(a)| Ps(b) - Ps(a))) <0 (15)

which implies that Pg is firmly nonexpansive. If D is a closed
vector subspace of E, Pp is linear and (15) yields

(Va€ E)(YbeD) ((a|b))=((Pp(a)|b)).

Proposition 3: Let D C E be a closed vector space and
S C E a nonempty closed and convex set. Then

(16)

i) Pp o Ps is firmly nonexpansive on D;
il) (VA€[0,2]) Y+ A(Ps — T) is nonexpansive. O
Rs = 2Ps — Y is the operator of reflection with respect to

S. If V denotes the gradient operator in Z, then (Va € E)
Vd(a,S)? = 2(a — Ps(a)).
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Fig. 1.

Iteration in the product space.

D. Alternating Projections

In this section, D C E is a closed vector space and S C E a
nonempty closed and convex set. Their projection operators are
denoted by Pp and Ps, respectively. Let G be the (possibly
empty) set of fixed point of Pp o Pg, i.e.

G ={aeD|Pp(Ps(a))=a}. a7

Proposition 4: [6] G = {a€ D |d(a,S)=d(D,S)}. O
In words, Proposition 4 states that the fixed points of
Pp o Pg coincide with the minimizers of the functional

$:D— R,

a— %d(a,S)Z. (18)
Theorem 1: Suppose that G # §. Then, for any ag in D,
every sequence of iterates (a,)»>o defined by

(V’HEN) An41 Zan“f‘)\n(PDOPS(aﬂ)_an) (19)

where (A,)n>0 is as in (3), converges weakly to a point
in G. . O

A pictorial description of (19) is given in Fig. 1: s, =
Ps(ay) and d,, = Pp(s,) = Pp o Ps(a,) are first computed
and a,;; is then positioned on the segment between a,, and
d,, or between d,, and 2d,, — a,, according as e < A < 1 or
1 < A, €2 — e. We shall say that iteration n is underrelaxed
if A, < 1, unrelaxed if A\, = 1, and overrelaxed if A\, > 1. As
discussed in the Introduction, in the unrelaxed case, Theorem
1 was proved in [18].

The relaxation parameters in (19) can vary in the interval
[e.2 — €] at each iteration. Let us consider the problem of
finding the optimal relaxation parameter at iteration n in terms
of bringing a, 1 as close as possible to an arbitrary point a*
in G. The optimal value of ), should therefore minimize
llani — a*lll. We have

an+1 = a*[l* = fllants — anll|?
+2({apy1 — a, | a, — a%))
+|llan —a*|||®
= A2|[lan = Pp o Ps(an)|l®
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- 2A,,<<an -Ipo PS(an) | a,

+ [lla, — a*[||*.

—a’))
(20)
This quadratic form in A, is minimized for
* ({ay, _pDOPS(anHan_a*))

Af = 5 . 20
H|an ~Ipo Ps(ﬂ,,)”'_

We observe that the optimal relaxation parameter depends on
the solution point a*, which of course is not known. Hence,
optimal relaxation cannot be achieved. However, the range of
the relaxation parameters can be narrowed down by virtue of
the following proposition.

Proposition 5: The optimal one-step relaxations in Theo-
rem 1 are overrelaxations: (Vi € N) A% > [ g

Let us now state additional properties of the alternating
projection method (19).

Proposition 6: Let (a,), >0 be any sequence of iterates in
Theorem 1. Then (®(a,,)), > decreases until convergence and

(V” S N) Apy1 —a, — /\nvD‘p(an) (22)

where Vp is the gradient operator in the Hilbert space D. O

E. Strong Convergence

Strong convergence of the unrelaxed version of (19) can
be proved if one makes additional assumptions on S, such as
compactness {6], finite dimensionality [6], or uniform convex-
ity [18]. The next theorem presents a strong convergence result
for a variant of (19) which does not require special conditions.

Theorem 2: Suppose that G # (. Then, for any a in D,
every sequence of iterates (a, ), »o defined by

(VneN) a,q

=(1-ay)ag+a,(APpo Ps(a,) + (1 - Ma,) (23)

where («,),>0 is as in (12) and 0 < A < 2, converges
strongly to Pg(ay). O

Note that, as n increases, (23) tends to behave like a
constant-relaxation version of (19).

F. Set of Least-Squares-Feasible Solutions

The properties of the set G of weighted least-squares
solutions in (7) are given in the following proposition.

Proposition 7: Suppose that one of the S;s is bounded.
Then G is nonempty, closed. convex, and bounded. )

It is noted that in the consistent case G = (L, S; and
Proposition 7 becomes trivial.

III. FORMALIZATION IN A PRODUCT SPACE

Let & = =™ be the m-fold Cartesian product of the original
signal space Z. We shall denote by a = (a1 ... 40™)
an m-tuple of signals in Z. E can be made into a Hilbert
space by endowing it with the scalar product ((a | b)) =
Y wi{a | b)Y, The corresponding norm and distance
are given by

{IIIaIII = (20, willal)2)2 2,

d(a.b) = (37, wid(aD.p02)1/2, 24)
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Let S be the Cartesian product of the sets (Sihi<i<m., i.e.

S=XrSi={acE|[(Vie{l.---.m}) P e 8} 25
and D be the diagonal vector subspace, i.e.

D={(a.---.a)e E|a€Z}. (26)

Henceforth, if a is a point in D, we shall write it as a =
(a.---.a). It is noted that S and D are closed and convex
subsets of Z. Moreover, it follows immediately from (25) and
(26) that

SﬂD ={(a.---.a)eEf(Vie{l.---.m}) a€S}.
27
Therefore, in the product space E, we can reformulate the
feasibility problem (1) as
Find a* € [\ D. (28)
This product space characterization of (1) was first given
in [27] (see also [28]). Note that in the inconsistent case
SND = 0.
Proposition 8: [28] We have

(VaeD) Ps(a)=(Pi(a). . Ppla)).
{(\/a €8) Ipla)=(X", wiad..... > wiald).
(29)
]
We shall now proceed to derive a product space formulation
of the weighted least-squares feasibility problem (7). Let us
define G as in (17) and @ as in (18), and recall that G is the
set of minimizers of the proximity function ® in (8).
Theorem 3: In the product space E, the weighted least-
squares problem (7) is equivalent to minimizing ®, i.e., to
solve

Find a" € G. (30)

O

Proof: Let a = (a.---.a) be any point in D. We have

m

d(a) = Z wid(a. S;)? /2
=1

= Z willa = Pi(a)||?/2
i=1

= l(a.-+.a) = (Pi(a). - P(a)||*/2

= |lla - Ps(a)]l|*/2
=d(a.8)?/2
= ®(a). (31

Therefore, if & is minimized for «*, then ® is minimized
for a*. and vice-versa. But, according to Proposition 4,
the set of minimizers of ® is G. Hence, we obtain
G={(a.---.a) €E|ae G} o

Thus, just as (28) was equivalent to (1), the more general
problem (30) is equivalent to (7). From this, the advantage of
the product space formalization becomes immediately appar-
ent: it allows us to reduce a problem with m convex sets to
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one with only two, one of which is a simple vector subspace.
Practically speaking, Theorem 3 can be interpreted as follows:
the problem of finding a signal that minimizes the weighted
average of the squares of the distances to the property sets is
equivalent to that of finding an m-tuple of identical signals
that lies at minimum distance from the Cartesian product of
the property sets. Mathematically, this is simply equivalent to
finding a point in D which is at minimum distance from S, i.e.,
a point in G. According to Theorems 1 and 2 and Proposition
7, as long as one of the property sets is bounded, such a point
exists and can be obtained iteratively via (19) or (23).

. IV. SIMULTANEOUS PROJECTIONS METHODS

In the previous section we have solved the least-squares
feasibility problem (7) in the product space Z. It remains to
reformulate the solution methods in the original signal space
=, where they will actually be employed.

A. Theoretical Convergence Results

We can now state our main result, namely the convergence
of parallel projection methods to a weighted least-squares so-
lution of the feasibility problem. The practical significance of
this result is that, although the constraints may be inconsistent,
they will be approximately satisfied, in a weighted least-
squares sense, by the signal generated by the simultaneous
projections algorithms. From a signal processing point of view,
such a solution is clearly more acceptable and useful than that
generated by POCS, whose properties are generally elusive.

Theorem 4: Suppose that one of the S;s is bounded. Then,
for any a in Z, every sequence of iterates (an)nZO defined by

=1

(VneN) ang1 =an+ A (Z w; Pi(an) — an> (32)

where (A )n»o is as in (3), converges weakly to a point
in G. ad

Proof. Tt follows from Proposition 7 that G # . In
addition, Proposition 8 yields

(VaeD) PpoPs(a)= (Z w; Pi(a), -, ZwiPi(a)> .
=1 =1 (33)

Therefore, (19) in 2 yields (32) in = and Theorem 4 is a
corollary of Theorem 1. o

Henceforth, we shall refer to the iteration process (32)
as the parallel projection method (PPM). Particular cases of
PPM have already been studied in the literature via direct
approaches in the original space. Thus, Theorem 4 generalizes
a result of [13], which was restricted to half-spaces in finite
dimensional spaces and could therefore be applied only to
linear inequality constraints. It also generalizes a result of [14],
which assumed constant relaxations in (32). Other studies have
focused on the unrelaxed form of ’(32), namely

(YneN) anq = Zwipi(an)- (34)
i=1
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In this case, for consistent problems in finite dimensional
spaces, Theorem 4 had been established in [2]. In tomographic
signal reconstruction, each property set S; is a hyperplane
in R* and (34) with w; = 1/m is known as the simul-
taneous iterative reconstruction technique (SIRT) [16]. It is
reminiscent of Cimmino’s method [7] which solves systems
of linear equations in R* by averaging reflections (rather
than projections) with respect to the hyperplanes. Now, define
ID ={ie€l]|a, ¢ S;} and let u(I;) be the number of
points in I;. In [21], the relaxation scheme

if p(I7) 22

otherwise 35)

(VneN) A, = {}/Ziel; w;,
)

was used in lieu of (3) to study the convergence of (32) in
finite dimensional spaces. This scheme was shown to achieve
an acceleration effect due to the fact that some relaxations
may be larger than 2. However, convergence to a least-squares
solution was proved only locally, i.e., for iterations starting at
a point ag sufficiently close to G. The following proposition
describes PPM as a steepest-descent method, which will give

more insight about its convergence behavior.
Proposition 9: Let (an)n>0 be any sequence of iterates in
Theorem 4. Then (®(a,,))n>0 decreases until convergence and

(VneN) ant1 =a, — A, VP(a,) (36)

where V is the gradient operator in =, (]
Proof: It follows directly from (31) and Proposition 6. ¢
As indicated in Section II-E, strong convergence of PPM
can be obtained by imposing certain conditions on the sets. We
now present a variant of PPM for which strong convergence
is guaranteed without further assumptions on the sets.
Theorem 5: Suppose that one of the S;s is bounded. Then,
for any ag in Z, every sequence of iterates (a,, ). >0 defined by

(YneN) apq

=(1-an)ag + an <)\i w; Pi(an) + (1 — )\)an) 37)

i=1

where (an)n>0 is as in (12) and 0 < A < 2, converges

strongly to the projection of ag onto G. 0
Proof: Similar to that of Theorem 4: (23) in E yields
(37) in = and Theorem 5 is a corollary of Theorem 2. °

It is worth noting that (37) not only converges strongly to
a least-squares-feasible solution but also guarantees that this
solution is the closest to the initial point ag. This property is
very valuable in certain signal synthesis problems, where one
seeks the best feasible approximation of a reference signal ag
[10]. In particular, if ag is the zero signal, (37) yields the
least-squares-feasible signal with minimum energy.

B. Numerical Considerations and Implementation

In this section, we discuss the practical issues pertaining to
the numerical realization of the proposed methods on a digital
computer. In this particular context, the signals are discretized
and have finite support so that the underlying Hilbert space
is the usual NN-dimensional euclidean space. Hence, weak
convergence in Theorem 4 becomes strong convergence and
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Fig. 2.

Iteration in the original space.

the algorithm of interest is PPM (32), which more flexible
than (37) for solving (7).

1) Parallel Computing: POCS is a serial method in the
sense that only one of the sets can be activated at every
iteration. A salient feature of PPM is its parallelism: at every
iteration the projections can be computed simultaneously on
concurrent processors. Thus, the first phase of an iteration
of PPM consists in projecting the current signal «,, onto all
the sets, a task which can be distributed among . parallel
processors. The second phase is a combination phase in which
the projections computed by the 1 processors are averaged
to form d, = Y., w;P;(a,). The last phase consists in
positioning the new iterate a,+; on the segment between «,,
and 2d, — a,. This procedure is illustrated in Fig. 2.

2) Relaxation Parameters and Convergence Behavior:
According to Proposition 5. (21), and (33), the value of
An that will produce the largest step towards a solution point
a” in G at iteration n is

A = (Eznzl “}I'Pi(”m) — Un l a* — (Ln> >1
" 1550 wiPiay) — a, |2 =

In fact, we can deduce from (20) that |ja,,+; — «*|| decreases
monotonically as A, increases from 0 to A*, where it attains
its minimum, and then starts increasing again. Theoretically,
the optimal relaxation A} could be very large and definitely
greater than 2. It should be noted that optimal step sizes at each
iteration of an algorithm do not systematically ensure faster
convergence of the whole sequence of iterates to a solution.
However, we have found this to be the case for PPM. which is
in agreement with other studies on parallel projection methods
[21], [27], [28], where it was found that overrelaxations had an
accelerating effect on the progression of the iterations towards
a solution.

In order to find an explicit relaxation rule at each iteration
n, let us go back to Proposition 9. Since PPM behaves as
a steepest-descent method, we can use the so-called Armijo
relaxation scheme which consists in successively reducing

(38)
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the relaxation parameter X, until the inequality ®(a,) —
D(a,41) > ada||[V®(ay)||? is satisfied [30]. In our appli-
cations, this adaptation scheme yielded overrelaxations that
converged efficiently. It must be noted that PPM will tend to
converge slowly when the iterations approach a solution since
the gradient will then become small. If the iterations have
come sufficiently close to a solution, the relaxation strategy
could be switched to the locally convergent scheme (35). If
the number of violated constraints is sufficiently small, this
may provide larger relaxations than with Armijo’s scheme.

3) Weights on the Projections: In the inconsistent case, the
values of the weights (w;)1<;<» have a direct influence on
the solution. More specifically, the larger a particular weight
w;, the closer the solution to the corresponding set S;. Hence,
if some constraints are judged to be more critical than others
in defining a least-squares-feasible solution, they should be
assigned larger weights. For problems in which no particular
group of constraints should be privileged, the weights should
be taken to be equal, that is, w; = 1/m.

4) Stopping Rules: The practical goal of PPM is to obtain
an approximate minimum of the proximity function @ in
a finite number of steps. According to Proposition 9, the
proximity function decreases at every iteration. Hence, the
algorithm can be stopped when negligible improvement in the
decrease of ® is observed, i.e., whenever the stopping criterion

D(ay) — Plany1) < e (39)

is met for a suitably small positive number ¢. An alternative
way of determining the near convergence of the algorithm is to
measure the norm of the gradient, which leads to the stopping
rule
m
[V@(an)ll = |lan — Z’IU,-P,-<(L,])|| <e

i=1

(40)

5) Proposed Implementation: Based on numerical experi-
ence and the recommendations of [30] regarding Armijo’s
relaxation scheme, we propose the following algorithm as an
efficient practical implementation of PPM.

1) Choose an initial guess ag € Z, strictly convex weights

(wi)i1<i<m. and € € ]0. +oc[. Set n = 0.

2) Set V®(an) = a, — > w;Pi(ay) and X, = 1.999.

3) Set apy1 = an — A V®(a,).

4 I D(an) — Plansr) < AV ®(an)||?/2, set A, =

0.75A,,, and return to 3.
5) If @(ayn)—P(a,41) > €, set n. =n+1, and return to 2.
6) Stop.

V. APPLICATIONS AND NUMERICAL RESULTS

In this section, we investigate the numerical behavior of
PPM and demonstrate its application to two standard set
theoretic signal synthesis problems. The first problem is signal
deconvolution, which is an estimation problem, and the second
is pulse shape synthesis, which is a design problem. Unless
otherwise stated, PPM is implemented as in Section IV-B-5
with equal weights on all the sets, and POCS as in (4). The
underlying Hilbert space is the N -dimensional euclidean space
equipped with the usual metric.
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Fig. 3. Original signal.

A. Signal Deconvolution

1) Experiment: We consider the problem of deconvolving
a noisy discrete-time N-point signal, i.e., of estimating the
original form of a signal & which has been passed through a
linear shift-invariant system and further degraded by addition
of noise. The length of the signals is N = 64. The original
signal h is shown in Fig. 3. The recorded signal x of Fig. 4
was obtained via the standard linear model x = Lh + u, in
which the N x N matrix L models a shift-invariant linear blur
and u is a vector of bounded noise sampies with |u;| < 0.15.
The blurring kernel is a Gaussian function with a variance of
2 samples?.

2) Set Theoretic Formulation: The set theoretic formula-
tion for the problem consists of m = 66 closed and convex
sets. The sets used here have already been used in various set
theoretic signal processing applications, e.g., [12], [22], [33],
[36]. The sets (S;)1<i<n are based on the knowledge of the
blurring operator L and the information that the components
of the noise vector u are bounded by § = 0.15. They take the
form of hyperslabs defined by

Si={a€RY |z; -6 < (Li|a) <z + 6}

for1l<i<N (41

where L; is the ith row of L. The projection P;(a) of a signal
a onto S; is given by [33]

@t (58— (Lo | a)/IILPI Lo if (L | a) > w4+ 6

ot (i = 6 (Li | )/ILAPLe, i (Li | a) <, -6
a, otherwise.

(42)

The next set is constructed by assuming knowledge of the

phase of h. If A denotes the discrete Fourier transform of the
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signal a, this constraint leads to the set

Sm-1={a € RN | (Vke {1.--- N}) LA(k)=LH(k)}.

(43)
The projection P,,_1(a) = b of a signal a onto S,,,_; is such
that for every & in {1,---, N} [36] (see (44) at the bottom
of this page). The last set arises from the prior knowledge
that the components of h are nonnegative and bounded by 12.
This leads to the bounded set

Sn={a€RY|(Vie{l,.--,N})0<a; <12}. (45)

The projection of a signal a onto S, is given by P,,(a) = b,
where for every i in {1,---,N}

0, ifa; <0
b; =¢12, ifa;>12
a;, otherwise.

(46)

3) Result: All algorithms are initialized with the degraded
signal, i.e., ag = x. The feasible signal of Fig. 5 is obtained
by POCS. It is seen that most features of ~ have been
fairly well recovered. Next, we introduce inaccuracies in the
specifications of the a priori information that will induce
an inconsistent set theoretic formulation: the variance of the
Gaussian impulse response of the system is taken to be 2.5
samples? instead of 2, the bound on the noise is taken to be
0.1 instead of 0.15, and the phase of 4 is recorded in 10 dB
of background noise. The limiting signal of the subsequence
(anm)nZO generated by POCS in this case is depicted in
Fig. 6 and its convergence behavior is shown in Fig. 7, where
the values taken by the proximity function (®(anm))n>0 are
plotied. As discussed in the Introduction, the only definite
property of this signal is to lie in S, and, thereby, to satisfy

B(k) = { |B(k)|cos(ZA(k) — LH(k)) exp(eLH (k).

0,

if cos(LA(k) — LH(k)) >0

otherwise. 44
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the amplitude constraints. It is noted that the limiting value
of the proximity function (degree of unfeasibility) achieved
by POCS is about 0.136. PPM is then employed to produce 0161~ T '
the restored signal shown in Fig. 8. This least-squares solution

. . . . \
obtained as in Section IV-B-5. These plots support the claims 0.04F T
of Section IV-B-2 that overrelaxations are more effective : ‘
than unqenelaxatlons and that Armijo’s adaptfed re]axagon 0.02; 200 w00 eoo a0 000
scheme is preferable. In all cases. (®(a,,)),>0 is decreasing. iteration index

in conformity with Proposition 9.

to the inconsistent feasibility problem has less artifacts than 014 1

the solution generated by POCS. The sequence (P(a,))n>0

is shown in Fig. 9. In comparison, PPM achieves a much 012 I

lower asymptotic degree of unfeasibility of ®(a..) = 0.035. § |

Finally, Fig. 10 depicts the convergence behavior of PPM & 0-1'\‘ 1

subjected to various relaxations schemes. In the underrelaxed 2 \ ‘

case A, (Ap)n>0 is generated at random from the interval g 0.08r| -

[0, 1]; in the unrelaxed case B the relaxations are equal to & \

1; in the overrelaxed case C, (A, ), >0 is generated at random 0.081 \ :

from the interval [1, 2]; in the adapted case D, (An)n>o0 is AN }
—_— S

Fig. 9. Inconsistent case—Convergence of PPM.
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B. Pulse Shape Synthesis

1) Experiment: In this second example, PPM is applied to
the digital design of pulse shapes for digital data transmission
over European 50 Hz power lines. This problem was addressed
in [8] with POCS and two design constraints. It amounts to
designing an FIR filter under certain constraints. We shall
assume that the sampling rate of the system is 2560 Hz and that
the length of the FIR filter used to generate the digital pulses
is N = 512 points. The design specifications are as follows.

a) The lines have a bandwidth of 300 Hz and are contami-
nated by a dc component and the harmonic noise of the
power distribution system. To avoid dc and harmonic
noise and be compatible with the available bandwidth,
the Fourier transform of the pulse should be zero at
the zero frequency, at integer multiples of 50 Hz, and
beyond 300 Hz.

b) The pulse should have linear phase and be normalized
so that its midpoint has amplitude 1.

¢) The energy of the pulse should not exceed £ = 4 to
avoid interference with other systems.

d) The actual duration of the pulse should be 50 ms and
it should have periodic zero crossings every 3.91 ms to
avoid intersymbol interference.

These constraints include all the desirable properties of the
pulse shape but are uncompatible.

2) Set Theoretic Formulation: The above constraints give
rise to m = 4 sets. The projection operators are straightforward
and need not be derived here. The spectral constraints a) lead
to the set

S;={aeRN | (VE€ k) A(k)=0} (47
where A designates the discrete Fourier transform of e and
KC contains the indices of the discrete frequencies that should
be removed. The projection of a pulse shape @ onto S; is the
pulse shape Pi(a) = b, where for every k in {1,---, N}

0, ifkek

B(k) = {A(k), otherwise. “43)
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The constraint b) leads to the set
Sy ={aeRY| anse =1 and

(Vie {1,---.N}) a;i=ans1-i}. (49)

The projection of a pulse shape a onto Sy is Pa(a) = b, where

{(Vie{L-n,N}) bi = (a;i + any1-4)/2

50
bN/Z = bN/2+1 =1 50

The energy constraint ¢) is associated with the bounded set

S3={a e RY | [lal” < &}. 1)
The projection of a pulse shape a onto S3 is
Pi(a) = { Va/llall. it lalf? > € .
a, otherwise.
The last set arises from the time-domain constraints d)
Ss={acRN|(VicI) a; =0} (53)

where 7 contains the indices of the components in the zero
areas. The projection of a pulse shape a onto Sy is b = Py(a),
where for every i in {1,---,N}

m:{a
A,

Since the constraints a)-d) are incompatible, (i, S; = 0. It
is worth noting that in [8] only the sets S; and S4 were used
since, as seen in the Introduction, the convergence behavior
of POCS when m > 2 lacks a meaningful interpretation in
the inconsistent case.

3) Result: All the algorithms are initialized with the zero
pulse. The solution obtained as the limit of the sequence
(@nm)n>o generated by POCS is shown in Fig. 11 and the
low frequency portion of its spectral density (normalized to a
maximum of 0 dB) in Fig. 12. The asymptotic value of the
sequence (®(@nm))n>0 shown in Fig. 13 is 0.0371. The limit
of the sequence (a,)n>o generated by PPM is displayed in
Figs. 14 and 15. It is seen in Fig. 16 that PPM achieves a lower
degree of unfeasibility of ®(a,) = 0.0180. Qualitatively, the
solution produced by PPM appears to suppress the undesirable
frequencies better than that of POCS and to be more symmetric
in the time-domain. Naturally, it does not exactly satisfy the
time-duration constraint since it is not exactly in Sy4. Fig. 17,
which depicts the behavior of PPM under various relaxation
strategies, prompts the same conclusions as in Section V-A-3.

ifre?

otherwise. (54

VI. CONCLUSION

A broad class of signal processing problems consist in
producing a signal that satisfies a collection of constraints. In
certain instances, this feasibility problem may be inconsistent
in the sense that some of the constraints are uncompatible.

In this paper, we have considered the problem of finding
weighted least-squares solutions to inconsistent signal feasi-
bility problems. Geometrically, this is tantamount to finding a
point that minimizes the weighted average of the squares of
the distances to m property sets representing the constraints
in the signal space. Such solutions cannot be obtained by the

N
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method of POCS, which has traditionally prevailed in signal
feasibility problems. The problem was recast in the m-fold
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Cartesian product of the signal space and solved iteratively by
alternating projections between the diagonal subspace and the
product of the m property sets. This gave rise to simultaneous
projections methods in the original signal space that can easily
be implemented on parallel processors since all the sets are
activated independently at each iteration.

The main advantage of the product space formalism in-
troduced in this paper is to reduce an m-set problem in the
original signal space to a 2-set problem in the corresponding
m-fold Cartesian product space, which has proven very useful
to treat the question of inconsistent set theoretic formulations.
We believe that this formalism will also prove useful in
connection with other aspects of set theoretic signal synthesis.

APPENDIX A
PROOFS OF SECTION I

Proof of Proposition [: Fix f arbitrarily in F. Then (3),
(10). and (11) yield [34, (7)]

(vneN) |llan+1 —fll] < [, — £1]. (A1)
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Hence (a,),>0 C {b € E [ [[lb - fl|| < |llag — fl|I} =
B. But B is bounded, closed, and convex. Hence {(an)n>0
possesses a weak cluster point a and, since 7 : B — = is
nonexpansive, T —T is demiclosed on B [38]. Therefore, since
(Y =T)(an)[l)n>0 converges to zero [34, (6)], (T —T)(a) =
0. Whence a € F. But since (A1) implies that {(an)n>0 cannot
have more than one weak cluster point in F, e.g. [3], we
conclude that the whole sequence (an),>o converges weakly
toa.l - o

Proof of Proposition 3: i) Let (a, b) be an arbitrary pair in
D? and T = Pp o Ps. Then the firm nonexpansivity of T
follows from the relationships

I17(a) — T(b)|||* < || Ps(a) = Ps(b)|||?

< {{a—b]| Ps(a) - Ps(b)))
{((a=b| Pp(Ps(a) — Ps(b))))
= ((a=b|T(a) - T(b))) (A2)

'Note that we cannot use [34, Theorem 2] directly as it merely states that
there is a single weak cluster point in F and does not exclude the existence
of weak cluster points outside of F.
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where we have used successively the nonexpansivity of Pp,
then the firm nonexpansivity of Ps, and (16) since Pp is linear
anda—beD;ii)Let T =T+ APs~7T)and a = \/2.
The reflection operator Rg = 2Pg — T with respect to S is
nonexpansive {37]. We can write T = T + 2a(Ps — Y) =
(1 - @)Y + aRg, where a € [0, 1]. Since both Y and Rg are
nonexpansive, so is 7. o

Proof of Theorem 1: By Proposition 3i), T = Pp o Pg is
firmly nonexpansive. Hence the result is a direct consequence
of Proposition 1. o

Proof of Proposition 5: If a, € G, there is nothing to
prove. Otherwise, let A = ({(a, — T(a,) | T(a,) — a*)),
where T' = Pp o P5. We have

({an = T(an) | an — ")) = [llan — T(an)||[* + 4. (A3)
Therefore, A}, = 1+ A/|||a, — T(a,)]]|%. But, since a* € G,
Proposition 3i) entails

IT(an) = a®|l|? = |[|T(an) - T(a")|||?
< ((an —a" | T(an) —a%)). (A4)
Consequently
A= ((an —a" | T(an) —a")) ~ |[|T(a,) —a*[||* > 0 (AS5)
which gives A}, > 1. o
Proof of Proposition 6: Take any n such that a, ¢ G.
Then, from the linearity of Pp and (16), we get
{(an — PpoPs(ay) | a, — Ps(an)))
= ((an — Pp o Ps(as) | Pp(as — Ps(an))))
= ”|an_PD°PS(an)|“2 (A6)
> 0. (A7)
Using (A6), (A7), and (3), we then get
d(an+1,8)? < [[lan+1 — Ps(an)|||?
= |[lan+1 - an”|2
+ 2<(an+l —a, |a, - Ps(ayn)))
+ [llan — Ps(an)|II?
= ’\;zll”an -Ppo PS(an)le
— 2An((an — Pp o Ps(an) | an — Ps(an)))
+d(as, S)?
= An(An = 2)[llan — Pp o Ps(a,)|||®
+d(a,,S)?
< d(a,,S)%. (A8)

Hence, ®(a,;+1) < ®(a,). To prove the second assertion,

recall from Section II-C that in E we have Vd(a,,S)? =
2(a, — Ps(a,)). Therefore
V])ﬁ(an) = PD(an - Ps(an)) =an — PD o Ps(an) (A9)
and (22) is equivalent to (19). S
Proof of Theorem 2: Let T = Pp o (A\(Ps — 1) + T).
Then, by Proposition 3ii), 7' is nonexpansive since Pp and

A(Ps — T) + Y are. Moreover, since a, € D and Pp is
linear, the update equation in (23) can be written as

ant1 = (1 — an)ag + an Po(APs(ay,) + (1 — May,)
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= (1 - an)a() + ”nPD(/\(PS(an) - an) +a,)
= (1 - an)ag + @, T(a,). (A10)

The result then follows from Proposition 2, since the set of
fixed points of 7" coincides with G. S

Proof of Proposition 7: As seen in Section II-C, the func-
tions (d(-.S;))1<i<m are continuous and convex. Since x —
|#|? is continuous, convex, and increasing on R , the functions
(d(-.5:)?)1<i<m are also continuous and convex and so is
their convex combination ® in (8). Now suppose that S;
is bounded. Then, d(a.S;) — +oc as |la|| — +oc. Since
(Va € E) ®(a) > wid(a. S;)?/2, we get that B(a) — +c
as |lal] — +oc, ie., ® is weakly coercive. Since the set
of minimizers of a continuous, convex, and weakly coercive
functional on a Hilbert space is nonempty, closed, convex, and
bounded [39], the proof is complete. ©
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