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Abstract Compositional data sets are ubiquitous in science, including geol-
ogy, ecology, and microbiology. In microbiome research, compositional data
primarily arise from high-throughput sequence-based profiling experiments.
These data comprise microbial compositions in their natural habitat and are
often paired with covariate measurements that characterize physicochemical
habitat properties or the physiology of the host. Inferring parsimonious statis-
tical associations between microbial compositions and habitat- or host-specific
covariate data is an important step in exploratory data analysis. A standard
statistical model linking compositional covariates to continuous outcomes is
the linear log-contrast model. This model describes the response as a linear
combination of log-ratios of the original compositions and has been extended
to the high-dimensional setting via regularization. In this contribution, we
propose a general convex optimization model for linear log-contrast regres-
sion which includes many previous proposals as special cases. We introduce a
proximal algorithm that solves the resulting constrained optimization problem
exactly with rigorous convergence guarantees. We illustrate the versatility of
our approach by investigating the performance of several model instances on
soil and gut microbiome data analysis tasks.
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1 Introduction

Compositional data sets are ubiquitous in many areas of science, spanning
such disparate fields as geology and ecology. In microbiology, compositional
data arise from high-throughput sequence-based microbiome profiling tech-
niques, such as targeted amplicon sequencing (TAS) and metagenomic pro-
filing. These methods generate large-scale genomic survey data of micro-
bial community compositions in their natural habitat, ranging from marine
ecosystems to host-associated environments. Elaborate bioinformatics process-
ing tools [5,6,13,17,28] typically summarize TAS-based sequencing reads
into sparse compositional counts of operational taxonomic units (OTUs). The
quantification of the relative abundances of OTUs in the environment is often
accompanied by measurements of other covariates, including physicochemi-
cal properties of the underlying habitats, variables related to the health status
of the host, or those coming from other high-throughput protocols, such as
metabolomics or flow cytometry.

An important step in initial exploratory analysis of such data sets is to
infer parsimonious and robust statistical relationships between the microbial
compositions and habitat- or host-specific measurements. Standard linear re-
gression modeling cannot be applied in this context because the microbial
count data carry only relative or compositional information. One of the most
popular approaches to regression modeling with compositional covariates is
the log-contrast regression model, originally proposed in [2] in the context of
experiments with mixtures. The linear log-contrast model expresses the con-
tinuous outcome of interest as a linear combination of the log-transformed
compositions subject to a zero-sum constraint on the regression vector. This
leads to the intuitive interpretation of the response as a linear combination
of log-ratios of the original compositions. In a series of papers, the linear
log-contrast model has been generalized to the high-dimensional setting via
regularization. The sparse linear log-contrast model, introduced in [20], con-
siders variable selection via ¢! regularization and has been extended (i) to
multiple linear constraints for sub-compositional coherence across predefined
groups of predictors [30]; (ii) to sub-composition selection via tree-structured
sparsity-inducing penalties [33]; (iii) to longitudinal data modeling via a con-
straint group lasso penalty [32]; and (iv) to outlier detection via a mean shift
modeling approach [23]. A common theme of these statistical approaches to
log-contrast modeling is the formulation of the estimators as the solution of
a convex optimization problem, and the theoretical analysis of the statistical
properties of these estimators under suitable assumptions on the data.

In the present paper, we take a complementary approach and focus on
the structure of the optimization problems underlying log-contrast modeling.
We propose an general optimization model for linear log-contrast regression
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which includes previous proposals as special cases and allows for a number
of novel formulations that have not yet been explored. A particular feature of
our model is the joint estimation of regression vectors and associated scales for
log-contrast models, similar to the scaled Lasso approach in high-dimensional
linear regression [31]. This is achieved by leveraging recent results on the
connection between perspective functions and statistical models [8,9,10]. We
introduce a Douglas-Rachford splitting algorithm that produces an exact solu-
tion to the resulting constrained optimization problems with rigorous guaran-
tees on the convergence of the iterates. By contrast, most existing approaches
to solve such problems proceed by first approximating it and then employ-
ing coordinate descent methods with less demanding convergence guarantees.
We illustrate the versatility of our modeling approach by applying novel log-
contrast model instances to environmental and gut microbiome data analysis
tasks.

2 Linear log-contrast models

We first introduce the statistical log-contrast data formation model under con-
sideration. We then review several prominent estimators for regularized log-
contrast regression models.

2.1 Statistical log-contrast data formation model

Let Z be a known (n x p)-dimensional compositional design matrix with rows
(2i)1<i<n in the simplex {(¢1,...,¢p) €]0,1)7 | 327 _; ¢x = 1}. In the micro-
biome context, each row represents a composition of p OTUs or components at
a higher taxonomic rank. We apply a log transform (2;)1<i<n = (10g 2i)1<i<n
resulting in the design matrix X € R"*P. In this context, we introduce the
following log-contrast data formation model.

Model 1 The vector y = (1;)1<i<n € R™ of observations is
y=Xb+o+Se, with CTb=0, €h)

where X € R"*P is the aforementioned design matrix with rows (z;)1<i<n,
b € RP is the unknown regression vector (location), o € R" is the unknown
mean shift vector containing outliers, e € R” is a vector of realizations of
i.i.d. zero mean random variables, S € [0, +oo[""" is a diagonal matrix the
diagonal of which are the (unknown) standard deviations, and C € RP*X is a
matrix expressing K linear constraints on the regression vector.

The linear log-contrast data formation model is similar to the standard
(heteroscedastic) linear model with the important difference that there are lin-
ear equality constraints on the regression vector. This stems from the fact that
the entries in X € R™*? are not independent due to the compositional nature.
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In the original model [2], the constraint matrix C' € RP*¥ is the p-dimensional
all-ones vector 1,, resulting in a zero-sum constraint on the regression vector.
To gain some intuition about the implications of this constraint, consider a
two-dimensional example with given estimates b = (31, 52), and denote by
&1 and &, o the first and second column entries of X. The linear equality con-
straint enforces 32 = — (31, and thus each observation can be expressed as

ni = B — Biia- 2

Due to the construction of the design matrix as the log transformation of the
compositions, this model is equivalent to
i1

n; = B1log (i1 — Bilog ;2 = B log Gz 3)

which expresses the response as a linear function of the log-ratios of the orig-
inal compositional components. This example also shows that the regression
coefficients in the log-contrast model bear a different interpretation than in
the standard linear model. Combined log-ratio coefficients relate the response
to log-fold changes of the corresponding component ratios.

2.2 Statistical estimators for log-contrast models
2.2.1 Sparse log-contrast regression

In the low-dimensional setting, the standard log-contrast model with zero-sum
constraints can be estimated by solving a least-squares problem subject to a
linear constraint, or alternatively, via standard linear regression applied to iso-
metrically log-ratio transformed compositions [14]. In the high-dimensional
setting, we need structural assumptions on the regression vector for consis-
tent estimation. To this end, the sparse log-contrast model was introduced in
[20]. It is based on the optimization problem

1
e . —IXb— 2 MMIb
mlilelgyze 2nll yll2 + Alo]l1, 4)
Sho, =0

where || -||; is the ¢! norm and X € [0, +-o0] is a tuning parameter that balances
model fit and sparsity of the solution. The estimator enjoys several desirable
properties, including scale invariance, permutation invariance, and selection
invariance. The latter property is intimately related to the principle of sub-
compositional coherence [1] and means that the estimator is unchanged if
one knew in advance the sparsity pattern of the solution and applied the pro-
cedure to the sub-compositions formed by the nonzero components. In [20],
model consistency guarantees are derived for the estimator and the underlying
optimization problem is approached via penalization. The proposed iterative
algorithm alternates between estimating the Lagrange multipliers and solving
a convex subproblem with a coordinate descent strategy. Model selection for
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the regularization parameter )\ is performed with a generalized information
criterion.

2.2.2 Sparse log-contrast regression with side information

In many situations, it is desirable to incorporate side information about the co-
variates into log-contrast modeling. For instance, for microbial compositions,
each component can be associated with taxonomic or phylogenetic informa-
tion, thus relating the p components through a rooted taxonomic or phyloge-
netic tree 7,. One way to use this hierarchical tree information is to perform
log-contrast regression at a higher taxonomic level, effectively reducing the
dimensionality of the regression problem. Let 7, be a tree with 1 < i), < h
levels and p leaves and assume that, at given level i;,, the p compositions split
into K groups with sizes (px)1<r<x. Sub-compositional coherence across the
groups can be expressed by the linear constraints C'h = 0, where C is an
orthogonal (p x K)-dimensional binary matrix. The k' column comprises py,
ones at the coordinates of the components that belong to the k*" group. Sparse
log-contrast regression with group-level compositional coherence can thus be
achieved by solving the optimization problem

1
minimize — || Xb — y||2 + A||b 5
nim o | yllz + Alloll, (5)
CcTb=0

where A € [0,4o00[ is a tuning parameter. In [30], model consistency guar-
antees are derived for this estimator as well as a debiasing procedure for the
final estimates. This is done by extending results from [16] to the log-contrast
setting. In [20], the underlying optimization problem is approached via an
augmented Lagrangian approach, while model selection is achieved by scaling
a theoretically derived A\ with a data-driven heuristic estimate of the standard
deviation ¢ [31], resulting in A = Ago.

An alternative way of incorporating tree information has been proposed
in [33]. There, the tree structure is encoded in a parameterized matrix J, €
R™~1XP_where m is the number of vertices in the tree. An estimator based on
the minimization problem

1
c e . ~IXh— 2 M| b 6
mliglg)lze QnH yllz + Ml Jabll1 (6)
S =0

is proposed, where X € [0, +oo] is a tuning parameter. The structure of J,, pro-
motes tree-guided sparse sub-composition selection and comprises a weight-
ing parameter « € [0, 1]. The authors of [33] are unable to solve the optimiza-
tion in (6) exactly and resort to a heuristic that abandons the linear constraints
and solves a generalized Lasso problem instead. The two tuning parameters A
and « are selected via an information criterion.
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2.2.3 Robust log-contrast regression

The previous estimators assume the response to be outlier-free with respect to
the statistical model under consideration. One way to relax this assumption
and to guard against outliers in the response is to use a robust data fitting
term. In [23], the robust log-contrast regression is introduced via mean shift
modeling; see, e.g., [3,29]. One specific instance of this framework considers
the estimation problem

minimize i||Xb —y — o34+ M|blli + Xollo]l1, where CTb=0, (7)

beRP, 0cR"” 21
and where nonzero elements in the mean shift vector o € R™ capture outlier
data, and \; and )\, are tuning parameters. In [25], the objective function
in (7) is approximated in the form of (5) with a single tuning parameter. As
shown in [3] for partial linear models and in [29] for outlier detection, an
equivalent form of (7) is to use the Huber function [15] as robust data fitting
function and the ¢! norm as regularizer. The Huber function is defined as

hpi R R 9 0 2 (8)

where p € |1,+o0[ is a fixed parameter with default value p = 1.345 that
determines the transition from the quadratic to the linear part. The model in
(7) can be written as

1 n
minimize 5> hy(eib— ) + M o] ©)
cTb=0 =1

After model estimation, each data point in the linear region of the Huber func-
tion is considered an outlier. The latter two models thus allow for joint sparse
selection of predictors and outliers in a convex framework.

3 Optimization of general log-contrast models

We introduce an optimization model for general log-contrast regression that
includes all previous examples as special cases. We assume that the data fol-
low the data formation model outlined in Model 1. Our model belongs to the
class of perspective M-estimation models [10] and allows for joint estimation
of regression parameters and corresponding scales while preserving the over-
all convexity of the model. We then present a proximal algorithm that can
solve instances of the optimization model with theoretical guarantees on the
convergence of the iterates. Finally, we propose two model selection schemes
for practical regularization parameter selection that leverage the joint scale
estimation capability of our optimization model.
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3.1 Convex optimization model

Let us first introduce some notation (see [4,27] for details). We denote
by I'h(R™) the class of lower semicontinuous convex functions ¢: R" —
]—00, 400] such that dom ¢ = {z € R" | ¢(z) < +oo} # . Given ¢ € IH(R")
and = € R", the unique minimizer of ¢ + || — -||3/2 is denoted by prox z. In
other words

prox,: R" = R": z arglﬂ?in (<p(y) + %Hx - Z/Q). (10)
yeR™

Now let D be a convex subset of R™. Then ¢ is the indicator function of D (it
takes values 0 on D and +oc on its complement), ri D is the relative interior
of D (its interior relative to its affine hull), and, if D is nonempty and closed,
projp = prox,  is the projection operator onto D.

The following general log-contrast optimization model enables the joint
estimation of the regression vector b = (8;,)1<k<p € R? and of the scale vector
5= (7i)1<i<y € RY in Model 1 within a convex optimization setting.

Problem 1 Consider the setting of Model 1. Let N and M be strictly positive
integers, let D be a vector subspace of RV let (ni)1<ign be strictly positive

integers such that Zfil n; = n, let (m;)1<i<m be strictly positive integers,
and set m = Zi]\il m;. For every i € {1,..., N}, let ¢; € IH(R™), let

®i: R x R™ — ]—00, +o0]

Ui@i(ui/O'i), if a; > 0; a1
(o1, u1) — sup (<pi(u+ Uu;) — @i(u)), if o, =0;
uedom ¢,
+00, if 0; < 0
be the perspective of ¢;, let X; € R"*P  and let y; € R™ be such that
X4 (1
X=|": and y=|:|. 12)
XN YN
Finally, set
E={beRr|CTb=0} (13)

and, forevery i € {1,..., M}, lety,; € IH(R™) and L; € R™:*P. The objective
is to
N M
inimi Gilo: Xob — s (L:b). 1
minimize ;%(oz, ib yz)+;wl( b) (14)

Remark 1 Problem 1 comprises four main components which are associated
with different aspects of the general log-contrast regression model.
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- The perspective functions (¢;)1<i<n play the role of the loss function in
statistical estimation and couple the estimation of the scale vector s and
the regression vector b. Because the functions (y;)1<;<n are convex, the
overall minimization problem (14) remains a convex one in (s, b).

— Problem 1 allows for the partitioning of the design matrix X and re-
sponse y into N blocks with individual scale parameters (o;)1<;<n. This
is beneficial when data from multiple measurement sources are available
for the prediction of the response or when heteroscedasticity in the de-
sign matrix is expected for different groups of measurements. Introduc-
ing multiple scales has also numerical advantages. Indeed, as discussed
in [10], certain proximity operators of perspective functions are easier to
compute in separable form.

— The vector subspaces D and E (see (13)) enforce linear constraints on
the scale vector s = (0;)1<i<n and the regression vector b, respectively.

— Additional properties of the regression vector, such as (structured)
sparsity, are promoted through the use of the penalization functions
(v:)1<i<m and the matrices (L;)1<i<m. The penalization functions typ-
ically contain a free parameter \ the setting of which requires a model
selection strategy.

Perspective functions are discussed in [4,8,9,10,27]. The construction
(11) guarantees that (Vi € {1,...,N}) ¢; € IH(R™). We provide below two
examples of perspective functions that will be used in the numerical investi-
gations of Section 4.

Example 1 Consider the function ¢ = || - ||3 + 1/2 defined on the standard
Euclidean space R”. Then (11) yields (see Fig. 1)

?: Rx RP — ]—00, +o0]

o |ul3 . .

5—1-?, if o> 0; (15)
(o,u) 0, if o =0 and u = 0;

+00, otherwise.

Now fix (o,u) € R x R and v € ]0, +oc[. If 4y0 + ||ul|3 > 272, let ¢ be the
unique solution in ]0, +oo| to the equation
A3 4 2(20 + 37)t — 8||ul]2 = 0, (16)

and set p = tu/||lul|2 if w # 0, and p = 0 if w = 0. Then [10, Example 2.4]
yields

v [ t? .

“(=-1),u— f 4 2> 2%
o (o) (0 3(5-1)u=w). if 410+ Jul} > 297
(0,0), if 4o + [Jul3 < 292

(17)

A prominent estimator where the perspective function (15) is used as a
loss function in conjunction with the ¢! norm as penalization function is the
scaled Lasso estimator for high-dimensional sparse linear regression [31].
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Fig. 1 Perspective of o = |- |2 + 1/2.

Example 2 Set ¢ = hy +1/2, where h, is the Huber function of (8). Then (11)
yields (see Fig. 2)
¢: RXxR = ]—00, +0]

1—p? .
(Tp)g+p|u|, if |u| > op and o > 0;

o % (18)

(o, u) 5—1— 5, if |u| <opando >0
p|u|7 if o=0;
+00, if o <0.

Now fix (o,u) € R x R and v € |0, +oo[. Then [10, Example 2.5] asserts that
prox. (o, u) is computed as follows.

(i) Suppose that |u| < vp and |u|?> < v(y — 20). Then prox. (o, u) = (0,0).
(ii) Suppose that o < (1 — p?)/2 and |u| > vp. Then

proxw(o, u) = <0, (1 — %)u) (19)
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Fig. 2 Perspective of ¢ = h1 + 1/2, where h; is the Huber function.

(iii) Suppose that o > (1 — p?)/2 and |u| > po + vp(1 + p?)/2. Then

prox. s(o,u) = (a + %(p2 —-1), (1 — %)u) (20)

(iv) Suppose that |u|? > y(y — 20) and |u| < po +vp(1 + p?)/2. If u # 0, let t
be the unique solution in |0, 400 to the equation

Yt + (20 + )t — 2Ju| = 0. 21
Then

(0 +~(t* —1)/2,u — ~tsign(u)), if 2vo + [u]* > 72
prox, (o, u) = (0,0) if 2 2 < a2
,0), Vo + [ul* <27
(22)
Using the perspective function (18) as a loss function and the ¢! norm as
a penalization function recovers a robust version of the scaled Lasso approach
[10,26].
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3.2 Algorithm

Our algorithmic solution method to solve Problem 1 relies on an application
of the Douglas-Rachford splitting algorithm in a higher-dimensional space. To
describe our methodology let us first note that, since (14) involves non dif-
ferentiable functions and hard constraints, it cannot be handled via methods
which employ gradients. Rather, we must proceed with nonsmooth first order
methods, i.e., methods which activate the functions present in the model via
their proximity operators defined in (10). Let us consider the basic problem of
minimizing the sum of two lower semicontinuous convex functions F' and G
in a Euclidean space H, i.e.,

minimize F(u)+ G(u). (23)
ueH

Let us assume that this problem has a least one solution. A key property of the
proximity operator prox is that its set of fixed points is the set of minimizers
of F' [4, Proposition 12.29]. A naive approach to solve (23) would therefore
be to construct iteratively a fixed point of proxy, . However, this is not vi-
able because proxy,  is typically intractable. On the other hand, in many
instances, the operators prox, and prox. are computable explicitly, which
suggest that we design a splitting algorithm, i.e., one in which F and G are
activated separately. The most popular splitting algorithm to solve (23) is the
Douglas-Rachford algorithm [4,7,11,12,19,21]. This algorithm exploits the
following remarkable fact: given an arbitrary v € ]0, +oc[, if a point v € H
satisfies the fixed point property

Prox, i (2prox, v — v) = prox, qv, (24

then the point u = prox. v solves (23). This leads to the following result (see
[4, Section 28.3]).

Theorem 2 (Douglas-Rachford algorithm) Let H be a Euclidean space, let
v € 10,400, let £ €]0,1], let vg € H, and let F € Ih(H) and G € I[H(H) be
such that (ridom F') N (ridom G) # @. Let (u)ken be a sequence in [¢,2 — €]
and iterate
fork=0,1,...

U = pI'OX,yG’Uk

wy, = Prox. p (2ux — vy)

Vi1 = Vg + (Wi — ug).

(25)

Then (uy)gen converges to a solution to (23).

Our method for solving Problem 1 (Algorithm 3 below) is an implementa-
tion of (25) in a suitably constructed product space. The details of this con-
struction are provided in Appendix A. To present the algorithm, it is convenient
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to introduce the matrices

| Q= AT(Id +4A")7!, and W=1d-Cc(CTo)tCT,
1

(26)
together with the function

g RY X R™M x -+ x R™ x R™ X -+« X R™M — |—00, +00]

(S,Ul,...,UN,’lJ17...,’lJM)|—> E @i(aiaui_yi)_‘_ E %(%‘)7
i=1 i=1

and to define, for every iteration index k € N, the vectors

Sk = (Ulyk,...,Uka) S RN
hsg = (M ks - k) €RY
hor = Mgy s AN ANS1 ks -+ - AN+ M E)
ER™ x .- x R™ x R™ x ... x R™M
2ok = (Z1ky -y ZN ks EN+1,ks - - - s EN+M, k) (28)

eER™ x - - X R™ X R™ x ... x R™M
ds,k: = (51,k7--~75N,k) ERN

doe = (digs- - AN K, AN+ s - - - ANFME)
ER™ x ... x R™ x R™ x ... x R™mnMm,
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Algorithm 3 Lety € |0, +00[, € € ]0,1[, 750 € RY, 240 € R?, hy o € RY, and
hy,o € R*T™, Iterate

fork=0,1,...
ur € [e,2 — €]
s,k = Tsk — hs,k
ok = Az — hp
Sk =Tk — qs,k/2
b = xpr — Qab i
Cs,l = PrOjp (28K — s k)
Cb,k = W(2bk — xb’éc) )
Ts k+1 = T,k + Mk(Cs,k — Sk
Ty g1 = Tok + pr(cor — br) (29)
fori=1,...,N
{Zi,k = X;bi
(61,5 di k) = (0,y:) + Prox. 5. (2045 — Mk, 22i,k — hik — Yi)
fori=1,...,.M
{ZNHJ« = L;iby
dN+ik = ProX. ., (2zN+ik — Antik)
hs,k+1 = hs,k + Mk(ds,k - Sk:)
| kb1 = o + i (do e — 2,1)-

Proposition 1 Consider the setting of Problem 1. Suppose that

lim g(s, Ab) = +o0 (30)
se€D, beE
lIsll2+15]l2—+o00
and that
(D x A(E)) Nridomg # @. (31)

Then Problem 1 has at least one solution. Now let (sy)ren and (by)ren be se-
quences generated by Algorithm 3. Then (s,)ren converges to some s € RN and
(br)ken converges to some b € RP such that (s, b) solves Problem 1.

Proof See Appendix A.

In most practical situations, (30) and (31) are typically satisfied. For exam-
ple the following describes a scenario that will be encountered in Section 4.

Proposition 2 Consider the setting of Problem 1 and suppose that the following
additional properties hold:

(i) Foreveryi € {1,...,N}, p; = 0; + o;, where 6;: R™ — [0, +o0[ is convex
and o; €10, +00].
(ii) Foreveryi € {1,...,M}, ¢;: R™ — [0, +o0].
(iii) For some j € {1,..., M}, 1,;(L;b) — +oo as ||b||2 — +oo while C'Tb = 0.
(iv) DNJ0,+oo[" # @.

Then (30) and (31) are satisfied.
Proof See Appendix B.
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3.3 Model selection

In the context of log-contrast regression, a number of different model selection
strategies have been proposed, including stability selection [20,22] and Gen-
eralized Information Criteria [32]. In [30], a scale-dependent tuning parame-
ter has been derived where the optimal scale has been found via line search.
Our joint scale and regression modeling approach makes this line search obso-
lete, thus yielding a parameter-free model selection scheme. More specifically,
we consider two model selection schemes. Firstly, following [30], we consider

Xo = V2q,(r/p), (32)

where ¢,(t) = n~'/2¢=1(1 — t), &' is the quantile function for the stan-
dard normal distribution, and r is the solution to the equation r = ¢{(r/p) +
2¢?(r/p). In practice, this data-independent model selection scheme may lead
to inclusion of spurious coefficients. To assess the robustness of the inferred
solutions we combine this theoretically derived regularization with stability
selection [22]. The original stability selection approach selects, for every sub-
sample, a small set of predictors from the regularization path, e.g., the first ¢
predictors that appear along the path or the ¢ coefficients that are largest in
absolute value across the entire path. We here propose to select, for every sub-
sample, the nonzero coefficients present at regularization parameter \y. Note
that )\g is sample-size dependent and hence needs to be adapted to the spe-
cific subsample size used in stability selection. As default values, we consider
a subsample size of [n/2] and generate 100 subsamples. The key diagnostic
in stability selection is the selection frequency profile for each coefficient. To
select a stable set of coefficients, a threshold parameter ¢, € [0.6,0.9] is rec-
ommended [22], where all coefficients with selection frequency above ¢, are
included in the final model.

4 Applications to compositional microbiome data

We apply several instances of the general log-contrast model outlined in Prob-
lem 1 in the context of microbiome data analysis tasks. We set M = 1, m; = m,
L, = 1d, and employ as a regularization function the ¢! norm ¢; = \|| - [|;. We
use the functions in Examples 1 and 2 as instances of the perspective loss func-
tions ¢;. We refer to these instances as Least Squares and Huber log-contrast
model, respectively. Thus, in case of the Least Squares model, (14) becomes

R A
minimize | 13 (o, Xb —y) + Allbll1, (33)

while in the case of the Huber model it becomes

n

minimize 1 ho(oiyzib = 1) + A[b|1,
1=

where D= {(0,...,0) €R" |c €R}. (34)
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Note that the projection of a vector s € R™ onto D, as required in Algorithm 3,
is given by

) 1 & 1 &
projps = (n;ai,...,n;m) (35)

Dependent on the application, we use different zero-sum constraints on b as
specified by the matrix C'. To solve the various instances of Problem 1, we use
Algorithm 3 and set the parameter p;, = 1.9 and v = 1. We consider that the
algorithm has converged when |[|by, —bx11]|2 < 1076, All computational experi-
ments are fully reproducible with the code available at https://github.com/
muellsen/PCM/tree/master/examples/LogContrastModels.

4.1 Body mass index prediction from gut microbiome data

We first consider a cross-sectional study that examines the relationship be-
tween diet and gut microbiome composition, where additional demographic
covariates, including body mass index (BMI) are available, referred to as
COMBO data set [34]. After pre-processing and filtering, the data set com-
prises the log-transformed relative abundances of p = 87 taxa at the genus
level across n = 96 healthy subjects. Following previous analyses [20,30], we
investigate the relationship between BMI and the microbial compositions in
a log-contrast regression framework. We use C' = 1, to model the standard
zero-sum constraint. In addition to the compositional covariates, two covari-
ate measurements, fat and calorie intake, are also taken into account via joint
unpenalized least squares. We investigate the influence of different loss func-
tions, Least Squares and Huber, as well as the sub-compositional constraints
on the quality of the estimation, the size of the support set, and the predictive
power. Further numerical results can be found in Appendix C.

To highlight the ability of the algorithm to jointly estimate regression and
scale we solve the two problems over the regularization path with 40 A values
on a log-linear grid in [0.0069, ...,0.6989]. We also consider the theoretically
derived regularization parameter A\g = 0.1997 from (32). Figure 3a and b show
the solution path of the regression vector b for the sparse Least Squares log-
contrast model and the Huber model, respectively. Figure 3c displays the cor-
responding joint scale estimates o for the Least Squares and the Huber models.
The estimated regression coefficients at Ay are highlighted in Figure 3d. Both
models agree on a set of six genera, including Clostridium as strongest neg-
ative and Acidaminococcus as the strongest positive predictors. This implies
that the log-ratio of Acidaminococcus to Clostridium is positively associated
with BMI. Other genera include Alistipes, Megamonas, and Coprobacillus with
negative coefficients, and Dorea with positive coefficient. In [20,30], the gen-
era Alistipes, Clostridium, Acidaminococcus, and Allisonella have been iden-
tified as key predictors. The solutions of the perspective log-contrast models
corroborates these finding for Clostridium and Acidaminococcus, and to a less
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extent to Alistipes, whereas the genus Allisonella has only a small strictly pos-
itive coefficient in both log-contrast models (Figure 3d).

Next, we consider the stability selection scheme introduced in Section 3.3
with default parameters and threshold ¢, = 0.7. Figure 4a shows the stability-
based frequency profile for the sparse Least Squares and Huber log-contrast
models. For both models, only Clostridium and Acidaminococcus are selected.
Stability selection thus leads to a simple explanatory log-ratio model formed
by the ratio of the relative abundances of Acidaminococcus to Clostridium.
However, when considering the final model prediction results, as shown in
Figure 4b for the Huber model, this model can only explain normal to over-
weight participants (BMI 20-30) because 34 out of 96 participants are con-
sidered outliers in the Huber model. The overall refitted R? is 0.19 under the
Huber model but increases to 0.43 for the 62 inlier participants.

Next, we investigate the influence of sub-compositional constraints on the
stability selection frequency for the two estimation procedures. We follow
the analysis of [30] and consider a subset of 45 genera that have the high-
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est relative abundances in the data set. These 45 genera belong to K = 4
distinct phyla: Actinobacteria (two genera), Bacteroides (eight genera), Fir-
micutes (32 genera), and Proteobacteria (three genera). The constraint ma-
trix C' is hence an orthogonal (45 x 4)-dimensional binary matrix. Figure 5a
and b show stability selection profile for both the Least Squares and the Hu-
ber model with and without compositional constraints, respectively. Figure 5c
shows the difference in the selection frequency profiles. Although several gen-
era, including Collinsella, Paraprevotella, Parabacteroides, Faecalibacterium,
Oscillibacter, and Parasutterela display significant frequency differences, the
two genera Clostridium and Acidaminococcus, both belonging to the Firmi-
cutes phylum, demonstrate again the highest stability both with and without
sub-compositional constraints.

4.2 Relationship between soil microbiome and pH concentration

We next consider a dataset put forward in [18] comprising n = 88 soil samples
from North and South America. Both amplicon sequencing data and environ-
mental covariates, including pH concentrations, are available and have been
re-analyzed via a balance tree approach in [24]. The amplicon data contains
p = 116 OTUs, and we consider C' = 1,,. We perform stability selection with
default parameters as outlined in Section 3.3. We refer to Appendix D for
results regarding variable selection with the theoretical )y value. The selec-
tion frequency of the different regression coefficients is shown Figure 6a. At
stability threshold ¢; = 0.7, seven taxa are selected in the Least Squares mod-
els, and six taxa in the Huber model, respectively. After re-estimation of the
two perspective log-contrast models on the selected subset, two taxa of or-
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der Ellin6513, one taxon of family Koribacteraceae, and one taxon of genus
Rhodoplanes have negative coefficients whereas two taxa belonging to the
genus Balneimonas as well as one Rubrobacter taxon and one taxon of order
RB41 have positive coefficients (Figure 6b). The seven taxa identified in the
Least Squares model thus allow for a compact representation with four log-
ratios of compositions. The Huber model with six identified taxa requires only
three log-ratios. The five coefficients that are selected in both models agree
in coefficient sign but show small variations in coefficient values. The Huber
model (R? = 0.86) deems 33 data points to be outliers in the final estimate
(Figure 6c¢). For completeness, we include the mean absolute deviation (MAD)
between model estimates and data in Figure 6d. The selected taxa cover a wide
range of average pH levels (as provided in [24]), ranging from 4.9 to 6.75, im-
plying that the learned model may indeed generalize to other soil types not
present in the current data set.
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5 Discussion and conclusion

Finding linear relationships between continuous variables and compositional
predictors is a common task in many areas of science. We have proposed a
general estimation model for high-dimensional log-contrast regression which
includes many previous proposals as special cases [20,23,30,33]. Our model
belongs to the class of perspective M-estimation models [10] which allows for
scale estimation in the data fitting term while preserving the overall convexity
of the underlying model. This is made possible due to recent advances in the
theory of perspective functions [8,9,10].

Several data fitting and penalty functions are available in the present
framework. For instance, the robust Huber model is a convenient choice when
outliers are suspected in the continuous outcome vector, or equivalently, when
only a subset of the outcome data is expected to follow a linear log-contrast
relationship with the compositional predictors [10,23]. Combined with a
sparsity-inducing penalty, the model allows for joint scale estimation, outlier
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detection, and variable selection in a single framework. Alternative choices for
data fitting and regularization models are available in [10]. Our framework
also enables subcompositional coherence across groups of variables, e.g., bac-
terial phyla in microbiome data, via general linear constraints.

We have introduced a Douglas-Rachford algorithm that can solve the corre-
sponding constrained nonsmooth convex optimization problems with rigorous
guarantees on the convergence of the iterates. Furthermore, we have illus-
trated the viability of our approach on two microbiome data analysis tasks:
body mass index (BMI) prediction from gut microbiome data in the COMBO
study and pH prediction from soil microbial abundance data. Our joint regres-
sion and scale estimation enabled the use of a universal single tuning param-
eter )y [30] to control the sparsity of the estimates. We have combined this
approach with stability-based model selection [22] to determine sparse stable
sets of log-contrast predictors. For the gut microbiome BMI analysis, the ro-
bust Huber log-contrast model identified two genera whose log-ratio predicts
BMI well for normal to overweight participants while simultaneously identi-
fying outliers with respect to the log-contrast model. In the soil microbiome
data set, we derived parsimonious pH prediction models. The Least Squares
model requires four log-ratios of microbial compositions and achieves an over-
all R? = 0.88. The Huber model requires only three log-ratios of microbial
compositions with an overall R? = 0.86.

Going forward, we believe that the general log-contrast model and the
associated optimization and model selection techniques presented here will
provide a valuable off-the-shelf tool for log-contrast regression analysis when
compositional data such as microbial relative abundance data are used as pre-
dictors in exploratory data analysis. Future efforts will include the integration
of the presented models in modern computational microbiome analysis soft-
ware workflows.
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Appendix A - Proof of Proposition 1
Define g as in (27) and set

f=1ExD
L: RY xRP 5 RY x R™ x -+« x R?"N x R™ x ... x R™M (36)
(S,b) — (S,Ab) = (S,le,...,XNb,le,...,LI\/[b).

Then f € I',(RV*P) as the indicator of the vector subspace D x E, and
(¥(s,b) € RNTP) prox (s, b) = (projps, projgb) = (projy,s, Wb),  (37)

where the last identity follows from [4, Proposition 29.17(iii))]. On the other
hand, it follows from [8, Proposition 2.3(ii)] and [4, Proposition 8.6] that
g € Io(RN+n+m) Furthermore, we derive from [4, Propositions 24.11 and
24.8(ii)] that

(V(s,ul,...,uN,vl,...,vM) eRN x R™ x --- x R™)
prOX,Yg(s,ul, <o UN, UL, - 7UM) = ((Ovyl) +prox'y§1(01aul - yl)a v
-5 (0,yn) + prox 5, (on, un — yn), PrOX. V1, .. - ,prowavM). (38)

In addition, (31) implies that
L(domf) Ndomg = (L(D x E)) Ndomg
= (D x A(E)) ndomg
#+ . (39)
Consequently, dom (f + go L) # @. Thus,
f+gol e IL(RV*P) (40)
while, using the variable w = (s,b) € RN*?, (30) and (36) imply that

f(w) + g(Lw) = 4o0. (41)

WGRN+P,1\|I\TVIH2*>+OO
It therefore follows from [4, Proposition 11.15(i)] that
Argmin(f +gol) # @. (42)
Since (14) is equivalent to

minimize f(w)+ g(Lw), (43)

weRN+P

we infer from (42) that Problem 1 admits at least one solution. Note that (43)
can be rewritten as
minimize f(w) + g(z). (44)

weRN+P
ZERN+%+7?1

Lw=z
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Now set u = (w,z) € H = REV+m+n+p and

(45)

F:H —]—00,+0] : (w,z) — f(w) + g(z)
G =1y, where V ={(x,h)eH |Lx=h}.

Then F' € I'y(H), G € IH(H), and (44) is equivalent to
minimize F(u)+ G(u). (46)
ucH

Moreover, we deduce from (31) that
L(domf) Nridomg = (D x A(E)) Nridomg # @. (47)

Consequently, using standard relative interior calculus [27, Section 6], (45)
yields
ri (dom G) Nri(dom F) = V Nri (domf x domg)

=V N (ridomf x ridomg)

=V N (domf x ridomg)

= {(x,Lx) | x e R¥*?} N (domf x ridomg)

+ 2. (48)
Therefore, given v € ]0,+oc[, € € |0,1], vo € H, and a sequence (ux)ren
in [, 2 — €], the nonsmooth convex minimization problem (46) can be solved
using the Douglas-Rachford algorithm (25) which, by Theorem 2, produces a

sequence (uy)ren that converges to a solution to (46). Next, it follows from
[4, Proposition 24.11 and Example 29.19(i)] that

Prox, p: (W,z) — (prox (w, prox.z)
prox. g : (x,h) — (w,Lw), where w =x— LT (Id —i—LLT)_l(Lx —h).
(49)
Now define

uy = (Wg, Z1)
R=LT(Id +LLT)™' and (VkeN) < v = (xi,hs) (50)
wp = (Ck,dk).

Then we derive from (49) that, given xo € RV*? and h, € RN*T7+tm (25)
becomes

fork=0,1,...
qr = Lxp — hy
wi = X — Rqy,
Zk:LWk

51
Cr = pl‘Ova(2Wk — Xk) ( )

d, = proxwg(2z,C —hg)
Xk41 = X + pir(Ck — Wy)
| b1 = hy + pe(di — zp).
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Let us partition the vectors appearing in (51) according to their scale and
regression components as

Xk = (Ts g, Tp i) € RN X RP

he = (hsk, ho i) € RNV x RMH™

ar = (¢s.k, qp k) € RY x RH™

(Vk eN) Wi = (Skabk) € RN x RP (52)
2 = (Sk, 2p) € RN x RH™

ek = (Copr o p) € RY X RP

di. = (ds g, dp i) € RN x REm,

In terms of these new variables, using the matrix @ of (26), (36) and (50)
yield

(VE € N) Rar = (¢s.k/2, Qav.x), (53)

and it follows from (26), (28), (37), (38), and (53) that (51) is precisely
(29). Altogether, since (ug)ren = (Wi, Zx ) ren cOnverges to a solution to (46),
(Wg)ken = (Sk, br)ken converges to a solution to Problem 1.

Appendix B - Proof of Proposition 2

— If s ¢ [0, +o0o[", then (11) yields (Vb € R?) g(s, Ab) = +oc0. On the other
hand if, for some i € {1,..., N}, 0; € ]0,+00[ then we deduce from (i)
that (Vb S Rp) (Zi(O'i,Xib — yi) = 0'591((th — yl)/O'l) + a0 =2 oo —
+00 as o; — +oo. Hence, (ii) entails that (Vb € RP) g(s, Ab) — +oo
as ||s|la — +oo while s € [0,400[". On the other hand, it follows from
(i) that (Vs € RYN)(Vb € E) g(s, Ab) > ;(L;b) — +oc as ||b]l2 — +oc.
Altogether, (30) holds.

- It follows from (i) and (11) that (Vi € {1,...,N}) ridom @; = ]0, +00[ x
R™. Furthermore, (ii) yields (Vi € {1,...,M}) ridom; = R™:. There-
fore ridom g = )0, +00[" x R™ x R™. Since trivially A(E) ¢ R"+™, (31)
reduces to (iv).

Appendix C — Numerical algorithm comparison on BMI data

We compare the numerical accuracy and the run time of the Algorithm 3
with the coordinate descent algorithm proposed in [30] for the special
case of the constrained Lasso problem with joint scale estimation, defined
in (33). We use a subset of the BMI dataset with n = 96 samples and
p = 45 OTUs. The numerical example is reproduced with the following MAT-
LAB script available at https://github.com/muellsen/PCM/tree/master/
examples/LogContrastModels.


https://github.com/muellsen/PCM/tree/master/examples/LogContrastModels
https://github.com/muellsen/PCM/tree/master/examples/LogContrastModels
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Fig. 7 Numerical comparison of Algorithm 3 and the coordinate descent (CD) scheme of [30]
for the constrained Lasso problem with joint scale estimation, defined in (33). Panel a shows
the solution path for the regression vector, found by Algorithm 3. Panel b shows the estimation
difference between Algorithm 3 and CD. Panel ¢ shows the scale estimates for both methods, and
panel d the difference between the respective estimates. The run times for both methods are 12s
and 10.5s, respectively.

>>runtimeBMI

% Comparison of the runtime of exact proximal scheme

% and the coordinate descent (with interval search) method
% (Shi et al. 2016) on the BMI example without covariates

% Load all data in MATLAB format (located in
% /PerspectiveFunctions/misc/ConstrLasso/)
load allData.mat;

% Solve the model using the product space Douglas—Rachford
method

t1=now;

[betaPCMMat, sigmaPCMMat, funPCMMat,outPCM] =

pcmC2(x_cent, y_cent, pcmopts);

t2=now;

timePCM = (t2—-t1)+(60%x60+24)
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% Solve the model using the method of Shi et al. (2016)
tl=now;

[betaConLMat, sigmaConLMat,outConL] =
concomlasso(x_cent, y_cent, concomopts);

t2=now;

timeConcom = (t2—t1)*(60+60+%24);

On a MacBook Pro (2018) with 2.9 GHz Intel Core i9 processor and 32 GB
2400 MHz DDRA4, the run time of the general Douglas-Rachford scheme (with
fixed v = 0.5) for solving the problem across the entire regularization path is
12s at solution accuracy e = le — 8. Further run time improvement could be
achieved by setting ~ in a regularization-dependent fashion. The coordinate
descent scheme requires 10.5s. Since no convergence guarantees comparable
to ours exist for the coordinate descent scheme, we also compare the solution
quality across the regularization path. The results are summarized in Figure 7.
We observe that, for this example, both methods agree on the solution within
six digits of accuracy, both for the regression vectors (Af3) and the scales (Ac)
across the entire regularization path.

Appendix D - Solution path and variable selection with theoretical A
regularization for the soil dataset

We here complement the analysis of the soil dataset [18], analyzed in Section
4.2, comprising n = 88 soil samples and p = 116 OTUs. We show the full
solution path and variable selection with the theoretical Ao = 0.2182 in Figure
8, both for the Least Squares (Figure 8a) and the Huber model (Figure 8c).
Using the theoretical )\, both models select 27 and 25 variables, respectively.
The joint set of 30 variables is shown in Figure 8b. For completeness, we also
report the scale estimates for both models (Figure 8d).
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Fig. 8 Solution path and variable selection with the theoretical Ao = 0.2182 for pH prediction on
the soil dataset for the Least Squares model (a) and Huber model (c), respectively. The selected
solutions with Ay = 0.2182 are marked in black. Panel b shows the selected variables (labeled by

taxonomic order) for the Least Squares and Huber model, respectively. Panel d shows the Least
Squares and Huber scale estimates across the regularization path.
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