
Kolmogorov n-Widths of Funtion Classes Indued by a

Non-Degenerate Di�erential Operator: A Convex Duality

Approah

∗

Patrick L. Combettes1 and Dinh Dũng2
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1 Introduction

The problem of evaluating Kolmogorov n-widths naturally arises in various applied mathematics prob-
lems such as approximation theory, compressed sensing, neural networks, signal processing, statistics,
and numerical analysis; see [3, 9, 10, 16, 18, 20, 21, 28, 30, 31]. The aim of the present paper is
to study Kolmogorov n-widths of classes of multivariate periodic functions induced by a differential
operator. In order to describe the exact setting of the problem let us introduce some notation.

We first recall the notion of Kolmogorov n-widths [14, 20]. Let X be a normed space, let F be
a nonempty subset of X such that F = −F , and let Gn be the class of all vector subspaces of X of
dimension at most n. The Kolmogorov n-width of F in X is

dn(F,X ) = inf
G∈Gn

sup
f ∈F

inf
g∈G
‖ f − g‖X . (1.1)

This notion quantifies the error of the best approximation to the elements of F by elements in a vector
subspace of X of dimension at most n [20, 27, 28].

In computational mathematics, the so-called ǫ-dimension nǫ(F,X ) is used to quantify the compu-
tational complexity. It is defined by

nǫ(F,X ) = inf

§
n ∈ N

��� (∃G ∈ Gn) sup
f ∈F

inf
g∈G
‖ f − g‖X ¶ ǫ

ª
. (1.2)

This approximation characteristic is the inverse of dn(F,X ) in the sense that the quantity nǫ(F,X ) is the
smallest integer nǫ such that the approximation of F by a suitably chosen approximant nǫ-dimensional
subspace G in X gives an approximation error less than ǫ. Recently, there has been strong interest in
applications of Kolmogorov n-widths, and its dual Gelfand n-widths, to compressed sensing [3, 10, 11,
21]. Kolmogorov n-widths and ǫ-dimensions of classes of functions with mixed smoothness have also
been employed in recent high-dimensional approximation studies [5, 9].

We consider functions on Rd which are 2π-periodic in each variable as functions defined on Td =

[−π,π]d . Denote by L2(T
d) the Hilbert space of square-integrable functions on Td equipped with the

standard scalar product, i.e.,

(∀ f ∈ L2(T
d))(∀g ∈ L2(T

d)) 〈 f | g〉=
1

(2π)d

∫

Td

f (x)g(x)d x , (1.3)

and by S ′(Td) the space of distributions on Td . The norm of f ∈ L2(T
d) is ‖ f ‖2 =

p
〈 f | f 〉 and,

given k ∈ Zd , the kth Fourier coefficient of f ∈ L2(T
d) is f̂ (k) =



f | ei〈k|·〉

�
. Every f ∈ S ′(Td) can be

identified with the formal Fourier series

f =
∑

k∈Zd

f̂ (k)ei〈k|·〉, (1.4)

where the sequence ( f̂ (k))k∈Zd is a tempered sequence [24, 28]. By Parseval’s identity, L2(T
d) is the

subset of S ′(Td) of all distributions f for which
∑

k∈Zd

| f̂ (k)|2 < +∞. (1.5)
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Let α = (α1, . . . ,αd) ∈ N
d and let f ∈ S ′(Td). We set

Z
d
0(α) =

�
(k1, . . . , kd) ∈ Z

d
�� (∀ j ∈ {1, . . . , d}) α j 6= 0 ⇒ k j 6= 0

	
. (1.6)

As usual, we set |α| =
∑d

j=1α j and, given z = (z1, . . . , zd) ∈ C
d , we set zα =

∏d

j=1 z
α j

j
. The αth

derivative of f ∈ S ′(Td) is the distribution f (α) ∈ S ′(Td) given through the identification

f (α) =
∑

k∈Zd
0(α)

(ik)α f̂ (k)ei〈k|·〉. (1.7)

The differential operator Dα on S ′(Td) is defined by Dα : f 7→ (−i)|α| f (α). Now let A ⊂ Nd be a
nonempty finite set, let (cα)α∈A be nonzero real numbers, and define a polynomial by

P : x 7→
∑

α∈A

cαxα. (1.8)

The differential operator P(D) on S ′(Td) induced by P is

P(D) =
∑

α∈A

cαDα. (1.9)

Set

W
[P]

2 =
�

f ∈ S ′(Td)
�� P(D)( f ) ∈ L2(T

d)
	
, (1.10)

denote the seminorm of f ∈W
[P]

2 by

‖ f ‖
W
[P]
2
= ‖P(D)( f )‖2, (1.11)

and let

U
[P]

2 =
¦

f ∈W
[P]

2

�� ‖ f ‖
W
[P]
2
¶ 1

©
. (1.12)

The problem of computing asymptotic orders of dn(U
[P]

2 , L2(T
d)) in the general case when W

[P]

2 is
compactly embedded into L2(T

d) has been open for a long time; see, e.g., [26, Chapter III] for details.
Our main contribution is to solve it for a non-degenerate differential operator P(D) (see Definition 2.4).
Using convex-analytical tool, we establish the asymptotic order

dn

�
U
[P]

2 , L2(T
d)
�
≍ n−̺(log n)ν̺ , (1.13)

where ̺ and ν depend only on P. In the present paper, we restrict our attention to multivariate periodic

functions. One can consider an extension of dn

�
U
[P]

2 , L2(T
d)
�

to dn

�
U
[P]

2 , L2(Ω)
�
, where Ω is a bounded

domain in Rd (if Ω is unbounded, then U
[P]

2 is not a compact set and, therefore, dn

�
U
[P]

2 , L2(Ω)
�
=

+∞). The assumption that the differential operator P(D) is non-degenerate plays a crucial role in
the proof technique of (1.13), where convex analytical tools are employed. Intuitively, the problem of

estimating dn

�
U
[P]

2 , L2(T
d)
�

may be related to that of estimating dn(U
A
2 , L2(T

d)) studied in [6], where
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UA
2 is the closed unit ball of the space W A

2 of functions with several bounded mixed derivatives (see
Subsection 4.4 for a precise definition).

The first exact values of n-widths of univariate Sobolev classes were obtained by Kolmogorov [14]

(see also [15, pp. 186–189]). The problem of computing the asymptotic order of dn(U
[P]

2 , L2(T
d)) is

directly related to hyperbolic crosses trigonometric approximations and to n-widths of classes multivari-
ate periodic functions with a bounded mixed smoothness. This line of work was initiated by Babenko
in [1, 2]. In particular, the asymptotic orders of n-widths in L2(T

d) of these classes were established in
[1]. Further work on asymptotic orders and hyperbolic cross approximation can be found in [7, 8, 26]
and recent developments in [17, 23, 25, 29]. In [6], the strong asymptotic order of dn(U

A
2 , L2(T

d)) was
computed.

The remainder of the paper is organized as follows. In Section 2, we provide as auxiliary results

Jackson-type and Bernstein-type inequalities for trigonometric approximations of functions from W
[P]

2 .

We also characterize the compactness of U
[P]

2 in L2(T
d) and the non-degenerateness of P(D). In Sec-

tion 3, we present the main result of the paper, namely the asymptotic order of dn

�
U
[P]

2 , L2(T
d)
�

in
the case when P(D) is non-degenerate. In Section 4, we derive norm equivalences relative to ‖ · ‖

W
[P]
2

and, based on them, we provide examples of n-widths dn(U
[P]

2 , L2(T
d)) for non-degenerate differential

operators.

2 Preliminaries

2.1 Notation, standing assumption, and definitions

We set N = {0,1, . . . , }, N∗ = {1,2, . . . , }, R+ = [0,+∞[, and R++ = ]0,+∞[. Let Θ be an abstract set,
and let Φ and Ψ be functions from Θ to R. Then we write

(∀θ ∈ Θ) Φ(θ) ≍ Ψ(θ) (2.1)

if there exist γ1 ∈ R++ and γ2 ∈ R++ such that (∀θ ∈ Θ) γ1Φ(θ) ¶ Ψ(θ) ¶ γ2Φ(θ). For every
j ∈ {1, . . . , d}, u j denotes the j standard unit vector of Rd and

R j =
�
λu j

�� λ ∈ R++
	

(2.2)

the jth standard strict ray.

Definition 2.1 Let B be a nonempty finite subset ofNd . The convex hull conv(B) of B is the polyhedron
spanned by B,

∆(B) =
¦
α ∈ B

�� �λα
�� λ ∈ [1,+∞[

	
∩ conv(B) = {α}

©
, (2.3)

and ϑ(B) is the set of vertices of conv(∆(B)). In addition,

(∀t ∈ R+) ΩB(t) =

§
k ∈ Nd

��� max
α∈B

kα ¶ t

ª
. (2.4)
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Throughout the paper, the convention 00 is adopted and the following standing assumption is made.

Assumption 2.2 A is a nonempty finite subset of Nd and (cα)α∈A are nonzero real numbers. We set

P : x 7→
∑

α∈A

cαxα and τ = inf
k∈Zd
|P(k)|. (2.5)

Moreover, for every t ∈ R+, we set

K(t) =
�
k ∈ Zd

�� |P(k)| ¶ t
	

and V (t) =

§
f ∈ S ′(Td)

��� f =
∑

k∈K(t)

f̂ (k)ei〈k|·〉

ª
. (2.6)

Remark 2.3 If 0 ∈ A, then 0 ∈ ϑ(A) and ∆(conv(A)) =∆(A), so that ϑ(conv(A)) = ϑ(A). Now suppose
that t ∈ ]τ,+∞[. Then K(t) 6= ∅ and dim V (t) = card K(t), where card K(t) denotes the cardinality
of K(t). In addition, if card K(t) < +∞, then V (t) is the space of trigonometric polynomials with
frequencies in K(t).

Definition 2.4 The Newton diagram of P is ∆(A) and the Newton polyhedron of P is conv(A). The
intersection of conv(A) with a supporting hyperplane of conv(A) is a face of conv(A); Σ(A) is the set of
intersections of A with a face of conv(A). The differential operator P(D) is non-degenerate if P and, for
every σ ∈ Σ(A), Pσ : Rd → R : x 7→

∑
α∈σ cαxα do not vanish outside the coordinate planes of Rd , i.e.,

�
∀x ∈ Rd

� � d∏

j=1

x j 6= 0 ⇒
�
∀σ ∈ Σ(A)

�
P(x)Pσ(x) 6= 0

�
. (2.7)

Remark 2.5 Suppose that P is non-degenerate and let α ∈ ϑ(A). Then it follows from (2.7) that all
the components of α are even.

2.2 Trigonometric approximations

We first prove a Jackson-type inequality.

Lemma 2.6 Let t ∈ R++ and define a linear operator St : S ′(Td)→S ′(Td) by

�
∀ f ∈ S ′(Td)

�
St( f ) =

∑

k∈K(t)

f̂ (k)ei〈k|·〉. (2.8)

Let f ∈W
[P]
2 and suppose that t > τ. Then the distribution f −St( f ) represents a function in L2(T

d) and

‖ f − St( f )‖2 ¶ t−1‖ f ‖
W
[P]
2

. (2.9)

Proof. Set g = f − St( f ). Then g ∈ S ′(Td). On the other hand, Parseval’s identity yields

‖ f ‖2
W
[P]
2

=
∑

k∈Zd

|P(k)|2| f̂ (k)|2. (2.10)
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Hence,
∑

k∈Zd

| ĝ(k)|2 =
∑

k∈Zd\K(t)

| f̂ (k)|2

¶

�
sup

k∈Zd\K(t)

|P(k)|−2
� ∑

k∈Zd\K(t)

|P(k)|2| f̂ (k)|2

¶ t−2‖ f ‖2
W
[P]
2

, (2.11)

which means that f − St( f ) represents a function in L2(T
d) for which (2.9) holds.

Corollary 2.7 Let t ∈ ]τ,+∞[. Then

sup
f ∈U

[P]
2

inf
g∈V(t)

f −g∈L2(T
d )

‖ f − g‖2 ¶ t−1. (2.12)

Next, we prove a Bernstein-type inequality.

Lemma 2.8 Let t ∈ ]τ,+∞[ and let f ∈ V (t) ∩ L2(T
d). Then

‖ f ‖
W
[P]
2
¶ t‖ f ‖2. (2.13)

Proof. By (2.10), we have

‖ f ‖2
W
[P]
2

=
∑

k∈K(t)

|P(k)|2| f̂ (k)|2 ¶

�
sup

k∈K(t)

|P(k)|2
� ∑

k∈K(t)

| f̂ (k)|2 ¶ t2‖ f ‖22, (2.14)

which establishes (2.13).

2.3 Compactness and non-degenerateness

We start with a characterization of the compactness of the unit ball defined in (1.12).

Lemma 2.9 The set U
[P]

2 is a compact subset of L2(T
d) if and only if the following hold:

(i) For every t ∈ ]τ,+∞[, K(t) is finite.

(ii) τ > 0.

Proof. To prove sufficiency, suppose that (i) and (ii) hold, and fix t ∈ ]τ,+∞[. By (i), V (t) is a set
of trigonometric polynomials and, consequently, a subset of L2(T

d). In particular, using the notation
(2.8), (∀ f ∈ S ′(Td)) St( f ) ∈ L2(T

d). Hence, by Lemma 2.6,
�
∀ f ∈W

[P]

2

�
f = ( f − St( f )) + St( f ) ∈ L2(T

d). (2.15)
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Thus, W
[P]

2 ⊂ L2(T
d). On the other hand, (2.10) implies that U

[P]

2 is a closed subset of L2(T
d). There-

fore, U
[P]

2 is compact in L2(T
d) if, for every ǫ ∈ R++, it has a finite ǫ-net in L2(T

d) or, equivalently, if
the following following two conditions are satisfied:

(iii) For every ǫ ∈ R++, there exists a finite-dimensional vector subspace Gǫ of L2(T
d) such that

sup
f ∈U

[P]
2

inf
g∈Gǫ
‖ f − g‖2 ¶ ǫ. (2.16)

(iv) U
[P]
2 is bounded in L2(T

d).

It follows from (2.10) that (ii)⇔(iv). On the other hand, since dim V (t) = card K(t), Corollary 2.7
yields (i)⇒(iii). To prove necessity, suppose that (i) does not hold. Then dim V ( t̃) = card K( t̃) = +∞

for some t̃ ∈ R++. By Lemma 2.8, eU =
�

f ∈ V ( t̃)∩ L2(T
d)
�� ‖ f ‖2 ¶ 1/ t̃

	
is a subset of U

[P]

2 which is

not compact in L2(T
d). If (ii) does not hold, then U

[P]

2 ∩ L2(T
d) is unbounded and, consequently, not

compact in L2(T
d).

The following lemma characterizes the non-degenerateness of P(D).

Lemma 2.10 P(D) is non-degenerate if and only if

(∃γ ∈ R++)(∀x ∈ Rd) |P(x)| ¾ γ max
α∈ϑ(A)

|xα|. (2.17)

Proof. As proved in [12, 19], P(D) is non-degenerate if and only if

(∃γ1 ∈ R++)(∀x ∈ Rd) |P(x)|¾ γ1

∑

α∈ϑ(A)

|xα|. (2.18)

Hence, since there exist γ2 ∈ R++ and γ3 ∈ R++ such that

(∀x ∈ Rd) γ2 max
α∈ϑ(A)

|xα| ¶
∑

α∈ϑ(A)

|xα| ¶ γ3 max
α∈ϑ(A)

|xα|, (2.19)

the proof is complete.

Lemma 2.11 Let B be a nonempty finite subset of Nd and let t ∈ R+. Then

ΩB(t) =

§
k ∈ Nd

��� max
α∈B

kα ¶ t

ª
(2.20)

is finite if and only if

(∀ j ∈ {1, . . . , d}) B ∩R j 6= ∅. (2.21)

Proof. If (2.21) holds, then (∀ j ∈ {1, . . . , d})(∃ a j ∈ R++) a ju
j ∈ B ∩ R j. Hence, (2.4) implies that

ΩB(t) ⊂
⋂d

j=1

�
k ∈ Nd

�� k j ¶ t1/a j
	

and, therefore, ΩB(t) is bounded. Conversely, if (2.21) does not

hold, then there exists j ∈ {1, . . . , d} such that
�

mu j
�� m ∈ N

	
⊂ ΩB(t), which shows that ΩB(t) is

unbounded.
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Theorem 2.12 Suppose that P(D) is non-degenerate. Then U
[P]

2 is a compact subset of L2(T
d) if and only

if (2.21) is satisfied and 0 ∈ A.

Proof. Let us prove that there exists γ1 ∈ R++ such that

�
∀k ∈ Zd

�
|P(k)| ¶ γ1 max

α∈ϑ(A)
|kα|. (2.22)

Since there exists γ1 ∈ R++ such that

�
∀k ∈ Zd

�
|P(k)| ¶ γ1 max

α∈A
|kα|, (2.23)

and since (2.22) trivially holds if there exists j ∈ {1, . . . , d} such that k j = 0, it is enough to show that

�
∀α ∈ A

��
∀k ∈ N∗d

�
kα ¶ max

β∈ϑ(A)
kβ , (2.24)

and a fortiori that

�
∀α ∈ A

��
∀x ∈ Rd

+

�
〈α | x〉 ¶ max

β∈ϑ(A)
〈β | x〉. (2.25)

Indeed, since α ∈ conv(ϑ(A)), by Carathéodory’s theorem [22, Theorem 17.1], α is a convex combina-
tion of points (β j)1¶ j¶d+1 in ϑ(B), say

α=

d+1∑

j=1

λ jβ
j, where (λ j)1¶ j¶d+1 ∈ R

d+1
+ and

d+1∑

j=1

λ j = 1. (2.26)

Therefore

�
∀x ∈ Rd

+

�
〈α | x〉=

d+1∑

j=1

λ j



β j | x

�
¶

d+1∑

j=1

λ j max
β∈ϑ(A)

〈β | x〉 = max
β∈ϑ(A)

〈β | x〉. (2.27)

Hence, Lemma 2.10 asserts that there exists γ2 ∈ R++ such that

�
∀k ∈ Zd

�
γ2 max
α∈ϑ(A)

|kα| ¶ |P(k)| ¶ γ1 max
α∈ϑ(A)

|kα|. (2.28)

Consequently, by Lemma 2.9, U
[P]

2 is a compact set in L2(T
d) if and only if, for every t ∈ R+, ΩA(t) is

finite and

inf
k∈Nd

max
α∈A

kα > 0. (2.29)

In view of Lemma 2.11, the first condition is equivalent to (2.21) and the second to 0 ∈ A.
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3 Main result

3.1 Convex-analytical results

Several important convex-analytical facts underly our analysis (see [4, 22] for background on convex
analysis). We start with the following corollary.

Corollary 3.1 Suppose that P(D) is non-degenerate. Then
�
∀k ∈ Zd

�
|P(k)| ≍maxα∈ϑ(A) |k

α|.

Proof. Combine (2.28) and Lemma 2.10.

Next, we investigate the geometry of our problem from the view-point of convex duality. Let C be
a subset of Rd . Recall that the polar set of C is

C⊙ =
�

x ∈ Rd
�� (∀α ∈ C) 〈α | x〉 ¶ 1

	
, (3.1)

and the indicator function of C is

ιC : Rd → ]−∞,+∞] : x 7→

¨
0, if x ∈ C;

+∞, otherwise.
(3.2)

Moreover, if C is convex and 0 ∈ C , the Minkowski gauge of C is the lower semicontinuous convex
function

mC : Rd → ]−∞,+∞] : x 7→ inf
�
ξ ∈ R++

�� x ∈ ξC
	
. (3.3)

Finally, the domain of a function ϕ : Rd → ]−∞,+∞] is domϕ =
�

x ∈ Rd
�� ϕ(x)< +∞

	
.

Lemma 3.2 Let B be a nonempty finite subset of Rd
+ such that

0 ∈ B and (∀ j ∈ {1, . . . , d}) B ∩R j 6= ∅. (3.4)

Set 1= (1, . . . , 1) ∈ Rd , let µ(B) be the optimal value of the problem

maximize
x∈B⊙

d∑

j=1

x j, (3.5)

and set

̺(B) =max
�
ρ ∈ R++

�� ρ1 ∈ conv(B)
	
. (3.6)

Then ̺(B) ∈ R++ and µ(B) = 1/̺(B).

Proof. It follows from (3.4) that

R
d
+
∩ B⊙ = Rd

+
∩
⋂

α∈B

�
x ∈ Rd

�� 〈x | α〉¶ 1
	

(3.7)
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is a nonempty compact set and hence (3.5) does have a solution. Now fix j ∈ {1, . . . , d}. Then (∃ a j ∈

R++) a ju
j ∈ B. Hence x j = (1/a j)u

j ∈ B⊙ and therefore µ(B) =maxx∈B⊙ 〈x | 1〉¾


x j | 1

�
= 1/a j > 0.

Altogether µ(B) ∈ R++. Likewise, (3.4) implies that ̺(B) ∈ R++. Let us set ϕ = mconv(B) and ψ= ι{1}.

Then it follows from (3.4) that domϕ = dom mconv(B) = R
d
+. Furthermore, the conjugate of ϕ is ϕ∗ =

ι(conv(B))⊙ = ιB⊙ [4, Propositions 14.12 and 7.14(vi)] and the conjugate ofψ isψ∗ = 〈· | 1〉. Hence, since

1 ∈ intdomϕ = Rd
++

, domψ ∩ intdomϕ 6= ∅ and the Fenchel duality formula [4, Proposition 15.13]
yields

µ(B) = max
x∈B⊙

d∑

j=1

x j

= −min
x∈B⊙
〈−x | 1〉

= −min
x∈Rd

�
ιB⊙(x) + 〈−x | 1〉

�

= −min
x∈Rd

�
ϕ∗(x) +ψ∗(−x)

�

= inf
α∈Rd

�
ϕ(α) +ψ(α)

�

= inf
α∈Rd

�
mconv(B)(α) + ι{1}(α)

�

= mconv(B)(1)

= inf
�
ξ ∈ R++

�� 1 ∈ ξconv(B)
	

=
1

sup
�
ρ ∈ R++

�� ρ1 ∈ conv(B)
	 . (3.8)

We conclude that µ(B) = 1/̺(B).

To illustrate the duality principles underlying Lemma 3.2, we consider two examples.

Example 3.3 We consider the case when d = 2 and B = {(6,0), (0,6), (4,4), (0,0)} (see Figure 1).
Then (3.4) is satisfied, µ(B) = 1/4, and ̺(B) = 4. The set of solutions to (3.5) is the set S represented
by the solid red segment: S =

�
(x1, x2) ∈ [1/12,1/6]2

�� x1 + x2 = 1/4
	
.

Example 3.4 In this example we consider the case when B = {(0,6), (2,4), (4,0), (0,0)}. Then (3.4)
is satisfied, µ(B) = 3/8, and ̺(B) = 8/3. The set of solutions to (3.5) reduces to the singleton S =

{(1/4,1/8)}.

Lemma 3.5 Let B be a nonempty finite subset of Rd
+

and suppose that

(∀ j ∈ {1, . . . , d}) B ∩R j 6= ∅. (3.9)

Let µ(B) be the optimal value of the problem

maximize
x∈B⊙

d∑

j=1

x j, (3.10)

10
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Figure 1: Graphical illustration of Example 3.3: In gray, the Newton polyhedron (top) and its polar
(bottom). The dashed lines are the hyperplanes delimiting the polar set B⊙ and the dotted line rep-
resents the optimal level curve of the objective function x 7→ 〈x | 1〉 in (3.5). The solid red segment
depicts the solution set of (3.5).
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Figure 2: Graphical illustration of Example 3.4: In gray, the Newton polyhedron (top) and its polar
(bottom). The dashed lines are the hyperplanes delimiting the polar set B⊙ and the dotted line rep-
resents the optimal level curve of the objective function x 7→ 〈x | 1〉 in (3.5). The red dot locates the
unique solution to (3.5).
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and let ν(B) be the dimension of its set of solutions. Then µ(B) ∈ R++ and

(∀t ∈ [2,+∞[) cardΩB(t) ≍ tµ(B)
�

log t
�ν(B)

. (3.11)

Proof. The fact that µ(B) ∈ R++ was proved as in Lemma 3.2. Now fix t ∈ [2,+∞[ and set ΛB(t) =�
x ∈ Rd

+

�� maxα∈B xα ¶ t
	
. Then, as in the proof of Lemma 2.11, one can see that ΛB(t) is a bounded

subset of Rd
+. If we denote by volΛB(t) the volume of ΛB(t), then it follows from [6, Theorem 1] that

volΛB(t) ≍ tµ(B)(log t)ν(B). (3.12)

Furthermore, proceeding as in the proof of [6, Theorem 2], one shows that

cardΩB(t) ≍ volΛB(t). (3.13)

These asymptotic relations prove the claim.

3.2 Main result: asymptotic order of Kolmogorov n-width

Our main result can now be stated and proved.

Theorem 3.6 Suppose that P(D) is non-degenerate and that

0 ∈ A and (∀ j ∈ {1, . . . , d}) A∩R j 6= ∅. (3.14)

Let µ be the optimal value of the problem

maximize
x∈ϑ(A)⊙

d∑

j=1

x j, (3.15)

let ν be the dimension of its set of solutions, and set

̺ =max
�
ρ ∈ R++

�� ρ1 ∈ conv(ϑ(A))
	
. (3.16)

Then µ = 1/̺ ∈ R++ and, for n sufficiently large,

dn

�
U
[P]
2 , L2(T

d)
�
≍ n−̺

�
log n

�ν̺
. (3.17)

Equivalently, using (1.2), for ǫ ∈ R++ sufficiently small,

nǫ
�
U
[P]

2 , L2(T
d)
�
≍ ǫ−1/̺| logǫ|ν. (3.18)

Proof. Since A satisfies (3.14), so does ϑ(A). Hence the fact that µ = 1/̺ ∈ R++ follows from
Lemma 3.2. We also note that the equivalence between (3.17) and (3.18) follows from (1.1) and
(1.2). To show (3.17), set t̄ =max{2,τ}. Then we derive from Corollary 3.1 that

(∀t ∈ [ t̄ ,+∞[) cardΩϑ(A)(t) ≍ card K(t). (3.19)
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Applying Lemma 3.5 to ϑ(A) yields

(∀t ∈ [ t̄ ,+∞[) dim V (t) = card K(t) ≍ t1/̺
�

log t
�ν

. (3.20)

Hence, for every n ∈ N large enough, there exists t ∈ R++ depending on n such that

γ1 dim V (t) ¶ γ3 t1/̺
�

log t
�ν
¶ n< γ3(t + 1)1/̺

�
log(t + 1)

�ν

¶ γ2 dim V (t + 1) ¶ γ4t1/̺
�

log t
�ν

, (3.21)

where γ1, γ2, γ3, and γ4 are strictly positive real parameters that are independent from n and t. There-
fore,

n≍ t1/̺
�

log t
�ν

. (3.22)

or, equivalently,

t−1 ≍ n−̺
�

log n
�ν̺

. (3.23)

It therefore follows from (1.1) and Corollary 2.7 that

dn

�
U
[P]

2 , L2(T
d)
�
¶ t−1 ≍ n−̺

�
log n

�ν̺
, (3.24)

which establishes the upper bound in (3.17). To establish the lower bound, let us recall from [27] that,
for every n+ 1-dimensional vector subspace Gn+1 of L2(T

d) and every η ∈ R++, we have

dn

�
Bn+1(η), L2(T

d)
�
= η, where Bn+1(η) =

�
f ∈ Gn+1

�� ‖ f ‖L2(T
d ) ¶ η

	
. (3.25)

Arguing as in (3.20)–(3.23), for n ∈ N sufficiently large, there exists t ∈ R++ such that

dim V (t) ¾ γ5 t1/̺
�

log t
�ν
> n¾ γ6t1/̺

�
log t

�ν
, (3.26)

where γ5 ∈ R++ and γ6 ∈ R++ are independent from n and t. Now set

U(t) =
�

f ∈ V (t)
�� ‖ f ‖2 ¶ t−1

	
. (3.27)

By Lemma 2.8, U(t) ⊂ U
[P]
2 . Consequently, it follows from (3.25)–(3.27) and (3.23) that

dn

�
U
[P]

2 , L2(T
d)
�
¾ dn

�
U(t), L2(T

d)
�
¾ t−1 ≍ n−̺

�
log n

�ν̺
, (3.28)

which concludes the proof of (3.17). Next, let us prove (3.18). Given a sufficiently small ǫ ∈ R++, take
t ∈ R++ such that 0< t − 1< ǫ−1

¶ t and dim V (t) > 1. From the above results, it can be seen that

dim V (t)− 1¶ nǫ
�
U
[P]

2 , L2(T
d)
�
¶ dim V (t) (3.29)

which, together with (3.20), proves (3.18).

Remark 3.7 We have actually proven a bit more than Theorem 3.6. Namely, suppose that P(D) satisfies

the conditions of compactness for U
[P]

2 stated in Lemma 2.9 and, for every n ∈ N, let t(n) be the largest
number such that card K(t(n)) ¶ n. Then, for n sufficiently large, we have

dn

�
U
[P]

2 , L2(T
d)
�
≍

1

t(n)
. (3.30)
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4 Examples

We first establish norm equivalences and use them to provide examples of asymptotic orders of

dn

�
U
[P]

2 , L2(T
d)
�

for non-degenerate and degenerate differential operators.

Theorem 4.1 Suppose that P(D) is non-degenerate and set

Q : x 7→
∑

α∈ϑ(A)

xα. (4.1)

Then

�
∀ f ∈W

[P]

2

�
‖ f ‖2

W
[P]
2

≍ ‖ f ‖2
W
[Q]
2

≍
∑

α∈ϑ(A)

‖Dα f ‖22 ≍ max
α∈ϑ(A)

‖Dα f ‖22. (4.2)

Moreover, the seminorms in (4.2) are norms if and only if 0 ∈ A.

Proof. Let f ∈W
[P]
2 . It is clear that

∑

α∈ϑ(A)

‖Dα f ‖22 ≍ max
α∈ϑ(A)

‖Dα f ‖22. (4.3)

Parseval’s identity yields

max
α∈ϑ(A)

‖Dα f ‖22 = max
α∈ϑ(A)

∑

k∈Zd

|k|2α| f̂ (k)|2 ¶
∑

k∈Zd

�
max
α∈ϑ(A)

|kα|
�2
| f̂ (k)|2. (4.4)

Now let (Zd(α))α∈ϑ(A) be a partition of Zd such that

max
β∈ϑ(A)

|kβ | = |kα|, k ∈ Zd(α). (4.5)

Then

max
α∈ϑ(A)

‖Dα f ‖22 = max
α∈ϑ(A)

∑

α′∈ϑ(A)

∑

k∈Zd(α′)

|k2α| | f̂ (k)|2

¾

∑

α′∈ϑ(A)

∑

k∈Zd(α′)

|k2α′ | | f̂ (k)|2

=
∑

k∈Zd

max
α∈ϑ(A)

|kα|2 | f̂ (k)|2.

(4.6)

Thus,

max
α∈ϑ(A)

‖Dα f ‖22 =
∑

k∈Zd

max
α∈ϑ(A)

|kα|2 | f̂ (k)|2. (4.7)
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Hence, appealing to Corollary 3.1 and (2.10), we obtain

max
α∈ϑ(A)

‖Dα f ‖22 ≍ ‖ f ‖
2

W
[P]
2

. (4.8)

The relation

max
α∈ϑ(A)

‖Dα f ‖22 ≍ ‖ f ‖
2

W
[Q]
2

(4.9)

follows from the last seminorm equivalence and the identity ϑ(ϑ(A)) = ϑ(A). Therefore, we derive
from (4.2) that the seminorms in (4.2) are norms if and only if 0 ∈ A.

4.1 Isotropic Sobolev classes

Let s ∈ N∗. The isotropic Sobolev space Hs is the Hilbert space of functions f ∈ L2(T
d) equipped with

the norm

‖ · ‖Hs : f 7→

√√√‖ f ‖22 +
∑

|α|=s

‖ f (α)‖22. (4.10)

Consider

P : x 7→ 1+
∑

|α|=s

xα =
∑

α∈A

xα, (4.11)

where A= {0}∪
�
α ∈ Nd

�� |α| = s
	
. If s is even, it follows directly from Lemma 2.10 that the differential

operator P(D) is non-degenerate, and consequently, by Theorem 4.1, ‖ · ‖Hs is equivalent to one of the
norms appearing in (4.2) with ϑ(A) = {0} ∪

�
su j

�� 1¶ j ¶ d
	

and

Q : x 7→ 1+
d∑

j=1

x s
j . (4.12)

Moreover, we have ̺(A) = s/d and ν(a) = 0. Therefore, we retrieve from Theorem 3.6 the well-known
result

dn

�
U s, L2(T

d)
�
≍ n−s/d , (4.13)

where U s denotes the closed unit ball in Hs. This result is a direct generalization of the first result on
n-widths established by Kolmogorov in [14].

4.2 Anisotropic Sobolev classes

Given β = (β1, . . . ,βd) ∈ N
∗d , the anisotropic Sobolev space Hβ is the Hilbert space of functions f ∈ L2

equipped with the norm

‖ · ‖2
Hβ

: f 7→

√√√√‖ f ‖22 +
d∑

j=1

‖ f (β ju
j)‖22. (4.14)
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Consider the polynomial

P : x 7→ 1+
d∑

j=1

x
β j

j
=
∑

α∈A

xα, (4.15)

where A= {0} ∪
�
β ju

j
�� 1¶ j ¶ d

	
. If the coordinates of β are even, the differential operator P(D) is

non-degenerate. Consequently, by Theorem 4.1, ‖ · ‖Hβ is equivalent to one of the norms in (4.2) with
ϑ(A) = A and

Q = P. (4.16)

We have

̺ = ̺(A) =

 
d∑

j=1

1/β j

!−1

(4.17)

and ν(A) = 0, and therefore, from Theorem 3.6 we retrieve the known result [13]

dn

�
Uβ , L2(T

d)
�
≍ n−̺, (4.18)

where Uβ denotes the unit ball in in Hβ .

4.3 Classes of functions with a bounded mixed derivative

Let α = (α1, . . . ,αd) ∈ N
d with 0 < α1 = · · · = αν+1 < αν+2 = · · · = αd for some ν ∈ {0, . . . , d − 1}.

Given a set e ⊂ {1, . . . , d}, let the vector α(e) ∈ Nd be defined by α(e) j = α j if j ∈ e, and α(e) j = 0
otherwise (in particular, α(∅) = 0 and α({1, . . . , d}) = α). The space Wα

2 is the Hilbert space of
functions f ∈ L2 equipped with the norm

‖ · ‖Wα
2

: f 7→

√√√
∑

e⊂{1,...,d}

‖ f (α(e))‖22. (4.19)

Consider

P : x 7→
∑

e⊂{1,...,d}

xα(e) =
∑

α∈A

xα, (4.20)

where A =
�
α(e)

�� e ⊂ {1, . . . , d}
	
. If the coordinates of α are even, the differential operator P(D) is

non-degenerate and hence, by Theorem 4.1, ‖ · ‖Wα
2

is equivalent to one of the norms in (4.2) with
ϑ(A) = A and Q = P. We have ̺(A) = α1 and ν(A) = ν, and therefore, from Theorem 3.6 we recover
the result proven in [1], namely that for n sufficiently large

dn

�
Uα2 , L2(T

d)
�
≍ n−α1

�
log n

�να1 , (4.21)

where Uα2 denotes the unit ball in Wα
2 . In the particular case when α = ̺1, we have

dn

�
U
̺1

2 , L2(T
d)
�
≍ n−̺

�
log n

�(d−1)̺
. (4.22)
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4.4 Classes of functions with several bounded mixed derivatives

Suppose that (3.14) is satisfied. Let W A
2 be the Hilbert space of functions f ∈ L2(T

d) equipped with
the norm

‖ · ‖WA
2

: f 7→

√√∑

α∈A

‖ f (α)‖22. (4.23)

Notice that spaces Hs, H r , and Wα
2 are a particular cases of W A

2 . Now consider

P : x 7→
∑

α∈A

xα. (4.24)

If the coordinates of every α ∈ ϑ(A) are even, the differential operator P(D) is non-degenerate and it
follows from Theorem 4.1 that ‖ · ‖WA

2
is equivalent to one of the norms in (4.2). If ̺ = ̺(ϑ(A)) and

ν = ν(ϑ(A)), we again retrieve from Theorem 3.6 the result proven in [6], namely that for n sufficiently
large

dn

�
UA

2 , L2(T
d)
�
≍ n−̺

�
log n

�ν̺
, (4.25)

where UA
2 denotes the unit ball in W A

2 .

4.5 Classes of functions induced by a differential operator

We give two examples of spaces W
[P]

2 with non-degenerate differential operator P(D) for d = 2. Con-
sider the polynomials

¨
P1 : x 7→ 8x4

1 − 4x3
1 − 3x3

1 x2 − 2x2
1 x2 − 4x1x2 + 6x2

2 − 4x1 − 3x2 + 13

P2 : x 7→ 6x6
1 + x4

1 x2
2 − 6x5

1 − x3
1 x2

2 + 5x4
2 − 4x3

2 + 3.
(4.26)

We have





A1 = {(4,0), (3,0), (2,1), (2,0), (1,1), (0,2), (1,0), (0,1), (0,0)}

ϑ(A1) = {(4,0), (0,2), (0,0)}

A2 = {(6,0), (4,2), (5,0), (3,2), (0,4), (0,3), (0,0)}

ϑ(A2) = {(6,0), (4,2), (0,4), (0,0)}.

(4.27)

It is easy to verify that P1(D) and P2(D) are non-degenerate and that (3.14) holds. Moreover,
̺(ϑ(A1)) = 4/3, ν(ϑ(A1)) = 0, ̺(ϑ(A2)) = 8/3, and ν(ϑ(A2)) = 1. We derive from Theorem 3.6
that

dn

�
U [P1], L2(T

2)
�
≍ n−4/3, (4.28)

and

dn

�
U [P2], L2(T

2)
�
≍ n−8/3

�
log n

�8/3
. (4.29)
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Let us give an example of a degenerate differential operator. For

P3 : x 7→ x4
1 − 2x3

1 x2 + x2
1 x2

2 + x2
1 + x2

2 + 1, (4.30)

the differential operator P3(D) is degenerate, although P3 ¾ 1 on R2, and U [P3] is a compact set in
L2(T

2). Therefore, we cannot compute dn(U
[P3], L2(T

2)) by using Theorem 3.6. However, by a direct
computation we get card K(t) ≍ t1/2 log t. Hence, (3.30) yields

dn

�
U [P3], L2(T

2)
�
≍ n−2

�
log n

�2
. (4.31)

4.6 A conjecture

Suppose that U
[P]

2 is compact in L2(T
d). In view of Lemma 2.9, this is equivalent to the conditions:

(i) For every t ∈ R+, K(t) is finite.

(ii) τ > 0.

As mentioned in (3.30), for every n ∈ N sufficiently large, if t(n) ∈ R++ is the maximal number such
that card K(t(n)) ¶ n, then

dn

�
U
[P]

2 , L2(T
d)
�
≍

1

t(n)
. (4.32)

This means that the problem of computing the asymptotic order of dn(U
[P]

2 , L2(T
d)) is equivalent to the

problem of computing that of card K(t) when t → +∞. Let us formulate it as the following conjecture.

Conjecture 4.2 Suppose that, for every t ∈ R+, K(t) is finite (the condition τ > 0 is not essential).
Then there exist integers α, β , and ν such that 0< α ¶ β , 0¶ ν < d , and, for t large enough,

card K(t) ≍ tα/β
�

log t
�ν

. (4.33)

In view of (3.20), we know that the conjecture is true when P satisfies conditions (2.7) and (3.9).
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