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Abstract

Many functions encountered in applied mathematics and in statistical data analysis can be ex-

pressed in terms of perspective functions. One of the earliest examples is the Fisher information,

which appeared in statistics in the 1920s. We analyze various algebraic and convex-analytical
properties of perspective functions and provide general schemes to construct lower semicontin-

uous convex functions from them. Several new examples are presented and existing instances
are featured as special cases.

1 Introduction

Let G be a real Hilbert space and let ϕ : G → ]−∞,+∞] be a convex function. The perspective

function of ϕ is (see Figure 1)

Pϕ : R× G → ]−∞,+∞] : (η, y) 7→

{
ηϕ(y/η), if η > 0;

+∞, otherwise.
(1.1)

The properties of Pϕ were first investigated in [57], where it was shown in particular that Pϕ is

convex if and only if ϕ is convex (see also [6, 27, 34]). The term “perspective function” was coined

by Claude Lemaréchal ca. 1987-1988 [43] and first appeared in print in [34, Section IV.2.2]. Special

cases of the construction (1.1) arise in various areas of applied mathematics and data analysis. One

of the oldest instances involving perspective functions is the Fisher information of a differentiable

probability density x : RN → ]0,+∞[, that is,

∫

RN

‖∇x(t)‖22
x(t)

dt, (1.2)
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Figure 1: Slices of the graph of the perspective function of ϕ : y 7→ 1/2 + 8‖y‖3 for fixed values of

η ∈ {1/4, 1/2, 1, 2, 3, 4, 5}; the value η = 1 provides the graph of ϕ.

where ‖ · ‖2 is the standard Euclidean norm on R
N . This notion, which dates back to the work of

Fisher in statistics [29], has found applications in many contexts, e.g., [9, 13, 14, 31, 52, 58, 60].

More generally, (1.1) can be used to construct convex integrands of integral functionals such as

∫

RN

Pϕ

(
x(t), y(t)

)
dt =

∫

RN

x(t)ϕ

(
y(t)

x(t)

)
dt, (1.3)

where x : RN → ]0,+∞[ and y : RN → G. In the case when N = 1 and G = R, it corresponds to a

notion of ϕ-divergence which originates in [2, 26] and that has been used extensively in information

theory, statistics, signal processing, and pattern recognition [4, 10, 44, 55]; see also [7, 35] for

a discussion of discrete counterparts. In the case when G = R
N×N , y = ∇x, and ϕ = ‖ · ‖22,

one recovers (1.2). Furthermore, choosing ϕ = ‖ · ‖p2 with p ∈ ]1,+∞[ provides the extension

of the Fisher information (1.2) found in [12] in the case when N = 1. Instances of perspective

functions can also be identified in robust estimation [37, Section 7.7] (see also [49, 53] for recent

developments), transportation theory [8, 18, 30, 54], sparse regression [11, 25, 42], control theory

[38, 47], mixed-integer programming [33], computer vision [61], disjunctive programming [20],

game theory [1], machine learning [46], and mean-field games [19].

Although perspective functions appear explicitly or implicitly in an increasing number of di-

verse research areas, little effort has been dedicated to the systematic study of their properties,

especially in general Hilbert spaces. It is the goal of the present paper to propose such an investi-

gation, with a special focus on the construction of lower semicontinuous convex functions around

perspective functions. As is well known, these two properties are of paramount importance in the
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modeling, analysis, and numerical solution of variational problems. Section 2 focuses on algebraic

and convex-analytical properties. On the basis of these results, several examples of lower semi-

continuous convex perspective functions are provided in Section 3. Finally, integral functions with

perspective function-based integrands are studied in Section 4. Many of the functions we propose

are new and suggest new problem formulations in various applications areas. In particular, our

results are exploited in the companion paper [25], which investigates the proximity operator of

perspective functions and explores new models and algorithms in high-dimensional statistics.

Notation. Throughout, H and G are real Hilbert spaces and H ⊕ G denotes their Hilbert direct

sum. The closed ball with center x ∈ H and radius ρ ∈ ]0,+∞[ in H is denoted by B(x; ρ).
Γ0(H) is the class of lower semicontinuous convex functions f : H → ]−∞,+∞] such that dom f ={
x ∈ H

∣∣ f(x) < +∞
}
6= ∅. Let f ∈ Γ0(H). Then f∗ denotes the conjugate of f , epi f the epigraph

of f , rec f the recession function of f , and ∂f the subdifferential of f . Let C be a subset of H. Then

ιC is the indicator function of C, dC the distance function to C, recC the recession cone of C, and

σC the support function of C. See [6, 41] for background on hilbertian convex analysis and [34, 57]

for the Euclidean setting.

2 Properties of perspective functions

In this section we study various properties of perspective functions. We start our discussion by not-

ing that, if ϕ ∈ Γ0(G), the construction (1.1) does not necessarily produce a lower semicontinuous

function. For this reason, we shall use the following variant, first proposed in [57] for G = R
N .

Definition 2.1 Let ϕ ∈ Γ0(G) and let recϕ be its recession function, i.e., given any z ∈ domϕ,

(∀y ∈ G) (recϕ)(y) = sup
x∈domϕ

(
ϕ(x+ y)− ϕ(x)

)
= lim

α→+∞

ϕ(z + αy)

α
. (2.1)

The lower semicontinuous envelope of the perspective of ϕ is

ϕ̃ : R× G → ]−∞,+∞] : (η, y) 7→





ηϕ(y/η), if η > 0;

(recϕ)(y), if η = 0;

+∞, otherwise.

(2.2)

For simplicity, ϕ̃ is called the perspective of ϕ.

Lemma 2.2 Let ϕ ∈ Γ0(G). Then the following hold:

(i) rec epiϕ = epi recϕ [41, Proposition 6.8.3].

(ii) recϕ = σdomϕ∗ [41, Théorème 6.8.5].

The following result records basic topological and convex analytical properties of the perspective

function (2.2).

Proposition 2.3 Let ϕ ∈ Γ0(G). Then the following hold:
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(i) ϕ̃ is positively homogeneous.

(ii) ϕ̃ ∈ Γ0(R⊕ G).

(iii) ϕ̃ is sublinear.

(iv) Let C =
{
(µ, u) ∈ R× G

∣∣ µ+ ϕ∗(u) 6 0
}

. Then (ϕ̃)∗ = ιC and ϕ̃ = σC .

(v) Let η ∈ R and y ∈ G. Then

∂ϕ̃(η, y) =





{(
ϕ(y/η) − 〈y | u〉/η, u

) ∣∣ u ∈ ∂ϕ(y/η)
}
, if η > 0;{

(µ, u) ∈ C
∣∣ σdomϕ∗(y) = 〈y | u〉

}
, if η = 0 and y 6= 0;

C, if η = 0 and y = 0;

∅, if η < 0.

(2.3)

Proof. (i): This follows from (2.1) and (2.2).

(ii): Set D = {1} × epiϕ and g = Pϕ, and let z ∈ domϕ. Then (1, z) ∈ dom g. On the other

hand, since D is convex, epi g = coneD is convex and g is therefore a proper convex function. Let

us denote by ğ the largest lower semicontinuous convex function majorized by g. To show that

ϕ̃ ∈ Γ0(R⊕ G), it is enough to show that

ϕ̃ = ğ. (2.4)

This can be done using the following argument due to H. H. Bauschke. Since (0, 0) /∈ D, it follows

from [6, Theorem 9.9 and Corollary 6.52], Lemma 2.2(i), and [6, Lemma 1.6(ii)] that epi ğ =
epi g = coneD = (coneD) ∪ (recD) = (epi g) ∪ ({0} × rec epiϕ) = (epi g) ∪ ({0} × epi recϕ) =
(epi g) ∪ epi (ι{0} ⊕ recϕ) = epi min{g, ι{0} ⊕ recϕ} = epi ϕ̃.

(iii): This follows from (i) and (ii).

(iv): Set g = Pϕ. Then g∗ = ιC [6, Example 13.8]. Hence, we derive from (2.4) and [6,

Proposition 13.14] that (ϕ̃)∗ = (ğ)∗ = g∗ = ιC . In turn, (ii) and [6, Corollary 13.33] yield ϕ̃ =
(ϕ̃)∗∗ = ι∗C = σC .

(v): Let µ ∈ R and u ∈ G. It follows from the Fenchel-Young identity [6, Proposition 16.13] and

(iv) that

(µ, u) ∈ ∂ϕ̃(η, y) ⇔ ϕ̃(η, y) + (ϕ̃)∗(µ, u) = ηµ + 〈y | u〉

⇔ ϕ̃(η, y) = ηµ+ 〈y | u〉 and µ+ ϕ∗(u) 6 0. (2.5)

We consider three cases.

• η < 0: Then (2.2) and (2.5) yield ∂ϕ̃(η, y) = ∅.

• η = 0: We deduce from (2.5), (2.2), and Lemma 2.2(ii) that

(µ, u) ∈ ∂ϕ̃(η, y) ⇔ (recϕ)(y) = 〈y | u〉 and µ+ ϕ∗(u) 6 0

⇔ σdomϕ∗(y) = 〈y | u〉 and (µ, u) ∈ C. (2.6)
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Since σdomϕ∗(0) = 0 = 〈0 | u〉, we obtain the desired results.

• η > 0: Using successively (2.5), (2.2), the Fenchel-Young inequality [6, Proposition 13.13],

and the Fenchel-Young identity, we obtain

(µ, u) ∈ ∂ϕ̃(η, y) ⇔ µ = ϕ(y/η) − 〈y | u〉/η and ϕ(y/η) + ϕ∗(u) 6 〈y/η | u〉

⇔ µ = ϕ(y/η) − 〈y | u〉/η and ϕ(y/η) + ϕ∗(u) = 〈y/η | u〉

⇔ µ = ϕ(y/η) − 〈y | u〉/η and u ∈ ∂ϕ(y/η). (2.7)

We have thus proved (2.3).

Remark 2.4 Some of the results of Proposition 2.3 have already been obtained in the case when

G = R
N with different tools, some of which are specific to the finite-dimensional setting. Thus,

items (ii) and (iv) can be found in [57], and the case η > 0 of (v) appears in [20, Proposition 4].

As shown in [25], (2.3) is instrumental in computing the proximity operator of a perspective

function. Here is an important refinement.

Corollary 2.5 Let ϕ ∈ Γ0(G) and denote by bar domϕ∗ the barrier cone of domϕ∗. Let η ∈ R, let

y ∈ G, and suppose that one of the following holds:

(i) y /∈ bar domϕ∗.

(ii) domϕ∗ is open.

(iii) domϕ∗ = G.

(iv) ϕ is supercoercive: lim‖y‖→+∞ ϕ(y)/‖y‖ = +∞.

(v) For every v ∈ G, ϕ− 〈· | v〉 is coercive.

Then

∂ϕ̃(η, y) =





{(
ϕ(y/η) − 〈y | u〉/η, u

) ∣∣ u ∈ ∂ϕ(y/η)
}
, if η > 0;

C, if η = 0 and y = 0;

∅, otherwise.

(2.8)

Proof. In view of Proposition 2.3(v), it suffices to suppose that y 6= 0 and to show that

D =
{
(µ, u) ∈ R× G

∣∣ µ+ ϕ∗(u) 6 0 and σdomϕ∗(y) = 〈u | y〉
}
= ∅. (2.9)

Now denote by spts domϕ∗ the set of support points of domϕ∗. Then

D =
{
(µ, u) ∈ R× (spts domϕ∗)

∣∣ µ+ ϕ∗(u) 6 0 and σdomϕ∗(y) = 〈u | y〉
}
. (2.10)

(i): We have σdomϕ∗(y) = +∞ and therefore (2.9) yields D = ∅.

5



(ii): We have spts domϕ∗ = ∅ and therefore (2.10) yields D = ∅.

(iii)⇒(ii): Clear.

(iv)⇒(iii): [6, Proposition 14.15].

(v)⇒(iii): Let v ∈ G. Then by the Moreau-Rockafellar theorem [6, Theorem 14.17], ϕ − 〈· | v〉
is coercive if and only if v ∈ int domϕ∗. Hence G ⊂ int domϕ∗.

Next, we provide an example of a perspective function g ∈ Γ0(R⊕G) such that g
∣∣
dom g

is discon-

tinuous.

Example 2.6 Suppose that G 6= {0}, let p ∈ ]1,+∞[, and set

g : R⊕ G → ]−∞,+∞] : (η, y) 7→





‖y‖p/ηp−1, if η > 0;

0, if η = 0 and y = 0;

+∞, otherwise.

(2.11)

Then g ∈ Γ0(R ⊕ G) and g
∣∣
dom g

is not continuous at (0, 0). Indeed, set ϕ = ‖ · ‖p. Then ϕ is a

supercoercive function in Γ0(G), and it thus follows from (2.1) that recϕ = ι{0}. Hence (2.11)

coincides with (2.2) and the first claim is therefore an application of Proposition 2.3(ii) with g = ϕ̃.

Now set y = (0, 0) ∈ R× G, let v ∈ G be such that ‖v‖ = 1, fix a sequence (αn)n∈N in ]0,+∞[ such

that αn ↓ 0, and set (∀n ∈ N) yn = (α
p/(p−1)
n , αnv). Then (yn)n∈N lies in dom g and yn → y, but

lim g(yn) = 1 6= 0 = g(y).

We now turn to some algebraic properties.

Proposition 2.7 Let ϕ ∈ Γ0(G). Then the following hold:

(i) Let ψ ∈ Γ0(G) be such that domϕ ∩ domψ 6= ∅, and let λ ∈ ]0,+∞[. Then [λϕ + ψ]∼ =
λϕ̃+ ψ̃ ∈ Γ0(R⊕ G).

(ii) Let Λ: H → G be linear, bounded, and such that ranΛ ∩ domϕ 6= ∅. Set Λ̃ : R ⊕ H → R ⊕
G : (ξ, x) 7→ (ξ,Λx). Then [ϕ ◦ Λ]∼ = ϕ̃ ◦ Λ̃ ∈ Γ0(R⊕H).

(iii) Suppose that ϕ is positively homogeneous with domϕ = G, let φ ∈ Γ0(R) be increasing on

ranϕ and such that 0 ∈ dom φ, let η ∈ R, and let y ∈ G. Then [φ ◦ ϕ]∼ ∈ Γ0(R ⊕ G) and

[φ ◦ ϕ]∼(η, y) = φ̃(η, ϕ(y)).

Proof. (i): We have dom (ϕ + ψ) 6= ∅. Hence ϕ + ψ ∈ Γ0(G) and (2.1) implies that rec (λϕ + ψ) =
λrecϕ+ recψ. The claim therefore follows from (2.2) and Proposition 2.3(ii).

(ii): Let ξ ∈ R and x ∈ H. If ξ > 0, then [ϕ ◦ Λ]∼(ξ, x) = ξ(ϕ ◦ Λ)(x/ξ) = ξϕ(Λx/ξ) =
(ϕ̃ ◦ Λ̃)(ξ, x). Furthermore, we have dom (ϕ ◦ Λ) 6= ∅. Hence, ϕ ◦ Λ ∈ Γ0(H) and (2.1) yields

rec (ϕ ◦ Λ) = (recϕ) ◦ Λ. Hence, we derive from (2.2) that

[ϕ ◦ Λ]∼(0, x) = rec (ϕ ◦ Λ)(x) = (recϕ)(Λx) = (ϕ̃ ◦ Λ̃)(0, x). (2.12)
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Finally, if ξ < 0, then [ϕ ◦ Λ]∼(ξ, x) = +∞ = (ϕ̃ ◦ Λ̃)(ξ, x). Altogether, the conclusion follows from

Proposition 2.3(ii).

(iii): The assumptions imply that ϕ is continuous and that ϕ(0) = 0. In turn φ ◦ ϕ is lower

semicontinuous and 0 ∈ dom (φ ◦ ϕ). It also follows from the assumptions that φ ◦ ϕ is convex.

Altogether, φ ◦ ϕ ∈ Γ0(G) and we deduce from Proposition 2.3(ii) that [φ ◦ ϕ]∼ ∈ Γ0(R ⊕ G). Now

suppose that η > 0. Then

[φ ◦ ϕ]∼(η, y) = ηφ
(
ϕ(y/η)

)
= ηφ

(
ϕ(y)/η

)
= φ̃

(
η, ϕ(y)

)
. (2.13)

Next, we observe that, since 0 ∈ dom (φ ◦ ϕ) and 0 ∈ dom φ, (2.2) and (2.1) yield

[φ ◦ ϕ]∼(0, y) = rec (φ ◦ ϕ)(y)

= lim
α→+∞

(φ ◦ ϕ)(0 + αy)

α

= lim
α→+∞

φ
(
ϕ(αy)

)

α

= lim
α→+∞

φ
(
0 + αϕ(y)

)

α

= (recφ)
(
ϕ(y)

)

= φ̃
(
0, ϕ(y)

)
. (2.14)

Finally, if η < 0, then [φ ◦ ϕ]∼(η, y) = +∞ = φ̃(η, ϕ(y)).

Corollary 2.8 Let ψ ∈ Γ0(G) and let C be a closed convex subset of G such that C ∩ domψ 6= ∅. Set

g : R× G → ]−∞,+∞] : (η, y) 7→





ηψ(y/η), if η > 0 and y ∈ η(C ∩ domψ);

(recψ)(y), if η = 0 and y ∈ recC;

+∞, otherwise.

(2.15)

Then g ∈ Γ0(R⊕ G).

Proof. This is an application of Proposition 2.7(i) with λ = 1 and ϕ = ιC . Indeed, in this setting,

rec (ϕ+ ψ) = rec ιC + recψ = ιrecC + recψ and (2.15) yields g = [ιC + ψ]∼.

Corollary 2.9 Let ϕ ∈ Γ0(G), let ψ ∈ Γ0(G) be a positively homogeneous function such that domϕ ∩
domψ 6= ∅, and let δ ∈ R. Then [ϕ+ ψ + δ]∼ ∈ Γ0(R ⊕ G) and

(∀η ∈ R)(∀y ∈ G) [ϕ+ ψ + δ]∼(η, y) = ϕ̃(η, y) + ψ(y) + δη. (2.16)

Proof. This follows from (2.2) and Proposition 2.7(i) since rec (ϕ + ψ + δ) = (recϕ) + (recψ) =
(recϕ) + ψ.

Corollary 2.10 Let ϕ ∈ Γ0(G). Then (∀(ζ, η) ∈ R
2)(∀y ∈ G) ˜̃ϕ(ζ, η, y) = ϕ̃(η, y).

Proof. By Proposition 2.3(i)–(ii), ϕ̃ is a positively homogeneous function in Γ0(R ⊕ G). Hence the

claim follows from Corollary 2.9.
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Proposition 2.11 Let I be a finite set and let η ∈ R. For every i ∈ I, let Gi be a real Hilbert space, let

ϕi ∈ Γ0(Gi), and let yi ∈ Gi. Set
⊕

i∈I ϕi :
⊕

i∈I Gi → ]−∞,+∞] : (zi)i∈I 7→
∑

i∈I ϕi(zi). Then

(
⊕

i∈I

ϕi

)∼(
η, (yi)i∈I

)
=

(
⊕

i∈I

ϕ̃i

)(
(η, yi)

)
i∈I
. (2.17)

Proof. Suppose that η > 0. Then

(
⊕

i∈I

ϕi

)∼(
η, (yi)i∈I

)
= η

(
⊕

i∈I

ϕi

)
(yi/η)i∈I =

∑

i∈I

ηϕi(yi/η) =

(
⊕

i∈I

ϕ̃i

)(
(η, yi)

)
i∈I
. (2.18)

Now suppose that η = 0. Then (2.1) implies that rec
⊕

i∈I ϕi =
⊕

i∈I recϕi and (2.17) follows.

Finally, if η < 0, then both sides of (2.17) are equal to +∞.

Perspective functions can be used to provide examples of nonintuitive behaviors for minimizing

sequences in optimization problems.

Example 2.12 Suppose that G = R. Then Proposition 2.3(ii) asserts that the function

g =
[
| · |2

]∼
: R2 → ]−∞,+∞] : (ξ1, ξ2) 7→





ξ22/ξ1, if ξ1 > 0;

0, if ξ1 = ξ2 = 0;

+∞, otherwise

(2.19)

belongs to Γ0(R
2). Moreover, Argmin g = [0,+∞[ × {0}. Now let p ∈ [1,+∞[ and set (∀n ∈ N)

xn = ((n + 1)p+2, n + 1). Then (xn)n∈N is a minimizing sequence of g since g(xn) − min g(R2) =
1/(n + 1)p ↓ 0. However, dArgmin g(xn) = n+ 1 ↑ +∞. To sum up,

g(xn)−min g(R2) = O(1/np), while (∀x ∈ Argmin g) ‖xn − x‖ ↑ +∞. (2.20)

This illustrates the fact that, even if it induces a very good convergence rate of the objective values

(g(xn))n∈N, a minimizing sequence (xn)n∈N may have extremely poor properties in terms of actually

approaching a solution to the underlying minimization problem.

We now describe constructions of lower semicontinuous convex functions based on perspective

functions. The first result is based on the composition of the perspective of a convex function with

an affine operator.

Proposition 2.13 Let L : H → G be linear and bounded, let ϕ ∈ Γ0(G), let r ∈ G, let u ∈ H, let ρ ∈ R,

and set

f : H → ]−∞,+∞] : x 7→





(
〈x | u〉 − ρ

)
ϕ

(
Lx− r

〈x | u〉 − ρ

)
, if 〈x | u〉 > ρ;

(recϕ)
(
Lx− r

)
, if 〈x | u〉 = ρ;

+∞, if 〈x | u〉 < ρ.

(2.21)

Suppose that there exists z ∈ H such that Lz ∈ r + (〈z | u〉 − ρ)domϕ and 〈z | u〉 > ρ, and set

A : H → R⊕ G : x 7→ (〈x | u〉 − ρ, Lx− r). Then f = ϕ̃ ◦ A ∈ Γ0(H).
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Proof. By construction, A is a continuous affine operator, while ϕ̃ ∈ Γ0(R⊕G) by Proposition 2.3(ii).

Therefore f = ϕ̃ ◦A is lower semicontinuous and convex. Finally, to show that f is proper, suppose

first that 〈z | u〉 > ρ. Then (Lz− r)/(〈z | u〉 − ρ) ∈ domϕ and hence z ∈ dom f . On the other hand,

if 〈z | u〉 = ρ, then Lz − r ∈ {0}. In turn, f(z) = (recϕ)(0) = 0 and therefore z ∈ dom f .

The next result involves the marginal of a perspective function (see [1] for a special case in the

context of game theory).

Proposition 2.14 Let ϕ ∈ Γ0(G) and let K be a nonempty closed bounded interval in [0,+∞[. Define

g : G → R : y 7→ inf
η∈K

ϕ̃(η, y). (2.22)

Then g ∈ Γ0(G).

Proof. Proposition 2.3(ii) asserts that ϕ̃ ∈ Γ0(R ⊕ G). In turn, it follows from [6, Proposition 8.26]

that g is convex and from [6, Lemma 1.29] that it is lower semicontinuous and proper.

3 Examples of perspective functions

Our first construction involves a difference of convex functions.

Corollary 3.1 Let ψ ∈ Γ0(G) and let env (ψ∗) : u 7→ infv∈G(ψ
∗(v)+‖u−v‖2/2) be the Moreau envelope

of ψ∗. Set

g : R× G → ]−∞,+∞] : (η, y) 7→





‖y‖2

2η
− η(envψ)(y/η), if η > 0;

σdomψ(y), if η = 0;

+∞, if η < 0.

(3.1)

Then g = [env (ψ∗)]∼ ∈ Γ0(R⊕ G).

Proof. Set q = ‖ · ‖2/2 and ϕ = q − envψ, and let � denote the infimal convolution operation.

It follows from Moreau’s decomposition [48] (see also [6, Theorem 14.3(i)]) that ϕ = env (ψ∗) ∈
Γ0(G). In addition, from basic convex analysis,

ϕ∗ = (ψ∗
� q)∗ = ψ∗∗ + q = ψ + q (3.2)

and therefore Lemma 2.2(ii) yields

recϕ = σdomϕ∗ = σdomψ. (3.3)

In view of (2.2) and Proposition 2.3(ii), we conclude that g = ϕ̃ ∈ Γ0(R⊕ G).
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Example 3.2 (generalized Huber function) Let C be a nonempty closed convex subset of G and

let PC denote its projector. Upon setting ψ = ιC in Corollary 3.1, we deduce that the function

g : R×G → ]−∞,+∞] : (η, y) 7→





〈y | PC(y/η)〉 −
η‖PC(y/η)‖

2

2
, if y /∈ ηC and η > 0;

‖y‖2

2η
, if y ∈ ηC and η > 0;

σC(y), if η = 0;

+∞, if η < 0

(3.4)

is in Γ0(R ⊕ G). More precisely, g = ϕ̃, where ϕ = env (ψ∗) = envσC . Let us further specialize by

taking C = B(0; ρ) for some ρ ∈ ]0,+∞[. Then (3.4) reduces to

g : R× G → ]−∞,+∞] : (η, y) 7→





ρ‖y‖ −
ηρ2

2
, if ‖y‖ > ηρ and η > 0;

‖y‖2

2η
, if ‖y‖ 6 ηρ and η > 0;

ρ‖y‖, if η = 0;

+∞, if η < 0.

(3.5)

We infer from Corollary 3.1 that g = ϕ̃, where ϕ = env (ρ‖ · ‖) = q − d2C/2, that is,

ϕ : G → ]−∞,+∞] : y 7→





ρ‖y‖ −
ρ2

2
, if ‖y‖ > ρ;

‖y‖2

2
, if ‖y‖ 6 ρ.

(3.6)

In particular, if G = R, then ϕ is known as the Huber function. This function was introduced in

[36] and it plays an important role in robust statistics and signal processing [37, 51], while its

perspective function appears implicitly in robust regression problems [37, 39, 53]. The fact that the

Huber function is the Moreau envelope of the absolute value function can already be found in [16];

see also [17]. On the other hand, if we specialize the perspective function (3.5) to the case when

G = R and ρ = 1, we obtain the function

g : R2 → ]−∞,+∞] : (η, y) 7→





|y| −
η

2
, if |y| > η and η > 0;

|y|2

2η
, if |y| 6 η and η > 0;

|y|, if η = 0;

+∞, if η < 0,

(3.7)

which is used in computer vision [61], where it is called the bivariate Huber function.

We now consider a function that combines distance and support functions.

Example 3.3 (generalized Berhu function) Let C and D be nonempty closed convex subsets of G,
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and let ρ ∈ ]0,+∞[. Then the function

g : R× G → ]−∞,+∞] : (η, y) 7→





ηd2C(y/η)

2ρ
+ σD(y), if η > 0 and y /∈ ηC;

σD(y), if η > 0 and y ∈ ηC;

σD(y), if η = 0 and y ∈ recC;

+∞, otherwise

(3.8)

is in Γ0(R ⊕ G). To show this, set q = ‖ · ‖2/2, ϕ = d2C/(2ρ), and ψ = σD. Then ϕ ∈ Γ0(G) and

ψ is a positively homogeneous function in Γ0(G) such that 0 ∈ domϕ ∩ domψ. Furthermore, since

ϕ = ιC � (q/ρ), we have ϕ∗ = ι∗C + (q/ρ)∗ = ι∗C + ρq and therefore domϕ∗ = dom ι∗C . In turn,

Lemma 2.2 yields

recϕ = σdomϕ∗ = σdom ι∗
C
= rec ιC = ιrecC . (3.9)

Altogether,

g =

[
d2C
2ρ

+ σD

]∼
(3.10)

and the claim follows from Corollary 2.9. An especially interesting case is obtained when C =
B(0; ρ) and D = B(0; 1). Then recC = {0}, σD = ‖ · ‖, and (3.8) therefore becomes

g : R× G → ]−∞,+∞] : (η, y) 7→





‖y‖2 + ρ2η2

2ηρ
, if η > 0 and ‖y‖ > ηρ;

‖y‖, if η > 0 and ‖y‖ 6 ηρ;

0, if η = 0 and y = 0;

+∞, otherwise.

(3.11)

As seen above, g is the perspective function of

ϑ : G → ]−∞,+∞] : y 7→





‖y‖2 + ρ2

2ρ
, if ‖y‖ > ρ;

‖y‖, if ‖y‖ 6 ρ.
(3.12)

In the special case when G = R, ϑ arises in mechanics [3, 15] as well as in statistics [53], where it is

called the Berhu (or reverse Huber) function. The reason for this terminology is that (3.6) exhibits

a quadratic behavior on B(0; ρ) and a sublinear behavior outside, while (3.12) exhibits a sublinear

behavior on B(0; ρ) and a quadratic behavior outside. Applications of the perspective of the Berhu

function in robust regression can be found in [40] and in [53].

We now turn to a type of function that is used in support vector machines and in computer

vision.

Example 3.4 (generalized Vapnik loss function) Let ε ∈ ]0,+∞[. By applying Proposition 2.7(iii)

to φ : t 7→ max{|t| − ε, 0} and ϕ = ‖ · ‖, we obtain that the function

g : R× G → ]−∞,+∞] : (η, y) 7→





dB(0;εη)(y), if η > 0;

‖y‖, if η = 0;

+∞, if η < 0.

(3.13)
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is the perspective function of ϑ = max{‖ · ‖− ε, 0}
]

and that it is in Γ0(R⊕G). A special case of this

function appears in the context of computer vision in [61]. When G = R, ϑ is known as Vapnik’s

ε-insensitive loss function and it is employed in the area of support vector machines [59].

Our next construction involves a mix of positively homogeneous and norm-like functions.

Example 3.5 Let ψ : G → [0,+∞[ be a proper, lower semicontinuous, positively homogeneous con-

vex function, let δ ∈ R, let ρ ∈ [0,+∞[, let p ∈ [1,+∞[, let v ∈ G, and set

g : R× G → ]−∞,+∞] : (η, y) 7→

{
δη + 〈y | v〉+

∣∣ρηp + ψp(y)
∣∣1/p, if η > 0;

+∞, if η < 0.
(3.14)

Then g = [δ + 〈· | v〉 + |ρ + ψp|1/p]∼ ∈ Γ0(R ⊕ G). Indeed, set ϕ = δ + 〈· | v〉 + |ρ + ψp|1/p and

φ =
∣∣ρ + | · |p

∣∣1/p. Then recφ = | · | and ϕ = δ + 〈· | v〉 + φ ◦ ψ. Altogether, we derive from

Corollary 2.9 and Proposition 2.7(iii) that g = ϕ̃ ∈ Γ0(R ⊕ G). Let us now consider some special

cases of this perspective function.

(i) Set ψ = ‖ · ‖, v = 0, and p = 2. Then (3.14) leads to the perspective function

g : R× G → ]−∞,+∞] : (η, y) 7→

{
δη +

√
ρη2 + ‖y‖2, if η > 0;

+∞, if η < 0.
(3.15)

In the case when G = R, ρ = 1, and δ = −1, this function shows up in computer vision [32],

where g(η, ·) is called the pseudo-Huber function.

(ii) Let D be a nonempty closed convex cone in G, let v = 0, let δ = 0, let ρ = 1, and let ||| · ||| be

a norm on G. Set H = R⊕ G, K = [0,+∞[×D, and ψ = ||| · ||| + ιD. Define a norm on H by

||| · |||p : (η, y) 7→ (|η|p + |||y|||p)1/p. Then (3.14) yields g = ||| · |||p + ιK , i.e.,

g : H → ]−∞,+∞] : z 7→

{
|||z|||p, if z ∈ K;

+∞, if z /∈ K.
(3.16)

(iii) Consider the following setting in (ii): N > 2 is an integer, G = R
N−1, ||| · ||| is the ℓp norm on

R
N−1, D = [0,+∞[N−1, and K = [0,+∞[N . Then, if ‖ · ‖p denotes the ℓp norm on R

N , the

corresponding perspective function (3.14) is

g : RN → ]−∞,+∞] : z 7→

{
‖z‖p, if z ∈ [0,+∞[N ;

+∞, if z /∈ [0,+∞[N .
(3.17)

(iv) Set G = R, ψ = | · |, v = −1, ρ = 1, and δ = −1. Then (3.14) yields the generalized

Fischer-Burmeister function

g : R2 → ]−∞,+∞] : (η, y) 7→

{
−η − y +

∣∣ηp + |y|p
∣∣1/p, if η > 0;

+∞, if η < 0,
(3.18)

which is used is nonlinear complementarity problems [22]. The original Fischer-Burmeister

function is obtained for p = 2.

12



The example below extends constructions found in robust estimation and in machine learning.

Example 3.6 Let φ ∈ Γ0(R) be an even function, let v ∈ G, and let δ ∈ R. Then φ in increasing

on [0,+∞[ and 0 ∈ domφ. In turn, it follows from Corollary 2.9 and Proposition 2.7(iii) that the

function

g : R⊕ G → ]−∞,+∞] : (η, y) 7→





δη + 〈y | v〉+ ηφ(‖y‖/η), if η > 0;

〈y | v〉+ (recφ)(‖y‖), if η = 0;

+∞, if η < 0

(3.19)

is in Γ0(R ⊕ G). More precisely, g = [δ + 〈· | v〉+ φ ◦ ‖ · ‖]∼. Now assume further that domφ∗ = R.

Then [5, Theorem 3.4] implies that φ∗∗ = φ is supercoercive and, therefore, that ϕ is likewise. In

turn, we derive from (2.1) that recϕ = ι{0}, which allows us to rewrite (3.19) as

g : R⊕ G → ]−∞,+∞] : (η, y) 7→





δη + 〈y | v〉+ ηφ(‖y‖/η), if η > 0;

0, if η = 0 and y = 0;

+∞, otherwise.

(3.20)

In particular, when G = R, φ = | · |2, and v = 0, (3.20) has been used in robust estimation [37] and

in machine learning [46].

Example 3.7 Let ρ ∈ ]0,+∞[, let p ∈ [1,+∞[, and set

g : R× G → ]−∞,+∞]

(η, y) 7→





ρ‖y‖p

ηp−1
+ pη ln η − η ln

(
ηp + ρ‖y‖p

)
, if η > 0;

ρ‖y‖, if η = 0 and p = 1;

0, if η = 0, y = 0, and p > 1;

+∞, otherwise.

(3.21)

Upon invoking Proposition 2.3(iii) with ϕ = ‖ · ‖ and

φ : R → ]−∞,+∞] : t 7→ ρ|t|p − ln
(
1 + ρ|t|p

)
, (3.22)

we see that g = [φ ◦ ϕ]∼ ∈ Γ0(R ⊕ G). For p = 1, (3.22) arises in inverse problems [21]. For

G = R and ρ = p = 1, (3.21) is closely related to the so-called “fair” function in robust statistics

[56, Section 6.4.5]. For G = R
N and ρ = p = 1, (3.21) is used in least-squares regularization [28].

Example 3.8 Let p ∈ [1,+∞[ and set

g : R× G → ]−∞,+∞]

(η, y) 7→





pη ln η − η ln(ηp − ‖y‖p), if η > 0 and ‖y‖ < η;

0, if η = 0 and y = 0;

+∞, otherwise.

(3.23)
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It follows from Proposition 2.3(iii) applied to ϕ = ‖ · ‖ and

φ : R → ]−∞,+∞] : t 7→

{
− ln

(
1− |t|p

)
, if |t| < 1;

+∞, if |t| > 1
(3.24)

that g = [φ ◦ ϕ]∼ ∈ Γ0(R⊕G). For G = R
N and p = 2, (3.23) is closely related to a standard barrier

for the Lorentz cone
{
(y, η) ∈ R

N+1
∣∣ ‖y‖ 6 η

}
[50, Proposition 5.4.3].

Proposition 2.13 is an effective device for constructing a lower semicontinuous convex function

in Γ0(H) by composing a perspective function ϕ̃, for some ϕ ∈ Γ0(G), with a continuous affine

operator A : H → R ⊕ G and, possibly, a suitable convexity preserving operation (see also Propo-

sition 4.2). For instance, the generalized TREX estimator of [25] hinges on a special case of the

following example in Euclidean spaces.

Example 3.9 Let L : H → G be linear and bounded, let ||| · ||| be a norm on G such that, for some

χ ∈ ]0,+∞[, ||| · ||| > χ‖ · ‖, let r ∈ G, let u ∈ H, let ρ ∈ R, let q ∈ ]1,+∞[, and let s ∈ [1,+∞[. Set

h : H → ]−∞,+∞] : x 7→





|||Lx− r|||qs

|〈x | u〉 − ρ|(q−1)s
, if 〈x | u〉 > ρ;

0, if Lx = r and 〈x | u〉 = ρ;

+∞, otherwise.

(3.25)

Then h ∈ Γ0(H).

Proof. Set ϕ = ||| · |||q. Then domϕ = G. In addition, ϕ(y)/‖y‖ > χq‖y‖q/‖y‖ → +∞ as ‖y‖ → +∞
and therefore (2.1) implies that recϕ = ι{0}. Thus, (2.21) becomes

f : H → ]−∞,+∞] : x 7→





|||Lx− r|||q

|〈x | u〉 − ρ|q−1
, if 〈x | u〉 > ρ;

0, if Lx = r and 〈x | u〉 = ρ;

+∞, otherwise,

(3.26)

and Proposition 2.13 asserts that f ∈ Γ0(H). Now let φ = | · |s and set φ(+∞) = +∞. Then φ is in-

creasing on [0,+∞] = ran f , continuous, and convex. Hence it follows from [23, Proposition II.8.4]

and [6, Proposition 8.19] that h = φ ◦ f ∈ Γ0(H).

Example 3.10 Let (Ω,F,P) be a probability space and let H = L2(Ω,F,P) be the associated Hilbert

space of square-integrable random variables. Let ϕ ∈ Γ0(H) and set

f : H → ]−∞,+∞] : X 7→





EXϕ

(
X

EX

)
, if EX > 0;

(recϕ)(X), if EX = 0;

+∞, if EX < 0.

(3.27)

Then f ∈ Γ0(H).

Proof. This is an application of Proposition 2.13 with G = H, L = Id , µ = P, u = 1 a.s., r = 0 a.s.,

z = 0 a.s., and ρ = 0.
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4 Integral functions

In this section we construct lower semicontinuous functions by using as an integrand a perspective

function. First, let us extend and formalize the divergence model (1.3).

Proposition 4.1 Let (Ω,F, µ) be a measure space, let G be a separable real Hilbert space, and let

ϕ ∈ Γ0(G). Set H = L2((Ω,F, µ);R) and G = L2((Ω,F, µ);G), and suppose that one of the following

holds:

(i) µ(Ω) < +∞.

(ii) ϕ > ϕ(0) = 0.

For every x ∈ H, set Ω0(x) =
{
ω ∈ Ω

∣∣ x(ω) = 0
}

and Ω+(x) =
{
ω ∈ Ω

∣∣ x(ω) > 0
}

. Define

Φ: H⊕ G → ]−∞,+∞] : (x, y) 7→




∫

Ω0(x)

(
recϕ

)(
y(ω)

)
µ(dω) +

∫

Ω+(x)
x(ω)ϕ

(
y(ω)

x(ω)

)
µ(dω),

if




x > 0 a.e.

(recϕ)(y)1Ω0(x) + xϕ(y/x)1Ω+(x) ∈ L1
(
(Ω,F , µ);R

)
;

+∞, otherwise.

(4.1)

Then Φ ∈ Γ0(H⊕ G).

Proof. It follows from Proposition 2.3(ii) that ϕ̃ ∈ Γ0(R ⊕ G). Furthermore, we derive from (2.2)

and (4.1) that

(∀x ∈ H)(∀y ∈ G) Φ(x, y) =

∫

Ω
ϕ̃
(
x(ω), y(ω)

)
µ(dω). (4.2)

In turn, [6, Proposition 9.32] yields Φ ∈ Γ0(H⊕ G).

Proposition 4.2 Let Ω be a nonempty open subset of RN and let H be the Sobolev space H1(Ω), i.e.,

H =
{
x ∈ L2(Ω)

∣∣ ∇x ∈ (L2(Ω))N
}

. For every x ∈ H, set Ω−(x) =
{
t ∈ Ω

∣∣ x(t) < 0
}

, Ω0(x) ={
t ∈ Ω

∣∣ x(t) = 0
}

, and Ω+(x) =
{
t ∈ Ω

∣∣ x(t) > 0
}

. Let ϕ ∈ Γ0(R
N ) be such that ϕ > ϕ(0) = 0, and

define

f : H → ]−∞,+∞]

x 7→





∫

Ω0(x)

(
recϕ

)(
∇x(t)

)
dt+

∫

Ω+(x)
x(t)ϕ

(
∇x(t)

x(t)

)
dt, if x > 0 a.e.;

+∞, otherwise.

(4.3)

Then f ∈ Γ0(H).
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Proof. Set G = (L2(Ω))N and G = R
N , define Φ as in (4.1), where (Ω,F , µ) is the standard Lebesgue

measure space, and let L : H → H⊕ G : x 7→ (x,∇x). Then Φ ∈ Γ0(H ⊕ G) by Proposition 4.1(ii).

On the other hand, since ∇ : H → G is bounded, L is linear and continuous. Since f(0) = 0, we

conclude that f = Φ ◦ L ∈ Γ0(H).

The next examples recover two classical functions that have been used extensively in statistics

(Fisher information) and in image recovery (total variation).

Example 4.3 Consider the setting of Proposition 4.2.

(i) By choosing the supercoercive function ϕ = ‖ · ‖22, we infer that the Fisher information

f : H1(Ω) → ]−∞,+∞]

x 7→





∫

Ω+(x)

‖∇x(t)‖22
x(t)

dt, if

{
x > 0 a.e.

[x = 0 ⇒ ∇x = 0 ] a.e.;

+∞, otherwise

(4.4)

is in Γ0(H
1(Ω)). The convexity properties of (1.2) over the subspace of strictly positive 1-

dimensional smooth densities were apparently first discussed in [24]. The convexity and

lower semicontinuity properties of extensions of the Fisher information, such as those used in

[45] for N = 1 and based on ϕ = | · |p, with p > 1, or on higher order derivatives, can be

obtained analogously.

(ii) By choosing the positively homogeneous function ϕ = ‖ · ‖2, we infer that the total variation

function

f : H1(Ω) → ]−∞,+∞]

x 7→





∫

Ω
‖∇x(t)‖2dt, if x > 0 a.e.;

+∞, otherwise

(4.5)

is in Γ0(H
1(Ω)).

We can also derive from Proposition 4.1 lower semicontinuous versions of a variety of standard

divergences in the continuous and discrete cases. In the former, the underlying measure space is

the Lebesgue measure space. The latter is illustrated below.

Example 4.4 Let N be a strictly positive integer, set I = {1, . . . , N}, and let φ ∈ Γ0(R). For every

x = (ξi)i∈I ∈ R
N and every y = (ηi)i∈I ∈ R

N , set I−(x) =
{
i ∈ I

∣∣ ξi < 0
}

, I0(x) =
{
i ∈ I

∣∣ ξi = 0
}

,

I+(x) =
{
i ∈ I

∣∣ ξi > 0
}

, and

Φ(x, y) =





∑

i∈I0(x)

(recφ)(ηi) +
∑

i∈I+(x)

ξiφ(ηi/ξi), if I−(x) = ∅;

+∞, if I−(x) 6= ∅.

(4.6)
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Then Φ ∈ Γ0(R
2N ). Indeed, this is a special case of Proposition 4.1(i), where Ω = I, F = 2I , µ is

the counting measure (hence H = G = R
N), ϕ = φ, and G = R. For instance, consider

φ : R → ]−∞,+∞] : t 7→





t ln t, if t > 0;

0, if t = 0;

+∞, if t < 0.

(4.7)

Then recφ = ι{0} and, if we set J(x, y) =
{
i ∈ I

∣∣ (ξi = 0 and ηi 6= 0) or (ξi > 0 and ηi < 0)
}

,

Φ(x, y) =





∑

i∈I+(x)∩I+(y)

ηi ln(ηi/ξi), if I−(x) ∪ J(x, y) = ∅;

+∞, otherwise

(4.8)

is the Kullback-Leibler divergence between x and y. This notion is central in statistics and in infor-

mation theory. Another noteworthy family of discrete divergences is obtained by replacing (4.7) by

φ : R → ]−∞,+∞] : t 7→

{∣∣t1/p − 1
∣∣p, if t > 0;

+∞, if t < 0,
where p ∈ [1,+∞[ . (4.9)

In this case recφ = σ]−∞,1] and, if we set J(x, y) =
{
i ∈ I

∣∣ ξi > 0 and ηi < 0
}

, (4.6) becomes

Φ(x, y) =





∑

i∈I0(x)∩I+(y)

ηi +
∑

i∈I+(x)rI−(y)

∣∣η1/pi − ξ
1/p
i

∣∣p, if I−(x) ∪ J(x, y) = ∅;

+∞, otherwise.

(4.10)

We recover the Kolmogorov variational divergence for p = 1 and the Hellinger divergence for p = 2.
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[43] C. Lemaréchal, personnal communication.

[44] F. Liese and I. Vajda, On divergences and informations in statistics and information theory, IEEE Trans.

Inform. Theory, vol. 52, pp. 4394–4412, 2006.

[45] P.-L. Lions and G. Toscani, A strengthened central limit theorem for smooth densities, J. Funct. Anal.,

vol. 129, pp. 148–167, 1995.

[46] C. A. Micchelli, J. M. Morales, and M. Pontil, Regularizers for structured sparsity, Adv. Comput. Math.,

vol. 38, pp. 455–489, 2013.

[47] N. Moehle and S. Boyd, A perspective-based convex relaxation for switched-affine optimal control,

Systems Control Lett., vol. 86, pp. 34–40, 2015.

[48] J. J. Moreau, Fonctions convexes duales et points proximaux dans un espace hilbertien, C. R. Acad. Sci.

Paris Sér. A Math., vol. 255, pp. 2897–2899, 1962.

[49] E. Ndiaye, O. Fercoq, A. Gramfort, V. Leclère, and J. Salmon, Efficient smoothed concomitant lasso
estimation for high dimensional regression, https://arxiv.org/pdf/1606.02702v1.pdf, 2016.

[50] Yu. Nesterov and A. Nemirovskii, Interior-Point Polynomial Algorithms in Convex Programming. SIAM,

Philadelphia, 1994.

19

https://arxiv.org/pdf/1606.02702v1.pdf


[51] M. Nikolova and M. K. Ng, Analysis of half-quadratic minimization methods for signal and image

recovery, SIAM J. Sci. Comput., vol. 27, pp. 937–966, 2005.

[52] D. Noll, Reconstruction with noisy data: An approach via eigenvalue optimization, SIAM J. Optim., vol.
8, pp. 82–104, 1998.

[53] A. B. Owen, A robust hybrid of lasso and ridge regression, Contemp. Math., vol. 443, pp. 59–71, 2007.
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