
Resolvent and Proximal Compositions*

Patrick L. Combettes

North Carolina State University, Department of Mathematics, Raleigh, NC 27695-8205, USA
plc@math.ncsu.edu

Abstract. We introduce the resolvent composition, a monotonicity-preserving operation between a

linear operator and a set-valued operator, as well as the proximal composition, a convexity-preserving

operation between a linear operator and a function. The two operations are linked by the fact that,

under mild assumptions, the subdifferential of the proximal composition of a convex function is the

resolvent composition of its subdifferential. The resolvent and proximal compositions are shown to

encapsulate known concepts, such as the resolvent and proximal averages, as well as new operations

pertinent to the analysis of equilibrium problems. A large core of properties of these compositions

is established and several instantiations are discussed. Applications to the relaxation of monotone

inclusion and convex optimization problems are presented.

Keywords. Monotone operator, proximal average, proximal composition, proximal point algorithm,

relaxed monotone inclusion, resolvent average, resolvent composition, resolvent mixture.

*Contact author: P. L. Combettes, plc@math.ncsu.edu, phone:+1 (919) 515 2671. This work was supported by the

National Science Foundation under grant CCF-2211123.

1

mailto:plc@math.ncsu.edu
mailto:plc@math.ncsu.edu


1 Introduction

Throughout, H and G are real Hilbert spaces, 2H is the power set of H, IdH is the identity operator of

H, and B (H,G) is the space of bounded linear operators from H to G. Let B : G → 2G be a set-valued

operator and denote by JB its resolvent, that is,

JB = (B + IdG)
−1. (1.1)

The resolvent operator is a central tool in nonlinear analysis [2, 9, 14, 28, 51], largely owing to the

fact that its set of fixed points
{

y ∈ G
∣

∣ y ∈ JBy
}

coincides with the set of zeros
{

y ∈ G
∣

∣ 0 ∈ By
}

of

B, which models equilibria in many fields; see for instance [3, 15, 18, 21, 29, 30, 33, 34, 40, 52, 57].

A standard operation between B and a linear operator L ∈ B (H,G) that induces an operator from H
to 2H is the composition

L∗ ◦B ◦ L. (1.2)

Early manifestations of this construct can be found in [17, 50]. A somewhat dual operation is the

parallel composition L∗
⊲B : H → 2H defined by [9, 13] (see [16, 28] for further applications)

L∗
⊲B =

(

L∗ ◦B−1 ◦ L
)−1

. (1.3)

The objective of the present article is to investigate alternative compositions, which we call the resol-

vent composition and the resolvent cocomposition.

Definition 1.1 Let L ∈ B (H,G) and B : G → 2G . The resolvent composition of B with L is the

operator L �B : H → 2H given by

L �B = L∗
⊲ (B + IdG)− IdH (1.4)

and the resolvent cocomposition of B with L is L �B = (L �B−1)−1.

The terminology in Definition 1.1 stems from the following composition rule, which results from

(1.1), (1.4), and (1.3).

Proposition 1.2 Let L ∈ B (H,G) and B : G → 2G . Then JL �B
= L∗ ◦ JB ◦ L.

The resolvent composition will be shown to encapsulate known concepts as well as new operations

pertinent to the analysis of equilibrium problems. As an illustration, we recover below the resolvent

average.

Example 1.3 (resolvent average) Let 0 6= p ∈ N and, for every k ∈ {1, . . . , p}, let Bk : H → 2H

and ωk ∈ ]0,+∞[. Additionally, let G be the standard product vector space Hp, with generic element

y = (yk)16k6p, equipped with the scalar product (y,y′) 7→∑p
k=1 ωk〈yk | y′k〉, and set L : H → G : x 7→

(x, . . . , x) and B : G → 2G : y 7→ B1y1 × · · · ×Bpyp. Then L∗ : G → H : y 7→∑p
k=1 ωkyk and we derive

from (1.4) that

L �B =

(

p
∑

k=1

ωk

(

Bk + IdH
)−1

)−1

− IdH =

(

p
∑

k=1

ωkJBk

)−1

− IdH . (1.5)

In particular, if
∑p

k=1 ωk = 1, then (1.5) is the resolvent average of the operators (Bk)16k6p. This

operation is studied in [4, 12], while
∑p

k=1 ωkJBk
= JL �B

shows up in common zero problems

[24, 37].
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Given L ∈ B (H,G) and a proper convex function g : G → ]−∞,+∞] with subdifferential ∂g,

a question we shall address is whether the resolvent composition L �∂g is itself a subdifferential

operator and, if so, of which function. Answering this question will lead to the introduction of the

following operations, where � denotes infimal convolution and where QH = ‖ · ‖2H/2 and QG =
‖ · ‖2G/2 are the canonical quadratic forms of H and G, respectively (see Section 2 for notation).

Definition 1.4 Let L ∈ B (H,G) and let g : G → ]−∞,+∞] be proper. The proximal composition of g
with L is the function L �g : H → ]−∞,+∞] given by

L �g =
(

(g∗ �QG) ◦ L
)∗ − QH (1.6)

and the proximal cocomposition of g with L is L �g = (L �g∗)∗.

In connection with the above question, if ‖L‖ 6 1 and if g is lower semicontinuous and convex

in Definition 1.4, the proximal composition will be shown to be linked to the resolvent composition

through the subdifferential identity

∂(L �g) = L �∂g, (1.7)

and its proximity operator to be decomposable as proxL �g
= L∗ ◦ proxg ◦ L, which explains the

terminology in Definition 1.4. Furthermore, we shall see that the proximal composition captures

notions such as the proximal average of convex functions.

We provide notation and preliminary results in Section 2. Examples of resolvent compositions

are presented in Section 3. In Section 4, various properties of the resolvent composition are investi-

gated. Section 5 is devoted to the proximal composition and its properties. Applications to monotone

inclusion and variational problems are discussed in Section 6.

2 Notation and preliminary results

We refer to [9] for a detailed account of the following elements of convex and nonlinear analysis. In

addition to the notation introduced in Section 1, we designate the direct Hilbert sum of H and G by

H⊕ G. The scalar product of a Hilbert space is denoted by 〈· | ·〉 and the associated norm by ‖ · ‖.

Let A : H → 2H be a set-valued operator. We denote by graA =
{

(x, x∗) ∈ H ×H
∣

∣ x∗ ∈ Ax
}

the

graph of A, by domA =
{

x ∈ H
∣

∣Ax 6= ∅
}

the domain of A, by ranA =
{

x∗ ∈ H
∣

∣ (∃x ∈ H) x∗ ∈ Ax
}

the range of A, by zerA =
{

x ∈ H
∣

∣ 0 ∈ Ax
}

the set of zeros of A, by FixA =
{

x ∈ H
∣

∣ x ∈ Ax
}

the

set of fixed points of A, and by A−1 the inverse of A, which is the set-valued operator with graph
{

(x∗, x) ∈ H ×H
∣

∣ x∗ ∈ Ax
}

. The parallel sum of A and B : H → 2H is

A�B =
(

A−1 +B−1
)−1

. (2.1)

The resolvent of A is JA = (A + IdH)
−1 = A−1 � IdH and the Yosida approximation of A of index

γ ∈ ]0,+∞[ is γA = γ−1(IdH−JγA). Furthermore, A is injective if

(∀x1 ∈ H)(∀x2 ∈ H) Ax1 ∩Ax2 6= ∅ ⇒ x1 = x2, (2.2)

monotone if

(

∀(x1, x∗1) ∈ graA
)(

∀(x2, x∗2) ∈ graA
)

〈x1 − x2 | x∗1 − x∗2〉 > 0, (2.3)
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α-strongly monotone for some α ∈ ]0,+∞[ if A− α IdH is monotone, and maximally monotone if

(∀x1 ∈ H)(∀x∗1 ∈ H)
[

(x1, x
∗
1) ∈ graA ⇔ (∀(x2, x∗2) ∈ graA) 〈x1 − x2 | x∗1 − x∗2〉 > 0

]

. (2.4)

Let D be a nonempty subset of H and let T : D → H. Then T is nonexpansive if it is 1-Lipschitzian,

firmly nonexpansive if

(∀x1 ∈ D)(∀x2 ∈ D) ‖Tx1 − Tx2‖2 + ‖(IdH −T )x1 − (IdH−T )x2‖2 6 ‖x1 − x2‖2, (2.5)

and strictly nonexpansive if

(∀x1 ∈ D)(∀x2 ∈ D) x1 6= x2 ⇒ ‖Tx1 − Tx2‖ < ‖x1 − x2‖. (2.6)

Let β ∈ ]0,+∞[. Then T is β-cocoercive if βT is firmly nonexpansive.

A function f : H → ]−∞,+∞] is proper if dom f =
{

x ∈ H
∣

∣ f(x) < +∞
}

6= ∅, in which case the

set of global minimizers of f is denoted by Argmin f ; if Argmin f is a singleton, its unique element is

denoted by argminx∈H f(x). The conjugate of f : H → [−∞,+∞] is the function

f∗ : H → [−∞,+∞] : x∗ 7→ sup
x∈H

(

〈x | x∗〉 − f(x)
)

. (2.7)

The infimal convolution of f : H → ]−∞,+∞] and g : H → ]−∞,+∞] is

f � g : H → [−∞,+∞] : x 7→ inf
z∈H

(

f(z) + g(x− z)
)

(2.8)

and the Moreau envelope of f of index γ ∈ ]0,+∞[ is

γf = f �
(

γ−1
QH

)

. (2.9)

The infimal postcomposition of f : H → [−∞,+∞] by L ∈ B (H,G) is

L ⊲ f : G → [−∞,+∞] : y 7→ inf f
(

L−1{y}
)

= inf
x∈H
Lx=y

f(x), (2.10)

and it is denoted by L ·⊲ f if, for every y ∈ L(dom f), there exists x ∈ H such that Lx = y and

(L ⊲ f)(y) = f(x) ∈ ]−∞,+∞]. We denote by Γ0(H) the class of proper lower semicontinuous

convex functions f : H → ]−∞,+∞]. Now let f ∈ Γ0(H). The subdifferential of f is

∂f : H → 2H : x 7→
{

x∗ ∈ H
∣

∣ (∀z ∈ H) 〈z − x | x∗〉+ f(x) 6 f(z)
}

(2.11)

and its inverse is

(∂f)−1 = ∂f∗. (2.12)

Fermat’s rule states that

Argmin f = zer∂f. (2.13)

The proximity operator of f is

proxf = J∂f : H → H : x 7→ argmin
z∈H

(

f(z) +
1

2
‖x− z‖2

)

, (2.14)
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and we have

Argmin f = Fix proxf . (2.15)

We say that f is α-strongly convex for some α ∈ ]0,+∞[ if f − αQH is convex.

Let C be a subset of H. The interior of C is denoted by int C, the indicator function of C by ιC , and

the distance function to C by dC . If C is nonempty, closed, and convex, the projection operator onto

C is denoted by projC , i.e., projC = proxιC = JNC
, and the normal cone operator of C is NC = ∂ιC .

Next, we state a few technical facts that will assist us in our analysis.

Lemma 2.1 Let L ∈ B (H,G), let β ∈ ]0,+∞[, let D be a nonempty subset of G, and let T : D → G be

β-cocoercive. Then the following hold:

(i) Suppose that L 6= 0. Then L∗ ◦ T ◦ L is β‖L‖−2-cocoercive.

(ii) Suppose that T is firmly nonexpansive and that ‖L‖ 6 1. Then L∗ ◦ T ◦ L is firmly nonexpansive.

(iii) Suppose that D = H, T is firmly nonexpansive, and ‖L‖ 6 1. Then L∗ ◦ T ◦ L is maximally

monotone.

Proof. (i): Set R = L∗ ◦ T ◦ L and take x1 and x2 in domR = L−1(D). Then

〈x1 − x2 | Rx1 −Rx2〉 = 〈Lx1 − Lx2 | T (Lx1)− T (Lx2)〉
> β‖T (Lx1)− T (Lx2)‖2

> β‖L‖−2‖Rx1 −Rx2‖2. (2.16)

(ii): The firm nonexpansiveness is clear when L = 0, and it otherwise follows from (i) with β = 1.

(iii): This follows from (ii) and [9, Example 20.30].

The following result, essentially due to Minty [41], illuminates the interplay between nonexpan-

siveness and monotonicity.

Lemma 2.2 ([9, Proposition 23.8]) Let D be a nonempty subset of H, let T : D → H, and set A =
T−1 − IdH. Then the following hold:

(i) T = JA.

(ii) T is firmly nonexpansive if and only if A is monotone.

(iii) T is firmly nonexpansive and D = H if and only if A is maximally monotone.

Lemma 2.3 Let A : H → 2H. Then the following hold:

(i) Let γ ∈ ]0,+∞[. Then γA = (γ IdH +A−1)−1 = (Jγ−1A−1) ◦ γ−1 IdH.

(ii) IdH �A = JA−1 = IdH −JA.

(iii) zerA = Fix JA.

(iv) (A− IdH)
−1 = (IdH −A−1)−1 − IdH.
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(v) Suppose that A is monotone and let α ∈ ]0,+∞[. Then A is α-strongly monotone if and only if JA
is (α+ 1)-cocoercive.

Proof. (i): See [9, Proposition 23.7(ii)].

(ii): Apply (i) with γ = 1.

(iii): zerA =
{

x ∈ H
∣

∣ x ∈ (A+ IdH)x
}

=
{

x ∈ H
∣

∣ x ∈ (A+ IdH)
−1x

}

.

(iv): By (ii), A−1 = JA−IdH
= IdH −J(A−IdH)−1 = IdH −(IdH +(A − IdH)

−1)−1. So

(IdH−A−1)−1 = IdH+(A− IdH)
−1 as claimed.

(v): See [9, Proposition 23.13].

Lemma 2.4 ([1, Theorem 2.1]) Let A : H → 2H be a maximally monotone operator and let B : H → 2H

be a monotone operator such that domB = H and A − B is monotone. Then A − B is maximally

monotone.

Lemma 2.5 ([45, Theorem 5]) Let L ∈ B (H,G) and let B : G → 2G be 3∗ monotone, that is,

(

∀(y1, y∗1) ∈ domB × ranB
)

sup
{

〈y1 − y2 | y∗2 − y∗1〉
∣

∣ (y2, y
∗
2) ∈ graB

}

< +∞. (2.17)

Suppose that L∗ ◦B ◦ L is maximally monotone. Then the following hold:

(i) intL∗(ranB) ⊂ ran (L∗ ◦B ◦ L).

(ii) L∗(ranB) ⊂ ran (L∗ ◦B ◦ L).

Lemma 2.6 Let f ∈ Γ0(H). Then the following hold:

(i) [9, Theorem 9.20] f admits a continuous affine minorant.

(ii) [9, Corollary 13.38] f∗ ∈ Γ0(H) and f∗∗ = f .

Lemma 2.7 [9, Theorem 18.15] Let f : H → R be continuous and convex, and let β ∈ ]0,+∞[. Then

the following are equivalent:

(i) f is Fréchet differentiable on H and ∇f is β-Lipschitz continuous.

(ii) f∗ is β−1-strongly convex.

Lemma 2.8 (Moreau [44]) Let T : H → H be nonexpansive. Then T is a proximity operator if and only

if there exists a differentiable convex function h : H → R such that T = ∇h. In this case, T = proxf ,

where f = h∗ − QH.

Lemma 2.9 (Moreau [44]) Let f ∈ Γ0(H). Then the following hold:

(i) ∂f is maximally monotone.

(ii) f �QH : H → R is convex and Fréchet differentiable.

(iii) (f �QH)
∗ = f∗ + QH and (f + QH)

∗ = f∗�QH.

(iv) proxf = ∇(f∗�QH).
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(v) proxf is firmly nonexpansive.

(vi) f �QH + f∗�QH = QH.

(vii) proxf + proxf∗ = IdH.

(viii) ∂(f + QH) = ∂f + IdH.

3 Examples of resolvent compositions

We provide a few examples that expose various facets of the resolvent composition. The first one

describes a scenario in which the compositions (1.2), (1.3), and (1.4) happen to coincide.

Example 3.1 Suppose that L ∈ B (H,G) is a surjective isometry and let B : G → 2G . Then L �B =
L∗ ◦B ◦ L = L∗

⊲B.

Proof. Since L−1 = L∗, (1.4) yields L �B = L∗
⊲ (B+IdG)− IdH = (L−1 ◦ (B+IdG)

−1 ◦L)−1− IdH =
L−1 ◦ (B + IdG) ◦ L− IdH = L−1 ◦B ◦ L = (L−1 ◦B−1 ◦ L)−1 = L−1

⊲B = L∗
⊲B.

Example 3.2 Let α ∈ Rr{0}, let B : H → 2H, and set L = α−1 IdH. Then L �B = (α2−1) IdH+αB◦
(α IdH).

The broad potential of Definition 1.1 is illustrated below by deploying it in product spaces.

Example 3.3 (multivariate resolvent mixture) Let 0 6= m ∈ N and 0 6= p ∈ N. For every i ∈
{1, . . . ,m} and every k ∈ {1, . . . , p}, let Hi and Gk be real Hilbert spaces, let Lki ∈ B (Hi,Gk), let

ωk ∈ ]0,+∞[, and let Bk : Gk → 2Gk . Let H be the standard product vector space H1 × · · · ×Hm, with

generic element x = (xi)16i6m, and equipped with the scalar product (x,x′) 7→∑m
i=1 〈xi | x′i〉. Let G

be the standard product vector space G1×· · ·×Gp, with generic element y = (yk)16k6p, and equipped

with the scalar product (y,y′) 7→∑p
k=1 ωk〈yk | y′k〉. Set

L : H → G : x 7→
(

m
∑

i=1

L1ixi, . . . ,
m
∑

i=1

Lpixi

)

(3.1)

and

B : G → 2G : y 7→ B1y1 × · · · ×Bpyp. (3.2)

Then Proposition 1.2 yields

JL �B
: H → 2H : x 7→

(

p
∑

k=1

ωkL
∗
k1

(

JBk

( m
∑

i=1

Lkixi

))

, . . . ,

p
∑

k=1

ωkL
∗
km

(

JBk

( m
∑

i=1

Lkixi

))

)

(3.3)

and we call L �B = (JL �B
)−1 − IdH a multivariate resolvent mixture.

When m = 1 in Example 3.3, we obtain the following construction.
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Example 3.4 (resolvent mixture) Let 0 6= p ∈ N and, for every k ∈ {1, . . . , p}, let Gk be a real Hilbert

space, let Lk ∈ B (H,Gk), let ωk ∈ ]0,+∞[, and let Bk : Gk → 2Gk . Define G and B as in Example 3.3,

and set L : H → G : x 7→ (L1x, . . . , Lpx). Then we obtain the resolvent mixture

L �B =

(

p
∑

k=1

ωkL
∗
k ◦ JBk

◦ Lk

)−1

− IdH =

(

p
∑

k=1

ωkJLk �Bk

)−1

− IdH (3.4)

and JL �B
=
∑p

k=1 ωkL
∗
k ◦ JBk

◦ Lk. In particular, if, for every k ∈ {1, . . . , p}, Gk = H and Lk = IdH,

then (3.4) reduces to Example 1.3, which itself encompasses the resolvent average.

Example 3.5 (linear projector) Let V be a closed vector subspace of H and let B : H → 2H. Then

projV �B = (projV ◦ JB ◦ projV )
−1 − IdH. Here are noteworthy special cases of this construction:

(i) Let C be a nonempty closed convex subset of H and suppose that B = NC . Then projV �B =
(projV ◦ projC ◦ projV )

−1 − IdH. This operator was employed in [19] to construct an instance of

weak – but not strong – convergence of the Douglas-Rachford algorithm.

(ii) Define G, (Bk)16k6p, and B as in Example 1.3, with
∑p

k=1 ωk = 1. In addition, define

V =
{

y ∈ G
∣

∣ y1 = · · · = yp
}

, let A = (
∑p

k=1 ωkJBk
)−1 − IdH be the resolvent average of

(Bk)16k6p (see (1.5)), let y ∈ G, and set y =
∑p

k=1 ωkyk. Then we derive from Proposition 1.2

and [9, Propositions 23.18 and 29.16] that JprojV �B
y = (

∑p
k=1 ωkJBk

y, . . . ,
∑p

k=1 ωkJBk
y) =

(JAy, . . . , JAy). In the case of convex feasibility problems, where each Bk is the normal cone to

a nonempty closed convex set, this type of construction was first proposed in [47, 48].

The next example places the subdifferential identity (1.7) in a rigorous framework.

Example 3.6 (subdifferential) Suppose that L ∈ B (H,G) satisfies 0 < ‖L‖ 6 1 and let g : G →
]−∞,+∞] be a proper function that admits a continuous affine minorant. Then the following hold:

(i) g∗ ∈ Γ0(G).

(ii) L �g ∈ Γ0(H).

(iii) L �∂g∗∗ = ∂(L �g).

(iv) proxL �g
= L∗ ◦ proxg∗∗ ◦ L.

(v) Suppose that g ∈ Γ0(G). Then L �∂g = ∂(L �g).

(vi) Suppose that g ∈ Γ0(G). Then proxL �g
= L∗ ◦ proxg ◦ L.

Proof. Set h = ((g∗ �QG) ◦ L)∗ − ‖L‖−2QH. On the one hand, by [9, Proposition 13.13], g∗ is lower

semicontinuous and convex. On the other hand, by [9, Propositions 13.10(ii) and 13.12(ii)], g∗ is

proper. Thus,

g∗ ∈ Γ0(G) (3.5)

and it follows from Lemma 2.9 that g∗ �QG : G → R is Fréchet differentiable on G with nonexpansive

gradient IdG −proxg∗ . In turn,

∇
(

(g∗ �QG) ◦ L
)

= L∗ ◦ (IdG −proxg∗) ◦ L (3.6)
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has Lipschitz constant ‖L‖2 and we derive from Lemma 2.7 that

(

(g∗ �QG) ◦ L
)∗

is ‖L‖−2-strongly convex, (3.7)

We also record the fact that (3.5) and Lemma 2.6(ii) imply that g∗∗ ∈ Γ0(G).
(i): See (3.5).

(ii): We infer from (3.7) that h ∈ Γ0(H). Hence, since ‖L‖−2 > 1, we conclude that

L �g = h+
(

‖L‖−2 − 1
)

QH ∈ Γ0(H). (3.8)

(iii): Note that, on account of Lemma 2.6(i), g∗∗ admits a continuous affine minorant. Using (1.4),

(1.3), (2.12), Lemma 2.9(viii), Lemma 2.9(iii), [9, Proposition 13.16(iii) and Corollary 16.53(i)], we

get

L �∂g∗∗ + IdH = L∗
⊲ (∂g∗∗ + IdG)

=
(

L∗ ◦
(

∂g∗∗ + IdG
)−1 ◦ L

)−1

=
(

L∗ ◦
(

∂(g∗∗ + QG)
)−1 ◦ L

)−1

=
(

L∗ ◦ ∂(g∗∗ + QG)
∗ ◦ L

)−1

=
(

L∗ ◦ ∂(g∗∗∗ �QG) ◦ L
)−1

=
(

L∗ ◦ ∂(g∗ �QG) ◦ L
)−1

= ∂
(

(g∗ �QG) ◦ L
)∗
. (3.9)

Since 0 < ‖L‖ 6 1, we deduce from (3.7) that ((g∗ �QG) ◦ L)∗ − QH ∈ Γ0(H). Hence, appealing to

Lemma 2.9(viii) and (1.6), we obtain

∂
(

(g∗ �QG) ◦ L
)∗

= ∂
(

(

(g∗ �QG) ◦ L
)∗ − QH + QH

)

= ∂
(

(

(g∗ �QG) ◦ L)∗ − QH

)

+ ∂QH

= ∂(L �g) + IdH . (3.10)

The sought identity follows by combining (3.9) and (3.10).

(iv): In view of (ii), proxL �g
is well defined and, combining (iii) and Proposition 1.2, we obtain

proxL �g
= J∂(L �g)

= JL �∂g∗∗
= L∗ ◦ J∂g∗∗ ◦ L = L∗ ◦ proxg∗∗ ◦ L.

(v)–(vi): These identities follow from Lemma 2.6(ii), (iii), and (iv).

Example 3.7 (proximity operator) Suppose that L ∈ B (H,G) satisfies 0 < ‖L‖ 6 1 and let g ∈
Γ0(G). Then we derive from Lemma 2.9(iv) and Example 3.6(v) that

L �proxg = ∂
(

L �(g∗ �QG)
)

. (3.11)

Example 3.8 (projection operator) Suppose that L ∈ B (H,G) satisfies 0 < ‖L‖ 6 1, let C be a

nonempty closed convex subset of G, and set g = ιC . Then g�QG = d2C/2 and Lemma 2.9(vi) yields

g∗ �QG = QG − d2C/2. Altogether, we derive from Example 3.7 and Lemma 2.9(vii) that

L �projC = ∂
(

L �(QG − d2C/2)
)

and L �(IdG −projC) = ∂
(

L �(d2C/2)
)

. (3.12)
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Example 3.9 (frames) Suppose that (ek)k∈N is a frame in H [22], i.e., there exist α ∈ ]0,+∞[ and

β ∈ ]0,+∞[ such that

(∀x ∈ H) α‖x‖2 6
∑

k∈N

|〈x | ek〉|2 6 β‖x‖2. (3.13)

We set G = ℓ2(N), denote by L : H → G : x 7→ (〈x | ek〉)k∈N the frame analysis operator, and let (φk)k∈N
be functions in Γ0(R) such that (∀k ∈ N) φk > φk(0) = 0. Further, we set B : G → 2G : (ηk)k∈N 7→
{

(νk)k∈N ∈ G
∣

∣ (∀k ∈ N) νk ∈ ∂φk(ηk)
}

. Then

L �B =

(

∑

k∈N

(

proxφk
〈· | ek〉

)

ek

)−1

− IdH . (3.14)

Proof. Set ϕ : G → ]−∞,+∞] : (ηk)k∈N 7→ ∑

k∈N φk(ηk) and note that L∗ : G → H : (ηk)k∈N 7→
∑

k∈N ηkek. As shown in [31], ϕ ∈ Γ0(G), B = ∂ϕ, and JB : (ηk)k∈N 7→ (proxφk
ηk)k∈N. Thus,

(L∗
⊲ (B + IdG))

−1 = L∗ ◦ JB ◦ L =
∑

k∈N

(

proxφk
〈· | ek〉

)

ek.

Our last example parallels Example 3.6 in the case of the proximal cocomposition of Definition 1.4.

Example 3.10 (subdifferential) Suppose that L ∈ B (H,G) satisfies 0 < ‖L‖ 6 1 and let g : G →
]−∞,+∞] be a proper function that admits a continuous affine minorant. Then the following hold:

(i) L �g ∈ Γ0(H).

(ii) L �∂g∗∗ = ∂(L �g).

(iii) proxL �g
= IdH −L∗ ◦ L+ L∗ ◦ proxg∗∗ ◦ L.

(iv) Suppose that g ∈ Γ0(G). Then L �∂g = ∂(L �g).

(v) Suppose that g ∈ Γ0(G). Then proxL �g
= IdH −L∗ ◦ L+ L∗ ◦ proxg ◦ L.

Proof. By virtue of Example 3.6(i) and Lemma 2.6(i), g∗ is in Γ0(G) and it admits a continuous affine

minorant. As a consequence of Example 3.6(ii), we record the fact that

L �g∗ ∈ Γ0(H). (3.15)

(i): We invoke (3.15) and Lemma 2.6(ii) to deduce that L �g = (L �g∗)∗ ∈ Γ0(H).

(ii): It follows from Lemma 2.6(ii) that g∗∗ ∈ Γ0(G). Hence, using Definition 1.1, (3.15), (2.12),

and Definition 1.4, we obtain

L �∂g∗∗ =
(

L �(∂g∗∗)−1
)−1

=
(

L �∂g∗∗∗
)−1

=
(

∂(L �g∗)
)−1

= ∂(L �g∗)∗ = ∂(L �g). (3.16)

(iii): Property (i) ensures that proxL �g
is well defined. Further, we deduce from (3.15),

Lemma 2.9(vii), and Example 3.6(iv) that

proxL �g
= IdH −proxL �g∗

= IdH −L∗ ◦ proxg∗∗∗ ◦ L = IdH −L∗ ◦ (IdG −proxg∗∗) ◦ L. (3.17)

(iv)–(v): Since g = g∗∗ by Lemma 2.6(ii), these follow from (ii) and (iii).
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4 Properties of the resolvent composition

We start with basic facts.

Proposition 4.1 Let L ∈ B (H,G) and let B : G → 2G . Then the following hold:

(i) L �B = (L∗ ◦ JB ◦ L)−1 − IdH.

(ii) L �B = (IdH −L∗ ◦ L+ L∗ ◦ JB ◦ L)−1 − IdH.

(iii) Suppose that L is an isometry. Then L �B = L �B.

(iv) (L �B)−1 = L �B−1 = (IdH−L∗ ◦ JB ◦ L)−1 − IdH.

(v) JL �B
= IdH−L∗ ◦ L+ L∗ ◦ JB ◦ L.

(vi) gra (L �B) =
{

(x, x∗) ∈ H ×H
∣

∣ (x+ x∗, x) ∈ gra (L∗ ◦ JB ◦ L)
}

.

(vii) gra (L �B) =
{

(x, x∗) ∈ H ×H
∣

∣ (x+ x∗, (L∗ ◦ L)(x+ x∗)− x∗) ∈ gra (L∗ ◦ JB ◦ L)
}

.

(viii) dom (L �B) ⊂ L∗(domB).

(ix) ran (L �B) ⊂ ran (IdH −L∗ ◦ L) + L∗(ranB).

(x) dom (L �B) ⊂ ran (IdH−L∗ ◦ L) + L∗(domB).

(xi) ran (L �B) ⊂ L∗(ranB).

(xii) zer (L �B) = Fix (L∗ ◦ JB ◦ L).

(xiii) L−1(zerB) ⊂ zer (L �B).

(xiv) (L �B)� IdH+L∗ ◦ (B−1� IdG) ◦ L = IdH.

(xv) (L �B)� IdH = L∗ ◦ (B� IdG) ◦ L.

Proof. (i): A consequence of (1.1) and Proposition 1.2.

(ii): In view of (i), Lemma 2.3(iv), and Lemma 2.3(ii), L �B = (L �B−1)−1 = ((L∗ ◦JB−1 ◦L)−1−
IdH)

−1 = (IdH −L∗ ◦ JB−1 ◦ L)−1 − IdH = (IdH −L∗ ◦ (IdG −JB) ◦ L)−1 − IdH.

(iii): Since L∗ ◦ L = IdH, this follows from (i) and (ii).

(iv): The first identity is clear by inspecting Definition 1.1. To establish the second, note that (i)

and Lemma 2.3(iv) yield

(L �B)−1 =
(

(L∗ ◦ JB ◦ L)−1 − IdH
)−1

= (IdH −L∗ ◦ JB ◦ L)−1 − IdH . (4.1)

(v): A consequence of (ii).

(vi): Let (x, x∗) ∈ H × H. Then (i) yields (x, x∗) ∈ gra (L �B) ⇔ x∗ ∈ (L∗ ◦ JB ◦ L)−1x − x ⇔
x ∈ (L∗ ◦ JB ◦ L)(x+ x∗).

(vii): Let (x, x∗) ∈ H × H. By (vi) and Lemma 2.3(ii), (x, x∗) ∈ gra (L �B) ⇔ (x∗, x) ∈
gra (L �B−1) ⇔ x + x∗ ∈ (L∗ ◦ JB−1 ◦ L)−1x∗ ⇔ x∗ ∈ (L∗ ◦ JB−1 ◦ L)(x + x∗) = (L∗ ◦ L)(x +
x∗)− (L∗ ◦ JB ◦ L)(x+ x∗) ⇔ (L∗ ◦ L)(x+ x∗)− x∗ ∈ (L∗ ◦ JB ◦ L)(x+ x∗).
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(viii): In view of (i) and Proposition 1.2,

dom (L �B) = dom (L∗ ◦ JB ◦ L)−1 = ran (L∗ ◦ JB ◦ L) ⊂ L∗(ran JB) = L∗(domB). (4.2)

(ix): We invoke (iv) and Lemma 2.3(ii) to get

ran (L �B) = dom (L �B)−1

= dom
(

IdH −L∗ ◦ JB ◦ L
)−1

= ran
(

IdH−L∗ ◦ JB ◦ L
)

= ran
(

IdH−L∗ ◦ L+ L∗ ◦ (IdG −JB) ◦ L
)

= ran
(

IdH−L∗ ◦ L+ L∗ ◦ JB−1 ◦ L
)

(4.3)

⊂ ran (IdH −L∗ ◦ L) + ran (L∗ ◦ JB−1 ◦ L)
⊂ ran (IdH −L∗ ◦ L) + L∗(ran JB−1)

= ran (IdH −L∗ ◦ L) + L∗(domB−1)

= ran (IdH −L∗ ◦ L) + L∗(ranB), (4.4)

which furnishes the desired inclusion.

(x): In view of (ix), dom (L �B) = ran (L �B−1) ⊂ ran (IdH −L∗ ◦ L) + L∗(ranB−1) =
ran (IdH −L∗ ◦ L) + L∗(domB).

(xi): In view of (viii), ran (L �B) = dom (L �B−1) ⊂ L∗(domB−1) = L∗(ranB).

(xii): Combine Lemma 2.3(iii) and Proposition 1.2.

(xiii): Let x ∈ H. With the help of Lemma 2.3(ii)–(iii) and Proposition 1.2, we derive that

x ∈ L−1(zerB) ⇔ 0 ∈ Lx− JB(Lx)

⇒ 0 ∈ L∗
(

(IdG −JB)Lx
)

⇔ 0 ∈ L∗
(

JB−1Lx
)

⇔ 0 ∈ JL �B−1x

⇔ x ∈
(

IdG −JL �B−1

)

x

⇔ x ∈ J(L �B−1)−1x

⇔ x ∈ zer
(

L �B
)

. (4.5)

(xiv): It follows from Lemma 2.3(ii) that (L �B)� IdH +(L �B)−1 � IdH = IdH. On the other

hand, Proposition 1.2 yields (L �B)−1� IdH = JL �B
= L∗ ◦ (B−1� IdG) ◦ L.

(xv): It follows from (1.1), (iv), and Proposition 1.2 that (L �B)� IdH = J(L �B)−1 = JL �B−1 =

L∗ ◦ JB−1 ◦ L = L∗ ◦ (B� IdG) ◦ L.

Remark 4.2 (isometry) In connection with Proposition 4.1(iii), here are some important settings in

which L is an isometry:

(i) Example 3.4 under the assumption that
∑p

k=1 ωkL
∗
k ◦ Lk = IdH.

(ii) The resolvent average of Example 1.3, as a realization of (i).

(iii) Example 3.9 under the assumption that (ek)k∈N is a Parseval frame, i.e., α = β = 1 in (3.13).
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Proposition 4.3 Let K be a real Hilbert space, let Q ∈ B (H,G), let L ∈ B (G,K), and let B : K → 2K.

Then Q �(L �B) = (L ◦Q) �B.

Proof. It follows from Proposition 4.1(i) and Proposition 1.2 that Q �(L �B) = (Q∗ ◦ JL �B
◦Q)−1 −

IdH = (Q∗ ◦ L∗ ◦ JB ◦ L ◦Q)−1 − IdH = ((L ◦Q)∗ ◦ JB ◦ (L ◦Q))−1 − IdH = (L ◦Q) �B.

The next results bring into play monotonicity. A key fact is that, if L is nonexpansive, then the

resolvent composition preserves monotonicity and maximal monotonicity.

Proposition 4.4 Let L ∈ B (H,G) and let B : G → 2G be monotone. Then the following hold:

(i) Suppose that ‖L‖ 6 1. Then L �B is monotone.

(ii) Suppose that ‖L‖ 6 1. Then L �B is monotone.

(iii) Suppose that L 6= 0, let α ∈ [0,+∞[ be such that B−α IdG is monotone, set β = (α+1)‖L‖−2−1,

and suppose that one of the following is satisfied:

(a) ‖L‖ <
√
α+ 1.

(b) ‖L‖ 6 1 and α > 0, i.e., B is α-strongly monotone.

(c) ‖L‖ < 1.

Then L �B is β-strongly monotone.

Proof. (i): We set R = L∗◦JB◦L and note that R is single-valued on its domain since Lemma 2.2(i)-(ii)

states that JB is. Now take (x1, x
∗
1) ∈ gra (L �B) and (x2, x

∗
2) ∈ gra (L �B). By Proposition 4.1(vi),

(x1 + x∗1, x1) ∈ graR and (x2 + x∗2, x2) ∈ graR, i.e., x1 = R(x1 + x∗1) and x2 = R(x2 + x∗2). However,

since R is firmly nonexpansive by Lemma 2.1(ii), we get

〈x1 − x2 | x∗1 − x∗2〉 = 〈R(x1 + x∗1)−R(x2 + x∗2) | (x1 + x∗1)− (x2 + x∗2)〉 − ‖x1 − x2‖2

> ‖R(x1 + x∗1)−R(x2 + x∗2)‖2 − ‖x1 − x2‖2

= 0, (4.6)

which establishes (2.3).

(ii): Since monotonicity is preserved under inversion, B−1 is monotone, and so is L �B−1 by (i).

In turn, if L �B = (L �B−1)−1 is monotone as well.

(iii): We consider only property (iii)(a), which implies that β > 0, since (iii)(b) and (iii)(c) are

special cases of it. In view of Lemma 2.2(ii) (for α = 0) and Lemma 2.3(v) (for α > 0), JB is (α+1)-
cocoercive and L∗ ◦ JB ◦ L is therefore (α + 1)‖L‖−2-cocoercive on account of Lemma 2.1(i). This

shows that (L∗ ◦ JB ◦ L)−1 is (α + 1)‖L‖−2-strongly monotone. Appealing to Proposition 4.1(i), we

conclude that L �B = (L∗ ◦ JB ◦ L)−1 − IdH is β-strongly monotone.

The theorem below significantly improves Proposition 4.4(i)-(ii) and Proposition 4.1(viii)–(xi) in

the case of maximally monotone operators.

Theorem 4.5 Let L ∈ B (H,G) be such that ‖L‖ 6 1 and let B : G → 2G be maximally monotone. Then

the following hold:

(i) L �B is maximally monotone.
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(ii) L �B is maximally monotone.

(iii) Suppose that L is injective and that B is at most single-valued. Then L �B is at most single-valued.

(iv) Suppose that L and B are injective. Then L �B is injective.

(v) int dom (L �B) = intL∗(domB).

(vi) dom (L �B) = L∗(domB).

(vii) int ran (L �B) = int (ran (IdH−L∗ ◦ L) + L∗(ranB)).

(viii) ran (L �B) = ran (IdH −L∗ ◦ L) + L∗(ranB).

(ix) int dom (L �B) = int (ran (IdH −L∗ ◦ L) + L∗(domB)).

(x) dom (L �B) = ran (IdH−L∗ ◦ L) + L∗(domB).

(xi) int ran (L �B) = intL∗(ranB).

(xii) ran (L �B) = L∗(ranB).

Proof. It follows from Lemma 2.2(iii) that JB : G → G is firmly nonexpansive. Hence, we derive from

Lemma 2.1(iii) that

L∗ ◦ JB ◦ L is maximally monotone. (4.7)

(i): It follows from (4.7) that (L∗◦JB ◦L)−1 is maximally monotone. In view of Proposition 4.1(i),

Proposition 4.4(i), and Lemma 2.4, we conclude that L �B is maximally monotone.

(ii): Since maximal monotonicity is preserved under inversion, B−1 is maximally monotone. In

view of (i), this renders L �B−1 maximally monotone. We then infer that L �B = (L �B−1)−1 is

maximally monotone.

(iii): Let us first recall that a maximally monotone operator is at most single-valued if and only

if its resolvent is injective [11, Theorem 2.1(iv)]. Hence, JB is injective and, appealing to (i) and

Proposition 1.2, it is enough to show that L∗ ◦ JB ◦L is injective. Let x1 ∈ H and x2 ∈ H be such that

(L∗ ◦ JB ◦L)x1 = (L∗ ◦ JB ◦L)x2. Then, since Lemma 2.2(iii) asserts that JB is firmly nonexpansive,

0 = 〈(L∗ ◦ JB ◦ L)x1 − (L∗ ◦ JB ◦ L)x2 | x1 − x2〉
= 〈JB(Lx1)− JB(Lx2) | Lx1 − Lx2〉
> ‖JB(Lx1)− JB(Lx2)‖2. (4.8)

Therefore JB(Lx1) = JB(Lx2) and, since JB is injective, Lx1 = Lx2. Finally, the injectivity of L yields

x1 = x2.

(iv): Using the fact that a maximally monotone operator is injective if and only if its resolvent is

strictly nonexpansive [11, Theorem 2.1(ix)], we obtain the strict nonexpansiveness of JB . Further-

more, according to (i) and Proposition 1.2, it is enough to show that L∗◦JB◦L is strictly nonexpansive.

To this end, we let x1 ∈ H and x2 ∈ H be such that

‖(L∗ ◦ JB ◦ L)x1 − (L∗ ◦ JB ◦ L)x2‖ = ‖x1 − x2‖. (4.9)
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Then, since ‖L∗‖ = ‖L‖ 6 1,

‖x1 − x2‖ = ‖(L∗ ◦ JB ◦ L)x1 − (L∗ ◦ JB ◦ L)x2‖
6 ‖JB(Lx1)− JB(Lx2)‖
6 ‖Lx1 − Lx2‖
6 ‖x1 − x2‖. (4.10)

Thus, ‖JB(Lx1)− JB(Lx2)‖ = ‖Lx1 − Lx2‖ and, since JB is strictly nonexpansive, we obtain Lx1 =
Lx2. In view of the injectivity of L, this means that x1 = x2. As Lemma 2.2(iii) and Lemma 2.1(ii)

imply that L∗ ◦ JB ◦ L is nonexpansive, we conclude that it is strictly nonexpansive.

(v)–(vi): Arguing as in (4.2), we observe that

ran (L∗ ◦ JB ◦ L) = dom (L �B) ⊂ L∗(domB). (4.11)

On the other hand, [9, Example 25.20(ii)] asserts that JB is 3∗ monotone. Therefore, we derive from

(4.7) and Lemma 2.5(i) that

intL∗(domB) = intL∗(ran JB) ⊂ ran (L∗ ◦ JB ◦ L) = dom (L �B) ⊂ L∗(domB), (4.12)

which yields (v). Let us turn to (vi). Proceeding as above and invoking Lemma 2.5(ii), (4.11) yields

L∗(domB) = L∗(ran JB) ⊂ ran (L∗ ◦ JB ◦ L) = dom (L �B) ⊂ L∗(domB) (4.13)

and, therefore, dom (L �B) = L∗(domB).

(vii)–(viii): Set











A = IdH−L∗ ◦ L
L : H → H⊕ G : x 7→ (x,Lx)

B : H⊕ G → 2H × 2G : (x, y) 7→ Ax× {JB−1y}.
(4.14)

Since L∗ : H⊕ G → H : (x∗, y∗) 7→ x∗ + L∗y∗, we deduce from (4.3) and (4.4) that

ran (L∗ ◦B ◦L) = ran (A+L∗ ◦JB−1 ◦L) = ran (L �B) ⊂ ranA+L∗(ranB) = L∗(ranB). (4.15)

In addition, since

(∀x ∈ H) 〈x | L∗(Lx)〉 = ‖Lx‖2 > ‖L‖2 ‖Lx‖2 > ‖L∗(Lx)‖2, (4.16)

the operator L∗ ◦ L is firmly nonexpansive and so is therefore A = IdH−L∗ ◦ L, which is thus max-

imally monotone by virtue of [9, Example 20.30]. In view of [9, Proposition 25.16], this means

that A is 3∗ monotone. On the other hand, since B−1 is maximally monotone, we derive from [9,

Example 25.20(iii)] that JB−1 is 3∗ monotone. Thus, B is 3∗ monotone. Moreover, since [9, Propo-

sition 20.23] implies that B is maximally monotone and since domB = H ⊕ G, it follows from [9,

Corollary 25.6] that L∗ ◦ B ◦ L is maximally monotone. We can therefore invoke Lemma 2.5(i) to

obtain

intL∗(ranB) ⊂ ran (L∗ ◦B ◦L). (4.17)

In view of (4.15), this proves (vii). Similarly, Lemma 2.5(ii) guarantees that

L∗(ranB) ⊂ ran (L∗ ◦B ◦L) (4.18)
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and, using (4.15), we arrive at (viii).

(ix): Using (vii), we obtain

int domL �B = int ranL �B−1

= int
(

ran (IdH−L∗ ◦ L) + L∗(ranB−1)
)

= int
(

ran (IdH−L∗ ◦ L) + L∗(domB)
)

. (4.19)

(x): Using (viii), we obtain

domL �B = ranL �B−1

= ran (IdH −L∗ ◦ L) + L∗(ranB−1)

= ran (IdH −L∗ ◦ L) + L∗(domB). (4.20)

(xi): Using (v), we obtain int ranL �B = int domL �B−1 = intL∗(domB−1) = intL∗(ranB).

(xii): Using (vi), we obtain ranL �B = domL �B−1 = L∗(domB−1) = L∗(ranB).

Corollary 4.6 Suppose that L ∈ B (H,G) satisfies ‖L‖ 6 1 and let B : G → 2G be maximally monotone.

Then the following hold:

(i) Suppose that L∗(domB) = H. Then dom (L �B) = H.

(ii) Suppose that ran (IdH −L∗ ◦ L) + L∗(ranB) = H. Then L �B is surjective.

(iii) Suppose that ran (IdH −L∗ ◦ L) + L∗(domB) = H. Then dom (L �B) = H.

(iv) Suppose that L∗(ranB) = H. Then L �B is surjective.

Proof. We deduce (i) from Theorem 4.5(v), (ii) from Theorem 4.5(vii), (iii) from Theorem 4.5(ix),

and (iv) from Theorem 4.5(xi).

Example 4.7 Going back to Example 3.5, let B : H → 2H be maximally monotone and suppose that

V 6= {0} is a closed vector subspace of H such that (∀v ∈ V ) (v + V ⊥) ∩ ranB 6= ∅. Then projV �B
is surjective.

Proof. Set L = projV . Then ‖L‖ = 1 and ran (IdH−L∗ ◦ L) = ran (IdH −projV ) = V ⊥. On the other

hand, (∀v ∈ V )(∃x∗ ∈ ranB) x∗ ∈ v + V ⊥ = proj−1
V v. Therefore L∗(ranB) = projV (ranB) = V .

Thus, ran (IdH−L∗ ◦ L) + L∗(ranB) = V + V ⊥ = H and the result follows from Corollary 4.6(ii).

Proposition 4.8 Suppose that L ∈ B (H,G), let β ∈ ]0,+∞[, let D be a nonempty subset of G, let

B : D → G be β-cocoercive, suppose that 0 < ‖L‖ <
√
β + 1, and set α = (β + 1)‖L‖−2 − 1. Then L �B

is α-cocoercive.

Proof. Since B−1 is β-strongly monotone, Lemma 2.3(v) entails that JB−1 is (β + 1)-cocoercive. In

turn, by Lemma 2.1(i), L∗ ◦ JB−1 ◦ L is (β + 1)‖L‖−2-cocoercive, which makes (L∗ ◦ JB−1 ◦ L)−1 a

(β + 1)‖L‖−2-strongly monotone operator. In view of Proposition 4.1(iv) and Proposition 4.1(i), we

conclude that

(L �B)−1 = L �B−1 =
(

L∗ ◦ JB−1 ◦ L
)−1 − IdH (4.21)

is α-strongly monotone and hence that L �B is α-cocoercive.

16



Proposition 4.9 Let L ∈ B (H,G) be such that ‖L‖ 6 1, let D be a nonempty subset of G, and let

B : D → G be monotone and nonexpansive. Then L �B is monotone and nonexpansive.

Proof. The monotonicity of L �B is established in Proposition 4.4(ii). Let us show its nonexpansive-

ness. Since B is nonexpansive, it follows from [9, Proposition 4.4] and Lemma 2.2(ii) that there exists

a monotone operator E : G → 2G such that B = 2JE − IdG . Now set M = IdH−L∗ ◦ L+ L∗ ◦ E ◦ L.

Since ‖L‖ 6 1, IdH −L∗ ◦ L is monotone, while L∗ ◦ E ◦ L is monotone by [9, Proposition 20.10].

The sum M of these two operators is therefore monotone, which renders JM firmly nonexpansive by

Lemma 2.2(ii), and hence 2JM − IdH nonexpansive. On the other hand, Proposition 4.1(v) yields

JL �B
= IdH−L∗ ◦ L+ L∗ ◦ (B + IdG)

−1 ◦ L
= IdH−L∗ ◦ L+ L∗ ◦ (2JE)−1 ◦ L
=
(

2 IdH−2L∗ ◦ L+ L∗ ◦ (E + IdG) ◦ L
)

◦ (IdH /2)

= (IdH+M) ◦ (IdH /2)

= (2JM )−1. (4.22)

We have thus verified that L �B = 2JM − IdH is nonexpansive.

Remark 4.10 (resolvent average) Consider the setting of Example 1.3, where
∑p

k=1 ωk = 1, and

let A be the resolvent average of the operators (Bk)16k6p defined in (1.5). Then, as discussed in

Example 1.3, Remark 4.2(ii), and Proposition 4.1(iii), A = L �B = L �B, where L : x 7→ (x, . . . , x) is

an isometry with adjoint L∗ : (yk)16k6p 7→
∑p

k=1 ωkyk and B : (yk)16k6p 7→ B1y1 × · · · ×Bpyp. We can

therefore establish at once from the above results various properties of the resolvent average, such as

the following:

(i) Proposition 4.1(iv) yields A−1 = L �B−1 = (
∑p

k=1 ωk(B
−1
k + IdH)

−1)−1 − IdH (see [4, Theo-

rem 2.2]).

(ii) Suppose that the operators (Bk)16k6p are monotone. Then Theorem 4.5(i) asserts that A is

maximally monotone if the operators (Bk)16k6p are. In addition, Proposition 4.1(viii) asserts

that domA ⊂
∑p

k=1 ωkdomBk and Proposition 4.1(xi) that ranA ⊂
∑p

k=1 ωkranBk (see [4,

Proposition 2.7] and note that maximality is not required in the last two properties).

(iii) Suppose that the operators (Bk)16k6p are maximally monotone. Then Theorem 4.5(v)–(vi)

yields int domA = int
∑p

k=1 ωk domBk and domA =
∑p

k=1 ωk domBk, while Theorem 4.5(xi)–

(xii) yields int ranA = int
∑p

k=1 ωk ranBk, and ranA =
∑p

k=1 ωk ranBk (see [4, Theo-

rem 2.11]).

(iv) Suppose that the operators (Bk)16k6p are maximally monotone and strongly monotone. Then it

follows from Proposition 4.4(iii)(b) that A is strongly monotone (see [4, Theorem 3.20], where

the strong monotonicity of A is established under the more general assumption that only one of

the operators (Bk)16k6p is strongly monotone).

(v) Suppose that, for every k ∈ {1, . . . , p}, Bk : Gk → Gk is monotone and nonexpansive. Then it

follows from Proposition 4.9 that A is monotone and nonexpansive (see [4, Theorem 4.16]).

Remark 4.11 (parametrization) A parameter γ ∈ ]0,+∞[ can be introduced in Definition 1.1 by

putting

L
γ

�B = L∗
⊲ (B + γ−1 IdG)− γ−1 IdH . (4.23)
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In the special case of the resolvent average discussed in Example 1.3, (4.23) leads to the parametrized

version of (1.5) considered in [4], namely L
γ

�B = (
∑p

k=1 ωk(Bk + γ−1 IdH)
−1)−1 − γ−1 IdH. In

general, with the assistance of Lemma 2.3(i) and Proposition 1.2, we obtain

J
γ(L

γ

�B)
= L∗ ◦ JγB ◦ L = JL �(γB). (4.24)

This shows that the parametrized version (4.23) is closely related to the original one (1.4) since

γ(L
γ

�B) = L �(γB). The proximal composition of Definition 1.4 can be parametrized similarly by

putting L
γ

�g = ((g∗ � (γQG)) ◦ L)∗ − γ−1QH.

Remark 4.12 (warping) An extension of Definition 1.1 can be devised using the theory of warped

resolvents [20]. Let X and Y be reflexive real Banach spaces, let KY : Y ⊃ DY → Y∗, let L ∈ B (X ,Y),
and let B : Y → 2Y

∗

. Then, under suitable conditions, the warped resolvent of B with kernel KY is

J
KY

B = (B+KY)
−1◦KY (for instance, if h : Y → ]−∞,+∞] is a Legendre function such that domB ⊂

int domh and KY = ∇h, then J
KY

B is the D-resolvent of B [6]). For a suitable kernel KX : X ⊃ DX →
X ∗, we then define the warped resolvent composition L �B = KX ◦ (L∗

⊲ (K−1
Y

◦ (B + KY))) − KX ,

which yields JKX

L �B
= L∗ ◦ JKY

B ◦ L.

5 The proximal composition

This section is dedicated to the study of some aspects of the proximal composition operations intro-

duced in Definition 1.4 and further discussed in Examples 3.6 and 3.10.

Remark 5.1 The proximal composition was linked to the resolvent composition in Example 3.6(v).

We can also motivate this construction via Moreau’s theory of proximity operators and envelopes

[42, 43, 44]. Indeed, let g ∈ Γ0(G), suppose that L ∈ B (H,G) satisfies 0 < ‖L‖ 6 1, and set

T = L∗ ◦ proxg ◦ L. Then T is nonexpansive since proxg and L are. On the other hand, we infer

from Lemma 2.9(iv) that T = L∗ ◦ ∇(g∗ �QG) ◦ L = ∇((g∗ �QG) ◦ L). Altogether, Lemma 2.8

implies that T = proxf , where f = ((g∗ �QG) ◦ L)∗ − QH. The function f is precisely the proximal

composition L �g. Thus, up to an additive constant, L �g is the function the proximity operator of

which is L∗ ◦ proxg ◦ L.

Let us now establish some properties of proximal compositions.

Proposition 5.2 Let L ∈ B (H,G), let g : G → ]−∞,+∞] and h : G → ]−∞,+∞] be proper functions

such that h 6 g, and let ğ be the largest lower semicontinuous convex function majorized by g. Then the

following hold:

(i) L �h 6 L �g.

(ii) Suppose that h > ğ and that g admits a continuous affine minorant. Then L �g = L �h.

(iii) Suppose that g admits a continuous affine minorant. Then L �g = L �g∗∗.

Proof. (i): In view of (2.7) and (2.8), h∗ > g∗ and hence h∗ �QG > g∗ �QG . Thus, (h∗ �QG) ◦ L >

(g∗ �QG) ◦L and therefore ((h∗ �QG) ◦L)∗ 6 ((g∗ �QG) ◦L)∗. Appealing to (1.6), we conclude that

L �h 6 L �g.
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(ii): Let a be a continuous affine minorant of g. Then −∞ < a = ă 6 ğ 6 g 6≡ +∞ and ğ is

therefore proper. In addition, ğ 6 h 6 g. Hence, [9, Proposition 13.16] yields h∗ = g∗ and the

conclusion follows from (1.6).

(iii): Since ğ = g∗∗ [9, Proposition 13.45], the assertion follows from (ii).

Proposition 5.3 Suppose that L ∈ B (H,G) satisfies 0 < ‖L‖ 6 1 and let g : G → ]−∞,+∞] be a

proper function that admits a continuous affine minorant. Then the following hold:

(i) L �g = L∗ ·⊲ (g∗∗ + QG)− QH.

(ii) dom (L �g) = L∗(dom g∗∗).

(iii) (L �g)∗ = (QH − (g∗ �QG) ◦ L)∗ − QH.

(iv) (L �g)∗ = L �g∗.

(v) (L �g)∗ = L �g∗.

(vi) (L �g)�QH + (L �g∗)�QH = QH.

(vii) Suppose that L is an isometry. Then L �g = L �g.

Proof. By Example 3.6(i) and Lemma 2.6(i), g∗ is in Γ0(G) and it admits a continuous affine minorant.

In turn, we deduce from Lemma 2.9(ii) that g∗ �QG ∈ Γ0(G) and hence that (g∗ �QG) ◦ L ∈ Γ0(H).
We then deduce from Lemma 2.6(ii) that ((g∗ �QG) ◦ L)∗ ∈ Γ0(H).

(i): Since dom (g∗ �QG) = G and g∗ �QG ∈ Γ0(G), it follows from [9, Corollary 15.28(i)] and

Lemma 2.9(iii) that L �g + QH = ((g∗ �QG) ◦ L)∗ = L∗ ·⊲ (g∗ �QG)
∗ = L∗ ·⊲ (g∗∗ + QG).

(ii): We invoke (i) and [9, Proposition 12.36(i)] to get dom (L �g) = dom (L∗ ·⊲ (g∗∗ + QG)) =
L∗(dom (g∗∗ + QG)) = L∗(dom g∗∗).

(iii): Since ((g∗ �QG) ◦ L)∗ ∈ Γ0(H), it follows from Definition 1.4 and [9, Proposition 13.29]

that

(L �g)∗ =
(

(

(g∗ �QG) ◦ L
)∗ − QH

)∗

=
(

QH −
(

(g∗ �QG) ◦ L
)∗∗
)∗

− QH

=
(

QH − (g∗ �QG) ◦ L
)∗ − QH. (5.1)

(iv): Proposition 5.2(iii) yields L �g∗ = (L �g∗∗)∗ = (L �g)∗.

(v): Example 3.6(i)–(ii) implies that L �g∗ ∈ Γ0(G). In turn, Lemma 2.6(ii) yields (L �g)∗ =
(L �g∗)∗∗ = L �g∗.

(vi): Combine Example 3.6(ii), Lemma 2.9(vi), and (iv).

(vii): Since QH = QG ◦ L, we derive from Lemma 2.9(vi) and (iii) that

L �g =
(

(g∗ �QG) ◦ L
)∗ − QH,

=
(

(QG − g∗∗ �QG) ◦ L
)∗ − QH

=
(

QH − (g∗∗ �QG) ◦ L
)∗ − QH

= (L �g∗)∗

= L �g, (5.2)
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as claimed.

The next result concerns the case when L is an isometry.

Proposition 5.4 Suppose that L ∈ B (H,G) is an isometry and let g : G → ]−∞,+∞] be a proper

function that admits a continuous affine minorant. Then (g∗ ◦ L)∗ 6 L �g 6 g ◦ L.

Proof. We recall from Example 3.6(ii) that L �g ∈ Γ0(H). Fix x ∈ H and recall that g∗∗ 6 g [9,

Proposition 13.16(i)]. By Proposition 5.3(i),

(L �g)(x) = inf
y∈G

L∗y=x

(

g∗∗(y) + QG(y)
)

− QH(x) 6 inf
y∈G

L∗y=x

(

g(y) + QG(y)
)

− QH(x). (5.3)

Now set y = Lx. Then L∗y = L∗(Lx) = x and QG(Lx) = QH(x). Therefore, (5.3) yields

(L �g)(x) 6 g(Lx) + QG(Lx)− QH(x) = (g ◦ L)(x), (5.4)

which provides the second inequality. To prove the first one, we recall from Example 3.6(i) that

g∗ ∈ Γ0(G). Therefore, g∗ admits a continuous affine minorant by Lemma 2.6(i). In turn, (5.4) yields

L �g∗ 6 g∗ ◦ L and hence (L �g∗)∗ > (g∗ ◦ L)∗. We then invoke successively Proposition 5.2(i),

Proposition 5.3(iv), and Proposition 5.3(vii) to obtain

L �g > L �g∗∗ =
(

L �g∗
)∗

>
(

g∗ ◦ L
)∗
, (5.5)

as announced.

Let us take a closer look at the proximal composition for functions in Γ0(G).

Theorem 5.5 Suppose that L ∈ B (H,G) satisfies 0 < ‖L‖ 6 1 and let g ∈ Γ0(G). Then the following

hold:

(i) L �g = L∗ ·⊲ (g + QG)− QH.

(ii) dom (L �g) = L∗(dom g).

(iii) Argmin (L �g) = Fix (L∗ ◦ proxg ◦ L).

(iv) (L �g)�QH = QH − (g∗ �QG) ◦ L.

(v) (L �g)�QH = (g�QG) ◦ L.

(vi) L−1(Argmin g) ⊂ Argmin (L �g) = Argmin ((g�QG) ◦ L).

Proof. We recall from Lemma 2.6(i) that g admits a continuous affine minorant and from Exam-

ple 3.6(ii) that L �g ∈ Γ0(H).

(i)–(ii): These follow from Proposition 5.3(i)–(ii) and Lemma 2.6(ii).

(iii): Example 3.6(vi) and (2.15) yield Argmin (L �g) = Fix proxL �g
= Fix (L∗ ◦ proxg ◦ L).

(iv): It follows from (i) that (L �g) + QH = L∗ ·⊲ (g + QG). Therefore, using Example 3.6(ii),

Lemma 2.9(iii), and [9, Proposition 13.24(iv)], we derive that

(L �g)∗ �QH =
(

(L �g) + QH

)∗
=
(

L∗ ·⊲ (g + QG)
)∗

= (g + QG)
∗ ◦ L = (g∗ �QG) ◦ L. (5.6)
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Hence, it follows from Lemma 2.9(vi) that

(L �g)�QH + (g∗ �QG) ◦ L = (L �g)�QH + (L �g)∗�QH = QH. (5.7)

(v): We use Example 3.10(i), Lemma 2.9(vi), Proposition 5.3(v), (iv), and Lemma 2.6(ii) to obtain

(L �g)�QH = QH − (L �g)∗ �QH

= QH − (L �g∗)�QH

= QH −
(

QH − (g∗∗ �QG) ◦ L
)

= (g�QG) ◦ L. (5.8)

(vi): We derive from (2.13), Proposition 4.1(xiii) with B = ∂g, and Example 3.10(iv) that

L−1(Argmin g) = L−1(zer∂g) ⊂ zer (L �∂g) = zer∂(L �g) = Argmin (L �g). (5.9)

Next, since L �g ∈ Γ0(H) by Example 3.10(i), [9, Proposition 17.5] and (v) yield Argmin (L �g) =
Argmin ((L �g)�QH) = Argmin ((g�QG) ◦ L).

Proposition 5.6 Suppose that L ∈ B (H,G) satisfies 0 < ‖L‖ 6 1, let α ∈ [0,+∞[, let g ∈ Γ0(G) be

such that g−αQG is convex, and set β = (α+1)‖L‖−2−1. Suppose that one of the following is satisfied:

(i) α > 0, i.e., g is α-strongly convex.

(ii) ‖L‖ < 1.

Then L �g is β-strongly convex.

Proof. By assumption, g − αQG ∈ Γ0(G) and hence, by Lemma 2.9(i), ∂(g − αQG) is maximally

monotone. However, by Lemma 2.9(viii),

∂g = ∂
(

(g − αQG) + αQG

)

= ∂(g − αQG) + α IdG (5.10)

and therefore ∂g − α IdG = ∂(g − αQG) is monotone. Moreover, by [55, Remark 3.5.3], ∂g is α-

strongly monotone in (i). Altogether, it follows from Example 3.6(v) and Proposition 4.4(iii) that

∂(L �g) = L �∂g is β-strongly monotone. Appealing to [55, Remark 3.5.3] again, we conclude that

L �g is β-strongly convex.

Proposition 5.7 Suppose that L ∈ B (H,G) satisfies 0 < ‖L‖ 6 1, let α ∈ ]0,+∞[, let g : G → R be

convex and differentiable, with a α−1-Lipschitzian gradient, and set β = (α+1)‖L‖−2 − 1. Then L �g is

differentiable on H and its gradient is β−1-Lipschitzian.

Proof. We derive from Lemma 2.7 that g∗ is α-strongly convex. In turn, Proposition 5.3(v) and

Proposition 5.6(i) imply that (L �g)∗ = L �g∗ is β-strongly convex. Invoking Lemma 2.7 once more,

we obtain the assertion.

The remainder of this section is devoted to examples of proximal compositions.

Example 5.8 (linear projection) Let V be a closed vector subspace of H and let g : H → ]−∞,+∞]
be a proper function that admits a continuous affine minorant. Then projV �g = ιV +

(

g∗ + d2V /2
)∗

.
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Proof. Let x ∈ H. By Proposition 5.3(ii), dom (projV �g) = projV (dom g∗∗) ⊂ V . Therefore, if x /∈ V ,

then (projV �g)(x) = +∞. Now suppose that x ∈ V and note that, by Pythagoras’ identity, (∀v ∈ V ⊥)
QH(x − v) = QH(x) + QH(v). Hence, using Proposition 5.3(i) and basic conjugation calculus [9,

Chapter 13], we get

(

projV �g
)

(x) = min
y∈H

projV y=x

g∗∗(y) + QH(y)− QH(x)

= min
y∈x+V ⊥

g∗∗(y) + QH(y)− QH(x)

= min
v∈V ⊥

g∗∗(x− v) + QH(x− v)− QH(x)

= min
v∈H

g∗∗(x− v) + ιV ⊥(v) + QH(v)

=
(

g∗∗ � (ιV ⊥ + QH)
)

(x)

=
(

(g∗)∗ � (d2V /2)
∗
)

(x)

=
(

g∗ + d2V /2
)∗
(x), (5.11)

which establishes the identity.

Example 5.9 (proximal mixture) Let 0 6= p ∈ N and, for every k ∈ {1, . . . , p}, let Gk be a real Hilbert

space, let Lk ∈ B (H,Gk), let ωk ∈ ]0,+∞[, and let gk ∈ Γ0(Gk). Suppose that 0 <
∑p

k=1 ωk‖Lk‖2 6 1
and let G be the standard product vector space G1×· · ·×Gp, with generic element y = (yk)16k6p, and

equipped with the scalar product (y,y′) 7→ ∑p
k=1 ωk〈yk | y′k〉. Set L : H → G : x 7→ (Lkx)16k6p and

g : G → ]−∞,+∞] : y 7→∑p
k=1 ωkgk(yk). Then QG : G → R : y 7→∑p

k=1 ωkQGk
(yk), L

∗ : G → H : y 7→
∑p

k=1 ωkL
∗
kyk, proxg : G → G : y 7→ (proxgkyk)16k6p, and g∗ : G → ]−∞,+∞] : y∗ 7→ ∑p

k=1 ωkg
∗
k(y

∗
k).

Thus, g ∈ Γ0(G), 0 < ‖L‖ 6 1, (1.6) produces the proximal mixture

L �g =

(

p
∑

k=1

ωk

(

g∗k �QGk

)

◦ Lk

)∗

− QH, (5.12)

and Example 3.6 yields

L �g ∈ Γ0(H) and proxL �g
=

m
∑

k=1

ωkL
∗
k ◦ proxgk ◦ Lk. (5.13)

In particular if, for every k ∈ {1, . . . , p}, Gk = H and Lk = IdH, then (5.12) is the proximal average

L �g =

(

p
∑

k=1

ωk

(

g∗k �QH

)

)∗

− QH, (5.14)

which has been studied in [10] (see also [39] for illustrations and numerical aspects). The fact that
∑m

k=1 ωkproxgk is a proximity operator was first observed by Moreau [43, 44] as a consequence of

Lemma 2.8.

Remark 5.10 (proximal sum) In Example 5.9, if
∑p

k=1 ωk‖Lk‖2 > 1, the proximal mixture (5.12)

may not be a function in Γ0(H). In the case of (5.14) with p = 2 and ω1 = ω2 = 1, conditions under

which the proximal sum L �g = (g∗1 �QH + g∗2 �QH)
∗ − QH is in Γ0(H) are provided in [7, 28, 56].
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Remark 5.11 (proximal average) As in Remark 4.10, we can specialize the above results to establish

in a straightforward fashion various properties of the proximal average (5.14). In this context, we

define G and g as in Example 5.9 with G1 = · · · = Gp = H and
∑p

k=1 ωk = 1, and set L : H → G : x 7→
(x, . . . , x). Then L is an isometry and the resulting proximal average f = L �g = L �g of (5.14) (see

Proposition 5.3(vii)) possesses in particular the following properties:

(i) Example 3.6(ii) yields f ∈ Γ0(H) (see [10, Corollary 5.2]).

(ii) Example 3.6(vi) yields proxf =
∑p

k=1 ωkproxgk (see [10, Theorem 6.7]).

(iii) Proposition 5.3(v) yields f∗ = (
∑p

k=1 ωk(gk �QH))
∗ − QH (see [10, Theorem 5.1]).

(iv) Proposition 5.4 yields (
∑p

k=1 ωkg
∗
k)

∗ 6 f 6
∑p

k=1 ωkgk (see [10, Theorem 5.4]).

(v) Theorem 5.5(ii) yields dom f =
∑p

k=1 ωkdom gk (see [10, Theorem 4.6]).

(vi) Theorem 5.5(v) yields f �QH =
∑p

k=1 ωk(gk �QH) (see [10, Theorem 6.2(i)]).

(vii) Theorem 5.5(vi) yields Argmin (f �QH) = Argmin
∑p

k=1 ωk(gk �QH) (see [10, Corol-

lary 6.4]).

(viii) Suppose that the functions (gk)16k6p are strongly convex. Then it follows from Proposi-

tion 5.6(i) that f is strongly convex (see [4, Corollary 3.23], where the strong convexity of

f is shown to hold more generally under the assumption that one of the functions (gk)16k6p is

strongly convex).

6 Application to monotone inclusion models

On the numerical side, in monotone inclusion problems, the advantage of the resolvent composition

over compositions such as (1.2) or (1.3) is that its resolvent is readily available through Proposi-

tion 1.2. Hence, processing it efficiently in an algorithm does not require advanced splitting tech-

niques. In particular, in minimization problems, one deals with monotone operators which are subd-

ifferentials and handling a proximal composition L �g is more straightforward than the compositions

g ◦ L or L∗
⊲ g thanks to Example 3.6(vi). On the modeling side, while these compositions are not

interchangeable in general, replacing the standard composition (1.2) by a resolvent composition, may

also be of interest. For instance, in the special case of the basic proximal average (5.14), replacing

g ◦ L =
∑p

k=1 ωkgk by L �g = (
∑p

k=1 ωk(g
∗
k �QH))

∗ − QH in variational problems has been advo-

cated in [38, 54]. More generally, the computational and modeling benefits of employing resolvent

compositions in place of classical ones in concrete applications is a natural topic of investigation, and

it will be pursued elsewhere.

The focus of this section is on the use of resolvent and proximal compositions in the context of the

following constrained inclusion problem.

Problem 6.1 Suppose that L ∈ B (H,G) satisfies 0 < ‖L‖ 6 1, let B : G → 2G be maximally mono-

tone, and let V 6= {0} be a closed vector subspace of H. The task is to

find x ∈ V such that 0 ∈ B(Lx). (6.1)
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As will be illustrated in the examples below, (6.1) models a broad spectrum of problems in applied

analysis. Of special interest to us are situations in which, due to modeling errors, L(V ) ∩ zerB = ∅,

which means that Problem 6.1 has no solution. As a surrogate to it with adequate approximate solu-

tions in such instances, we propose the following formulation. It is based on the resolvent composition

and will be seen to be solvable by a simple implementation of the proximal point algorithm.

Problem 6.2 Suppose that L ∈ B (H,G) satisfies 0 < ‖L‖ 6 1, let B : G → 2G be maximally mono-

tone, let V 6= {0} be a closed vector subspace of H, let γ ∈ ]0,+∞[, and set A = L �(γB). The task is

to

find x ∈ H such that 0 ∈
(

projV �A
)

x. (6.2)

A justification of the fact that Problem 6.2 is an adequate relaxation of Problem 6.1 is given in

item (v) below.

Theorem 6.3 Consider the settings of Problems 6.1 and 6.2, and let S1 and S2 be their respective sets of

solutions. Then the following hold:

(i) projV �A is maximally monotone.

(ii) JprojV �A
= projV ◦ (IdH−L∗ ◦ L+ L∗ ◦ JγB ◦ L) ◦ projV .

(iii) S1 and S2 are closed convex sets.

(iv) S2 = Fix (projV ◦ (IdH−L∗ ◦ L+ L∗ ◦ JγB ◦ L)).

(v) Problem 6.2 is an exact relaxation of Problem 6.1 in the sense that S1 6= ∅ ⇒ S2 = S1.

(vi) S2 = zer (NV + L∗ ◦ (γB) ◦ L).

Proof. (i): Theorem 4.5(ii) asserts that A is maximally monotone. In view of Theorem 4.5(i), this

makes projV �A maximally monotone.

(ii): It follows from Proposition 1.2 and Proposition 4.1(v) that

JprojV �A
= projV ◦ JL �(γB) ◦ projV

= projV ◦
(

IdH −L∗ ◦ L+ L∗ ◦ JγB ◦ L
)

◦ projV . (6.3)

(iii): The maximal monotonicity of B implies that zerB is closed and convex [9, Proposi-

tion 23.39]. Hence, since L is continuous and linear, L−1(zerB) is closed and convex, and so is

therefore S1 = V ∩ L−1(zerB). Likewise, it follows from (i) that S2 = zer (projV �A) is closed and

convex.

(iv): It results from Lemma 2.3(iii) and (ii) that

S2 = zer
(

projV �A
)

= Fix JprojV �A
= Fix

(

projV ◦
(

IdH−L∗ ◦ L+ L∗ ◦ JγB ◦ L
)

)

. (6.4)

(v): Suppose that x ∈ S1 and x ∈ S2. Then x = projV x and 0 ∈ B(Lx), i.e., by Lemma 2.3(iii),

Lx = JγB(Lx) and therefore x = (IdH −L∗◦L)x+L∗(Lx) = (IdH−L∗◦L)x+L∗(JγB(Lx)). Altogether,

bringing into play (iv), we get

x = projV x = projV
(

(IdH−L∗ ◦ L)x+ (L∗ ◦ JγB ◦ L)x
)

∈ S2. (6.5)
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It remains to show that x ∈ S1, i.e., as (iv) yields x ∈ V , that 0 ∈ B(Lx). Since Lx ∈ zerB,

Lemma 2.3(iii) entails that γB(Lx) = 0. Hence,

(∀v ∈ V )
〈

v
∣

∣ L∗
(

γB(Lx)
)〉

= 0. (6.6)

On the other hand, we derive from (iv) that

x = projV

(

x− L∗
(

(IdH−JγB)(Lx)
)

)

=
(

NV + IdH
)−1
(

x− γL∗
(

γB(Lx)
)

)

. (6.7)

Thus, −L∗(γB(Lx)) ∈ NV x = V ⊥, i.e.,

(∀v ∈ V )
〈

v
∣

∣ L∗
(

γB(Lx)
)〉

= 0. (6.8)

Since x− x ∈ V , we deduce from (6.6) and (6.8) that
〈

x− x
∣

∣ L∗
(

γB(Lx)− γB(Lx)
)〉

= 0. (6.9)

Thus,

〈Lx− Lx | γB(Lx)− γB(Lx)〉 = 0 (6.10)

and, since γB is γ-cocoercive [9, Corollary 23.11(iii)], we obtain

γ‖ γB(Lx)‖2 = γ‖ γB(Lx)− γB(Lx)‖2 6 〈Lx− Lx | γB(Lx)− γB(Lx)〉 = 0. (6.11)

We conclude that γB(Lx) = 0 and hence that Lx ∈ zer γB = Fix JγB = zerB.

(vi): Let x ∈ H. Then, arguing as in (6.7),

x ∈ S2 ⇔ x− L∗
(

Lx− JγB(Lx)
)

∈ (NV + IdH)x

⇔ 0 ∈ NV x+ L∗
(

(IdG −JγB)(Lx)
)

⇔ x ∈ zer
(

NV + L∗ ◦ (γB) ◦ L
)

, (6.12)

which provides the desired identity.

Remark 6.4 (isometry) Suppose that L is an isometry in Theorem 6.3 (see Remark 4.2). In view of

Proposition 4.1(iii) and Proposition 4.3, the relaxed problem (6.2) is then to find a zero of

projV �A = projV �

(

L �(γB)
)

= (L ◦ projV ) �(γB), (6.13)

and it follows from Theorem 6.3(iv) that its set of solutions is S2 = Fix (projV ◦ L∗ ◦ JγB ◦ L).

Next, we propose an algorithm for solving Problem 6.2 which is based on the most elementary

method for solving monotone inclusions, namely the proximal point algorithm [51].

Proposition 6.5 Suppose that Problem 6.2 has a solution, let (λn)n∈N be a sequence in ]0, 2[ such that
∑

n∈N λn(2− λn) = +∞, and let x0 ∈ V . Iterate

for n = 0, 1, . . .












yn = Lxn
qn = JγByn − yn
zn = L∗qn
xn+1 = xn + λnprojV zn.

(6.14)

Then (xn)n∈N converges weakly to a solution to Problem 6.2.
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Proof. Set M = projV �(L �(γB)). Since (xn)n∈N lies in V , it follows from Theorem 6.3(i)–(ii) that

(xn)n∈N is generated by the proximal point algorithm, to wit,

(∀n ∈ N) xn+1 = xn + λn(JMxn − xn). (6.15)

Therefore, we derive from [26, Lemma 2.2(vi)] that (xn)n∈N converges weakly to a point in zerM ,

i.e., a solution to (6.2).

Remark 6.6 (weak convergence) The weak convergence of (xn)n∈N in Proposition 6.5 cannot be

improved to strong convergence in general. Indeed, suppose that, in Problem 6.2, G = H, L = IdH,

and B = NC , where C is a nonempty closed convex subset of H. Then, if we take the parameters

(λn)n∈N to be 1, the proximal point algorithm (6.14) reduces to the alternating projection method

(∀n ∈ N) xn+1 = projV (projCxn). In [35], a hyperplane V and a cone C are constructed for which

(xn)n∈N fails to converge strongly. Note, however, that using the strongly convergent modifications

of (6.15) discussed in [8, 53], it is straightforward to obtain strongly convergent methods to solve

Problem 6.2. Let us add that, as shown in [26, Lemma 2.2(vi)], the weak convergence result in

Proposition 6.5 remains valid if qn is defined as qn = JγByn + cn − yn in (6.14), where (cn)n∈N is a

sequence modeling approximate implementations of JγB and satisfies
∑

n∈N λn‖cn‖ < +∞.

Henceforth, we specialize Problems 6.1 and 6.2 to scenarios of interest.

Example 6.7 (feasibility problem) Let 0 6= m ∈ N and let (Ci)16i6m be nonempty closed convex

subsets of a real Hilbert space H. Set H =
⊕m

i=1H, V =
{

(x, . . . , x) ∈ H
∣

∣ x ∈ H
}

, and C = C1 × · · · ×
Cm. Since V is isomorphic to H, Problem 6.1 with G = H, L = IdH, and B = NC = A amounts to

finding a point in V ∩ C, i.e., a point in
⋂m

i=1 Ci, while Theorem 6.3(iv) asserts that the relaxation

given in Problem 6.2 amounts to finding a fixed point of projV ◦ projC , i.e., of (1/m)
∑m

i=1 proj
Ci

or, equivalently, a minimizer of
∑m

i=1 d
2
Ci

. This product space framework for relaxing inconsistent

feasibility problems was proposed in [46, Section II.2] and re-examined in [5, 23].

Example 6.8 (resolvent mixtures) Let 0 6= p ∈ N, let γ ∈ ]0,+∞[, and let V 6= {0} be a closed

vector subspace of H. For every k ∈ {1, . . . , p}, let Gk be a real Hilbert space, let Lk ∈ B (H,Gk), let

ωk ∈ ]0,+∞[, and let Bk : Gk → 2Gk be maximally monotone. Suppose that 0 <
∑p

k=1 ωk‖Lk‖2 6 1
and define G, L, and B as in Example 3.4. Then the objective of Problem 6.1 is to

find x ∈ V such that (∀k ∈ {1, . . . , p}) 0 ∈ Bk(Lkx). (6.16)

Now let M be the resolvent mixture of the operators ((γBk)
−1)16k6p (see Example 3.4). Then the

relaxed Problem 6.2 is to

find x ∈ H such that 0 ∈
(

projV �M−1
)

x (6.17)

or, equivalently, upon invoking Theorem 6.3(vi), to

find x ∈ H such that 0 ∈ NV x+

p
∑

k=1

ωkL
∗
k

(

γBk(Lkx)
)

. (6.18)

In addition, it follows from Proposition 6.5 that, given x0 ∈ V and a sequence (λn)n∈N in ]0, 2[ such
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that
∑

n∈N λn(2− λn) = +∞, the sequence (xn)n∈N constructed by the algorithm

for n = 0, 1, . . .
















for k = 1, . . . , p
⌊

yk,n = Lkxn
qk,n = JγBk

yk,n − yk,n
zn =

∑p
k=1 ωkL

∗
kqk,n

xn+1 = xn + λnprojV zn

(6.19)

converges weakly to a solution to the relaxed problem if one exists.

Example 6.9 (common zero problem) Suppose that, in Example 6.8, we have (∀k ∈ {1, . . . , p})
Gk = H and Lk = IdH. Then (6.16) consists of finding x ∈ V ∩ ⋂p

k=1 zerBk and its relaxation

(6.17)/(6.18) consists of finding a zero of NV +
∑p

k=1 ωk
γBk. This relaxation was proposed in [25]

and it originates in Legendre’s method of least-squares [36] to relax inconsistent systems of linear

equations (see [27, Example 4.3]).

Example 6.10 (Wiener systems) In Example 6.8, suppose that, for every k ∈ {1, . . . , p}, Bk =
(IdGk

−Fk + pk)
−1 − IdGk

, where Fk : Gk → Gk is firmly nonexpansive and pk ∈ Gk. Then we re-

cover the Wiener system setting investigated in [32]. Specifically, (6.16) reduces to the nonlinear

reconstruction problem [32, Problem 1.1]

find x ∈ V such that (∀k ∈ {1, . . . , p}) Fk(Lkx) = pk (6.20)

and (6.17) yields the relaxed problem [32, Problem 1.3]

find x ∈ V such that (∀y ∈ V )

p
∑

k=1

ωk〈Lky − Lkx | Fk(Lkx)− pk〉 = 0. (6.21)

In addition, given x0 ∈ V and a sequence (λn)n∈N in ]0, 2[ such that
∑

n∈N λn(2 − λn) = +∞, the

sequence (xn)n∈N constructed by the algorithm

for n = 0, 1, . . .
















for k = 1, . . . , p
⌊

yk,n = Lkxn
qk,n = pk − Fkyk,n

zn =
∑p

k=1 ωkL
∗
kqk,n

xn+1 = xn + λnprojV zn

(6.22)

converges weakly to a solution to the relaxed problem if one exists (see [32, Proposition 4.3] for

existence conditions).

Proof. For every k ∈ {1, . . . , p}, it follows from (2.5) that IdGk
−Fk + pk : Gk → Gk is firmly nonexpan-

sive and therefore from Lemma 2.2 that Bk is maximally monotone, with JBk
= IdGk

−Fk + pk and
1Bk = Fk − pk. In addition, we observe that this choice of the operators (Bk)16k6p makes (6.20) a

realization of (6.16), and (6.22) a realization of (6.19). At the same time, (6.17)/(6.18) with γ = 1
becomes

find x ∈ H such that 0 ∈ NV x+

p
∑

k=1

ωkL
∗
k

(

Fk(Lkx)− pk
)

, (6.23)

which is precisely (6.21).
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Example 6.11 (proximal composition) In Problem 6.1, suppose that B = ∂g, where g ∈ Γ0(G).
Then (6.1) becomes

find x ∈ V such that Lx ∈ Argmin g. (6.24)

Now set f = L �(γg). Then the relaxation (6.2) becomes

minimize
x∈H

(

projV �f
)

(x) (6.25)

or, equivalently,

minimize
x∈V

(

γg
)

(Lx). (6.26)

In addition, given x0 ∈ V and a sequence (λn)n∈N in ]0, 2[ such that
∑

n∈N λn(2 − λn) = +∞, the

algorithm

for n = 0, 1, . . .












yn = Lxn
qn = proxγgyn − yn
zn = L∗qn
xn+1 = xn + λnprojV zn

(6.27)

produces a sequence (xn)n∈N that converges weakly to a solution to the relaxed problem if one exists.

Proof. The fact that (6.1) yields (6.24) is a consequence of Fermat’s rule (2.13). Next, we derive from

Example 3.10(iv) that, in Problem 6.2,

A = L �(γB) = L �∂(γg) = ∂(L �(γg)) = ∂f. (6.28)

Thus, by Example 3.6(v),

projV �A = projV �∂f = ∂
(

projV �f
)

. (6.29)

Therefore, by Fermat’s rule (2.13), the solution set of Problem 6.2 is

zer
(

projV �A
)

= Argmin
(

projV �f
)

. (6.30)

On the other hand, since dom γg = G, [9, Example 23.3 and Theorem 16.47(i)] yield

NV + L∗ ◦
(

γ(∂g)
)

◦ L = ∂ιV + L∗ ◦
(

∇ γg
)

◦ L = ∂
(

ιV + (γg) ◦ L
)

. (6.31)

Thus, we deduce from Theorem 6.3(vi) and (2.13) that

zer
(

projV �A
)

= zer
(

NV + L∗ ◦ γ(∂g) ◦ L
)

= Argmin
(

ιV + (γg) ◦ L
)

. (6.32)

In view of (6.29), this confirms the equivalence between (6.25) and (6.26). The last claim is an

application of Proposition 6.5 using (2.14).

Example 6.12 (proximal mixture) In the context of Example 6.11, choose G, L, and g as in Exam-

ple 5.9. Then the initial problem (6.24) is to

find x ∈ V such that (∀k ∈ {1, . . . , p}) Lkx ∈ Argmin gk. (6.33)
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Now let m be the proximal mixture of the functions ((γgk)
∗)16k6p (see Example 5.9). Then the

relaxation of (6.33) given by (6.25) is to

minimize
x∈H

(

projV �m∗
)

(x) (6.34)

or, equivalently, via (6.26), to

minimize
x∈V

p
∑

k=1

ωk

(

γgk
)

(Lkx). (6.35)

This problem can be solved via (6.19), where JγBk
is replaced by proxγgk .

Remark 6.13 (proximal average) In Example 6.11, suppose that V = H and that L is an isometry.

Then it follows from Proposition 5.3(vii) that the relaxed problem (6.25) consists of minimizing

the proximal composition f = L �(γg). In particular, if f is the proximal average of the functions

(gk)16k6p (see (5.14)), it follows from Example 6.12 that minimizing it is an exact relaxation of

the problem of finding a common minimizer of the functions (gk)16k6p. This provides a principled

interpretation for methodologies adopted in [38, 54].

Example 6.14 (split feasibility) Suppose that, in Example 6.12, for every k ∈ {1, . . . , p}, gk = ιDk
,

where Dk is a nonempty closed convex subset of Gk. Then (6.33) is the split feasibility problem [49]

find x ∈ V such that (∀k ∈ {1, . . . , p}) Lkx ∈ Dk, (6.36)

while the relaxation (6.34)/(6.35) is to

minimize
x∈V

p
∑

k=1

ωkd
2
Dk

(Lkx). (6.37)

This problem can be solved via (6.19), where JγBk
is replaced by projDk

.
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