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Summary. A convex programming approach to discrete tomographic image recon-
struction in noisy environments is proposed. Conventional constraints are mixed with
noise-based constraints on the sinogram and a binarity-promoting total variation
constraint. The noise-based constraints are modeled as confidence regions that are
constructed under a Poisson noise assumption. A convex objective is then minimized
over the resulting feasibility set via a parallel block-iterative method. Applications
to binary tomographic reconstruction are demonstrated.

1 Introduction

The tomographic reconstruction problem is to estimate a multidimensional
signal x in a Hilbert space H from lower dimensional measurements of its
line integrals. In computerized tomography, the signals are discretized over
a bounded domain and H is the usual Euclidean space R

N (using standard
lexicographic ordering, an N -voxel signal is represented as an N -point vector).
A popular approach for solving this problem is to pose it as a convex feasibility
problem of the form

Find x ∈
m
⋂

i=1

Si , (1)

where (Si)1≤i≤m are closed convex sets in R
N arising from prior knowledge

(bounds, support information, spectral information, information about the
noise corrupting the measurements, etc) and the discrete line integral (line
sum) measurements [4, 6, 21, 31]. This set theoretic approach to tomographic
image reconstruction goes back to [18]; further developments can be found in
[24, 25, 30, 32, 35]. In some instances it may be justified on physical grounds
to seek a feasible image which is optimal in some sense. The problem then
assumes the form

Find x ∈ S =

m
⋂

i=1

Si such that ϕ(x) = inf ϕ(S) , (2)
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where ϕ : R
N → ]−∞, +∞] is a convex function. The advantage of this convex

programming formulation is to allow for the incorporation of a wide range of
prior information in the reconstruction process and, at the same time, to
benefit from the availability of powerful algorithms; see [1, 4, 7, 8, 9] and the
references therein.

In discrete tomography, the range of the signal x to be reconstructed is
known to be a finite set, for instance the set {0, 1} in binary tomography.
This additional information is of paramount importance and it has profound
consequences on the theoretical and practical aspects of the reconstruction
problem [22]. As underlined in [22], classical computer tomography algorithms
do not perform well in the presence of few (say 10 or less) views (we do not
employ the standard term “projection,” as it will be reserved to describe the
best metric approximation from a convex set). Consequently, they are not
directly applicable in discrete tomography, where such low numbers of views
are common. Furthermore, classical algorithms do not exploit nor enforce the
discrete nature of the original signal.

In this paper, we propose a convex programming approach to the discrete
tomography problem in noisy environments. In recent years, many papers have
been devoted to the theoretical and numerical investigations of discrete recon-
struction problems; see [15, 17, 19, 22, 23, 29, 34] and the references therein.
The novelty of our work is to propose a convex programming formulation of
this problem that explicitly takes into account the presence of noise in the
measured data, and to provide a numerical method to solve it. Our formula-
tion is of the form (2) and our algorithm is based on the block-iterative meth-
ods recently developed in [8, 9]. While our approach is applicable to general
discrete problems, we shall focus on the case of binary images for simplicity.
Since the set of binary images is nonconvex, our first task will be to find per-
tinent convex constraints that will promote the binary nature of the image:
total variation will be used for this purpose. Thus, the image produced by
the algorithm will be relatively close to being binary, which will minimize the
number of errors incurred by the final binarization step. Other constraints will
exploit standard information (bounds, support) as well as information about
the data model and the noise.

The remainder of the paper is organized as follows. In Section 2, we review
the parallel block-iterative algorithm that will be employed to solve the convex
program (2). In Section 3, we address the construction of constraints for noisy
binary tomography. The new constraints are confidence regions that are based
on statistical attributes of the noise perturbing the sinogram, and a total vari-
ation constraint aiming at promoting the binary nature of the reconstructed
image. A Poisson noise model is assumed in our statistical analysis of the con-
fidence regions. In Section 4, we describe several applications of this convex
programming framework to binary image reconstruction in the presence of
noisy measurements. A few remarks conclude the paper in Section 5.
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2 Proposed algorithm

Throughout the paper, the signal space containing the original image x is
the standard Euclidean space R

N , with scalar product 〈· | · 〉, norm ‖ · ‖, and
distance d. The distance to a nonempty set C ⊂ R

N is dC(x) = inf ‖x − C‖.
If C ⊂ R

N is nonempty, closed, and convex then, for every x ∈ R
N , there

is a unique point PCx ∈ C such that ‖x − PCx‖ = dC(x); PCx is called the
projection of x onto C.

To solve (2), we use the parallel block iterative algorithm described in [9],
where the framework of [8] was adapted to problems with quadratic objective
functions. Although more general strictly convex objectives ϕ can be used [8],
we restrict our attention to quadratic functions in this paper, as they lead to
particularly simple implementations.

Let
ϕ : R

N → R : x 7→ 〈R(x − r) | x − r 〉 , (3)

where r ∈ R
N and R ∈ R

N×N is a positive definite symmetric matrix. In addi-
tion, we suppose (without loss of generality) that the closed convex constraint
sets (Si)1≤i≤m in (2) assume the form

(∀i ∈ {1, . . . , m}) Si =
{

x ∈ R
N | fi(x) ≤ δi} , (4)

where (fi)1≤i≤m are convex functions from R
N to R and (δi)1≤i≤m ∈ R

m are
such that S =

⋂m
i=1

Si 6= Ø. Recall that, under these assumptions, for every
x ∈ R

N , each fi admits at least one subgradient at x, i.e., a point gi ∈ R
N

such that [27]
(∀y ∈ R

N ) 〈y − x | gi 〉 + fi(x) ≤ fi(y) . (5)

For instance, if C is a nonempty closed convex subset of R
N and x ∈ R

N
rC,

then
∂dC(x) = (x − PCx)/dC(x). (6)

The set of all subgradients of fi at x is the subdifferential of fi at x and
is denoted by ∂fi(x); if fi is differentiable at x, then ∂fi(x) = {∇fi(x)}.
Moreover, the subgradient projection Gix of x onto Si is obtained by selecting
an arbitrary gi ∈ ∂fi(x) and setting [7]

Gix =







x +
δi − fi(x)

‖gi‖2
gi , if fi(x) > δi ;

x , if fi(x) ≤ δi .
(7)

The algorithm proposed in [9] to solve (2)–(3) constructs a sequence
(xn)n∈N of approximate solutions as follows.

1. Fix ε ∈ ]0, 1/m[ . Set x0 = r and n = 0.
2. Take a nonempty index set In ⊂ {1, . . . , m}.
3. Set zn = xn − λnR−1un, where:

• for every i ∈ In, pi,n = Gixn ;
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• the weights (ωi,n)i∈In
lie in [ε, 1] and

∑

i∈In
ωi,n = 1 ;

• un = xn −∑i∈In
ωi,npi,n ;

• λn ∈ [εLn, Ln] , where

Ln =























∑

i∈In

ωi,n‖pi,n − xn‖2

〈R−1un | un〉
, if max

i∈In

(

fi(xn) − δi

)

> 0 ;

1/‖R−1|| , otherwise .

4. Set πn = 〈R(x0 − xn) | xn − zn 〉, µn = 〈R(x0 − xn) | x0 − xn 〉, νn =
〈R(xn − zn) | xn − zn 〉, and ρn = µnνn − π2

n.
5. Set

xn+1 =































zn , if ρn = 0 , πn ≥ 0 ;

x0 +

(

1 +
πn

νn

)

(zn − xn) , if ρn > 0, πnνn ≥ ρn ;

xn +
νn

ρn

(

πn(x0 − xn) + µn(zn − xn)
)

, if ρn > 0, πnνn < ρn .

6. Set n = n + 1 and go to Step 2.

The following convergence result is an application of [9, Theorem 16].

Theorem 1. Suppose that there exists a strictly positive integer J such that

(∀n ∈ N)

n+J−1
⋃

k=n

Ik = {1, . . . , m}. (8)

Then every sequence (xn)n∈N generated by the above algorithm converges to

the unique solution to (2)–(3).

Some comments about this result and the algorithm are in order.

• Condition (8) is satisfied in particular when In ≡ {1, . . . , m}, i.e., when all
the sets are activated at each iteration. In general, (8) allows for variable
blocks of sets to be used, which provides great flexibility in terms of parallel
implementation (see [7] for examples). More details on the importance of
block-processing for task scheduling on parallel architectures will be found
in [4]. Further flexibility is provided by the fact that the relaxations and
the weights can vary at each iteration.

• The algorithm activates the constraints by means of subgradient projec-
tions rather than exact projections. The former are significantly easier
to implement than the latter, as they require only the computation of
subgradients (gradients in the differentiable case). Analytically complex
constraints can therefore be incorporated in the recovery algorithm and
processed at low cost.
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• The parameter Ln is always at least equal to 1/‖R−1‖ [9, Proposition 12]
and it can attain large values. Choosing λn large (e.g., equal to Ln) usually
yields faster convergence.

In [9], it was shown that, in order to reduce the computational load of the
method, an iteration of the algorithm could be implemented as follows (only
one application of the matrices R and R−1 is required).

1. For every i ∈ In, set ai = −fi(xn)gi/‖gi‖2, where gi ∈ ∂fi(xn), if fi(xn) >
δi; ai = 0 otherwise.

2. Choose weights (ωi)i∈In
in [ε, 1] adding up to 1. Set v =

∑

i∈In
ωiai and

L =
∑

i∈In
ωi‖ai‖2.

3. If L = 0, set xn+1 = xn and exit iteration. Otherwise, set b = x0 − xn,
c = Rb, d = R−1v, and L = L/ 〈d | v 〉.

4. Choose λ ∈ [εL, L] and set d = λd.
5. Set π = −〈c | d 〉, µ = 〈b | c 〉, ν = λ 〈d | v 〉, and ρ = µν − π2.

6. Set xn+1 =















xn + d , if ρ = 0 and π ≥ 0 ;

x0 + (1 + π/ν)d , if ρ > 0 and πν ≥ ρ ;

xn +
ν

ρ
(πb + µd) , if ρ > 0 and πν < ρ .

Remark 1. If the projector Pi onto Si is easy to implement, one can set fi =
dSi

since Si can certainly be described as the level set

Si =
{

x ∈ R
N | dSi

(x) ≤ 0
}

. (9)

In this case, it follows at once from (6) and (7) that Gi = Pi (the subgradient
projector reduces to the usual projector) and, moreover, that ai = Pixn − xn

at Step 1 of the algorithm.

3 Construction of closed convex constraint sets

3.1 Data model

The sinogram is the image under the Radon transform of the original image x.
The portion of the sinogram corresponding to a given observation angle θ will
be referred to as a view. The observed data consists of q noisy views (zi)1≤i≤q

at angles (θi)1≤i≤q . For every i ∈ {1, . . . , q}, we let Li be the restriction of the
Radon transform for a fixed angle θi. In other words, the ith measurement is

zi = Lix + wi , (10)

where wi is the noise vector corrupting the observation. Each view zi is a
one-dimensional signal of M points and will be represented by a vector zi =
[ζi,k]⊤

1≤k≤M in R
M ; Li is therefore a matrix in R

M×N . Finally, we denote by

1 the vector [1, . . . , 1]⊤ in R
N or R

M .
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3.2 Standard constraints

Further details on standard constraint sets can be found in [6, 31].

Range

The first standard constraint arises from the fact that pixel values are nonneg-
ative and have known maximal value. After normalization, the corresponding
set is

[0, 1]
N

. (11)

In the context of binary tomography, this is simply the convex hull of the set
{0, 1}N .

Support

A second common piece of a priori information in tomography is the knowledge
of the support K of the body under investigation. The associated set is

{

x ∈ R
N | x1K = x

}

, (12)

where 1K is the characteristic function of K and where the product x1K is
taken componentwise. The projector onto this set is x 7→ x1K [6].

Pixel sum

Let µ be the sum of the pixel values in the original image, i.e,

µ = 〈x | 1 〉 . (13)

The knowledge of µ leads to the set
{

x ∈ R
N | 〈x | 1〉 = µ

}

. (14)

Since µ is never known exactly, this set should be relaxed into the hyperslab
{

x ∈ R
N | µ− ≤ 〈x | 1〉 ≤ µ+

}

, (15)

where [µ−, µ+] is a confidence interval. The projector onto this set is [6]

x 7→































x +
µ− − 〈x | 1 〉

N
1 , if 〈x | 1 〉 < µ− ;

x +
µ+ − 〈x | 1 〉

N
1 , if 〈x | 1 〉 > µ+ ;

x , otherwise .

(16)

The values of µ− and µ+ depend on prior information about the experimental
setup and about the noise. An example is provided in Section 3.5.
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3.3 Binarity-promoting constraint

The constrained image recovery method presented in Section 2 is limited to
problems with convex constraints. As a result, since the set of binary images
is nonconvex, the binarity constraint cannot be enforced directly in such a
framework. Furthermore, the convex set (11) will not properly enforce binarity
and we must find a more effective means to promote binarity through a convex
constraint.

In recent years, total variation has emerged as an effective tool to recover
piecewise-smooth images in variational methods. This approach was initiated
in [28] in the context of denoising problems and has since been used in var-
ious image recovery problems. Recently, it has also been applied in certain
variational computerized tomography problems [2, 36]. In all of these ap-
proaches, total variation appears in the objective of a minimization problem.
Such nondifferentiable problems are not easy to solve and they offer very
limited potential in terms of incorporating constraints [5, 11].

In [12], it was observed that, in many problems, the total variation tv(x)
of the original image, which measures the amount of oscillations, does not
exceed some known bound τ . This constraint, which is associated with the set

{

x ∈ R
N | tv(x) ≤ τ

}

, (17)

appears to be particularly relevant in binary (and more generally in discrete)
tomography, as it attenuates the oscillating components in the image, thereby
forcing the creation of flat areas and promoting binarity. An important issue
is of course the availability of the parameter τ in (17). In this respect, binary
tomography places us on favorable grounds. Indeed, since the total variation
of a binary image is simply the length of its contours (i.e., the sum of the
perimeters of the elementary shapes), it can be estimated with good accuracy
in certain typical problems from prior experiments or by sampling databases
[12].

Numerically, the total variation of a discrete image x = [ξi,j ] ∈ R

√
N×

√
N

is computed as

tv(x) =

√
N−1
∑

i=1

√
N−1
∑

j=1

√

|ξi+1,j − ξi,j |2 + |ξi,j+1 − ξi,j |2

+

√
N−1
∑

i=1

|ξi+1,
√

N − ξi,
√

N | +
√

N−1
∑

j=1

|ξ√N,j+1
− ξ√N,j | . (18)

The subgradient projector onto the set (17) can be found in [12].

3.4 Constraints on the residual views

Using an approach developed in [13] and [33], a wide range of statistical con-
straints modeled by closed convex sets can be formed for each of the q views.
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Indeed, (10) gives
zi − Lix = wi . (19)

Hence, the residual signal zi − Lix associated with an estimate x of x should
be constrained to be statistically consistent with every known attribute (e.g.,
moment, periodogram, etc) of the noise. Consistency is usually enforced via
some statistical confidence bound (see [10] for an analysis of the global confi-
dence level in terms of confidence levels of each set). We now provide examples
of such constraint sets.

Amplitude

Let us denote by (ek)1≤k≤M the canonical basis of R
M (recall that M is the

length of each view zi). If no noise were present, (10) would confine x to the
intersection of the Mq hyperplanes

{

x ∈ R
N | 〈Lix | ek 〉 = 〈zi | ek 〉

}

. (20)

These sets were used in the early ART reconstruction technique [18]. In the
presence of noise, the hyperplanes must be replaced by hyperslabs of the form
[20]

{

x ∈ R
N | | 〈Lix − zi | ek 〉 | ≤ αi,k

}

. (21)

The confidence interval [−αi,k, αi,k] can be determined from the distribution
of the random variable 〈wi | ek 〉. Such distributions can be available in certain
problems, e.g., [6, 14, 33]. However, in the present problem, the noise is best
modeled by a signal-dependent process which makes it impossible to obtain
reliable bounds. We shall therefore not use these sets in our experiments.

ℓ
p norms

Let p ∈ [1, +∞[ and i ∈ {1, . . . , q}. Suppose that an estimate δ
1/p
i,p of the ℓp

norm of the noise vector wi is available from physical considerations or past
experience with tomographic reconstructions of similar objects. Then one can
construct the set [13]

{

x ∈ R
N | ‖Lix − zi‖p

p ≤ δi,p

}

. (22)

The projector onto this set has no simple closed form, but the subgradient
projector can be obtained as follows. Let us denote by (Li,k)1≤k≤M the M
rows of Li and by Li,k,l an entry of the matrix Li, i.e.,

Li =
[

Li,k,l

]

1≤k≤M
1≤l≤N

. (23)

Then, by elementary subdifferential calculus [27],



A Convex Programming Algorithm for Noisy Discrete Tomography 13

∂‖Lix − zi‖p
p =

M
∑

k=1

∂|〈Li,k | x〉 − ζi,k|p . (24)

Hence, if p > 1, the unique subgradient of x 7→ ‖Lix − zi‖p
p is

g = p

(

M
∑

k=1

Li,k,l| 〈Li,k | x〉 − ζi,k|p−1 sign(〈Li,k | x〉 − ζi,k)

)

1≤l≤N

. (25)

Now suppose that p = 1. Recall that

sign: ξ 7→











−1 , if ξ < 0 ;

0 , if ξ = 0 ;

+1 , if ξ > 0 ,

(26)

is a selection of the subdifferential of ξ 7→ |ξ|, which is given by

(∀ ξ ∈ R) ∂|ξ| =











{−1} , if ξ < 0 ;

[−1, 1] , if ξ = 0 ;

{+1} , if ξ > 0 .

(27)

Therefore, a subgradient of x 7→ ‖Lix − zi‖1 is

g =

(

M
∑

k=1

Li,k,l sign(〈Li,k | x〉 − ζi,k)

)

1≤l≤N

. (28)

One can then compute the subgradient projection (7) via (25) and (28).

Energy

The case p = 2 corresponds to the set

{

x ∈ R
N | ‖Lix − zi‖2 ≤ δi,2

}

. (29)

In this case, (25) reduces to g = 2L⊤
i (Lix − zi). As discussed in [7, 33], the

projection of an image x onto this set requires an iterative procedure, while
the subgradient projector is given explicitly by (7) as

x 7→







x +
δi,2 − ‖Lix − zi‖2

2‖L⊤
i (Lix − zi)‖2

L⊤
i (Lix − zi) , if ‖Lix − zi‖2 > δi,2 ;

x , if ‖Lix − zi‖2 ≤ δi,2 .

(30)
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3.5 Bound estimation in the case of Poisson noise

In this section, we address the problem of computing the parameters µ− and
µ+ in (15), and δi,2 in (29).

Noise modeling in computerized tomography is a research topic in its own
right, and it is beyond the scope of the present paper to attempt to provide a
precise model for the various complex underlying physical phenomena. In [3],
a simple additive Gaussian noise model was considered. Since many data col-
lection processes in discrete tomography are counting processes (e.g., counting
the number of atoms in a structure along a certain direction), we adopt here
a Poisson noise model. More specifically, we assume that the observation zi

in (10) is a realization of a random vector

Zi =
[

Zi,k

]⊤
1≤k≤M

, (31)

the components of which are independent Poisson variables with means
(λi,k)1≤k≤M . It is also assumed that the random vectors (Zi)1≤i≤q are in-
dependent. Now, let Λi be the mean of Zi. Then

Λi = EZi = [λi,k]⊤1≤k≤M = Lix . (32)

Bound on the view-sums

The purpose in this section is to determine the parameters µ− and µ+ in (15).
A property of the discrete Radon transform is that it preserves pixel sums in
the sense that

(∀i ∈ {1, . . . , q}) µ = 〈x | 1〉 = 〈Lix | 1 〉 . (33)

Since 〈Zi | 1 〉 is the sum of M independent Poisson variables, it is also a
Poisson variable, with mean 〈Λi | 1〉 = µ and variance var 〈Zi | 1〉 = µ. The
parameter µ can be approximated by the sample mean of the q views, i.e.,

γ =
1

q

q
∑

i=1

〈zi | 1〉 . (34)

The associated statistical estimator is

Γ =
1

q

q
∑

i=1

〈Zi | 1 〉 , (35)

with mean

EΓ =
1

q

q
∑

i=1

E 〈Zi | 1 〉 = µ (36)

and variance
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varΓ =
1

q2

q
∑

i=1

var 〈Zi | 1 〉 =
µ

q
. (37)

We look for a confidence interval of the form
[

EΓ − β1

√
varΓ , EΓ + β1

√
varΓ

]

=
[

µ − β1

√

µ/q, µ + β1

√

µ/q
]

, (38)

for some β1 > 0. Upon approximating µ by the observed sample mean γ,
the confidence interval becomes

[

γ − β1

√

γ/q, γ + β1

√

γ/q
]

. Monte Carlo
experiments show that β1 = 2.3 gives 98% of the realizations within this
interval. Thus, with a confidence level of c1 = 98%, we can use the values

µ− = γ − 2.3
√

γ/q and µ+ = γ + 2.3
√

γ/q (39)

in (15).

Bound on the residual energy

Let i ∈ {1, . . . , q}. Our purpose is to determine the parameter δi,2 in (29).
The mean square residual error is

E‖Zi − Lix‖2 = E‖Zi − Λi‖2 =

M
∑

k=1

varZi,k =

M
∑

k=1

λi,k = ‖Λi‖1 . (40)

To compute E‖Zi − Lix‖4, we need the moments of Zi,k up to order 4. We
have

E|Zi,k|3 = λ3
i,k + 3λ2

i,k + λi,k (41)

and
E|Zi,k|4 = λ4

i,k + 6λ3
i,k + 7λ2

i,k + λi,k . (42)

The fourth central moment is therefore

E|Zi,k − λi,k|4 = E|Zi,k|4 − 4λi,kE|Zi,k|3 + 6λ2
i,kE|Zi,k|2 − 4λ3

i,kEZi,k + λ4
i,k

= 3λ2
i,k + λi,k . (43)

We can now compute the second order moment of the residual energy as

E‖Zi − Lix‖4 = E‖Zi − Λi‖4

= E

∣

∣

∣

∣

∣

M
∑

k=1

|Zi,k − λi,k|2
∣

∣

∣

∣

∣

2

=

M
∑

k=1

E|Zi,k − λi,k|4 + 2
∑

1≤k<j≤M

E|Zi,j − λi,j |2E|Zi,k − λi,k|2

=

M
∑

k=1

(3λ2
i,k + λi,k) + 2

∑

1≤k<j≤M

λi,jλi,k

= 2‖Λi‖2 + ‖Λi‖1 + ‖Λi‖2
1 , (44)
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Fig. 1. Original image in last experiment.

and its variance as

var‖Zi − Lix‖2 = E‖Zi − Λi‖4 − E
2‖Zi − Λi‖2 = 2‖Λi‖2 + ‖Λi‖1 . (45)

An upper bound on its standard deviation is

σ =
√

2‖Λi‖2
1 + ‖Λi‖1 ≥

√

2‖Λi‖2 + ‖Λi‖1 =
√

var‖Zi − Lix‖2 . (46)

We look for a confidence interval of the form [0, µ + β2σ] for some β2 > 0.
As seen in the previous section, µ = ‖Λi‖1 can be approximated by the sample

mean γ of (34) and, therefore, σ can be approximated by
√

2γ2 + γ. In turn,

the confidence interval becomes [0, γ+β2

√

2γ2 + γ]. Monte Carlo experiments
show that β2 = 0.51 gives 98% of the realizations within this interval. Thus,
with a confidence level of c2 = 98%, we can use the bound

δi,2 = γ + 0.51
√

2γ2 + γ (47)

in (29).

Global confidence analysis

There are q+1 sets which are confidence regions. In the previous sections, the
bounds on the sets (15) and (29) were determined so as to obtain individual
confidence levels of c1 = c2 = 98%. Using the analysis of [10], the global
confidence level c on the feasibility set S =

⋂m
i=1

Si satisfies

c ≥ 1 − (1 − c1) − q(1 − c2) . (48)

In our experiments, which will involve q = 4 or q = 3 views, we shall thus
obtain global confidence levels of c ≥ 90% or c ≥ 92%, respectively.
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Fig. 2. Example of a sinogram view: noiseless view (bold lines) and view with
Poisson noise (thin lines).

4 Numerical simulations

Most theoretical results in discrete tomography impose conditions on the
shape of the objects to be reconstructed. Thus, experiments are usually per-
formed on connected, convex, or even hv-convex objects [22]. Our algorithm
does not require such stringent assumptions and we shall use the original
32 × 32 binary image x displayed in Fig. 1. This image features two discon-
nected components, one of which is nonconvex. As in most of the experiments
presented in [22], few views will be used, namely q = 4 or q = 3 views.

4.1 Noise simulation

As discussed above, the noise corrupting the views in (10) is assumed to be
Poisson-distributed. The pointwise variance of such a noise is directly related
to the amplitude of the signal. On the other hand, the data acquisition process
typically induces a multiplicative factor between the actual line sums and
the measured views, due for instance to exposure time. In order to obtain a
reasonable noise level, we set this multiplicative factor to 255.

We now describe the methodology used for creating the noisy views. First,
for each i ∈ {1, . . . , q}, the exact line sum is computed and then multiplied
by the proportionality factor 255 in order to generate the noiseless view Lix.
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Fig. 3. Support K used in (12) in the experiments.

Then, each point 〈Lix | ek 〉 of the ith view is replaced by a realization of a
Poisson variable with mean 〈Lix | ek 〉 (see [16, 26] for the numerical simula-
tion of Poisson noise).

A typical noisy sinogram view is shown in Fig. 2. The SNR (signal-to-noise
ratio) on the views varies from 31 dB to 33 dB.

4.2 Binarization

The binarization process consists of mapping an image in [0, 1]N into an image
in {0, 1}N . The scheme we adopt here is straightforward: since the algorithm
produces an image in the set (11), each pixel value is rounded to 0 if the
original value is less than 0.5, and to 1 otherwise. It is clear that binarization
could be performed in a more sophisticated fashion, especially in the light of
additional a priori information on the original image.

4.3 Experimental setup

The algorithm described in Section 2 is implemented with ϕ : x 7→ ‖x‖2 in (3)
(hence R is the identity matrix and r is the zero image). In other words, we
seek the image with minimum energy in the feasibility set S =

⋂m
i=1

Si. The
m = q + 4 constraint sets to be used are:

• S1: pixel range, see (11).
• S2: image support, see (12) and Fig. 3.
• S3: sum of pixel values, see (15) and (39).
• (Si+3)1≤i≤q : residual energy of the views, see (29) and (47).
• Sq+4 = Sm: total variation, see (17).
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(a) (b)

Fig. 4. No noise, q = 4 views, without the total variation constraint. Before (a) and
after (b) binarization (error: 6 pixels).

To illustrate the benefit of using the total variation set Sm, experiments
with the sets (Si)1≤i≤m−1 and (Si)1≤i≤m will be performed. Since they are
easily computable in closed form, exact projections onto the sets S1, S2, and
S3 are used. On the other hand, subgradient projections are used for the sets
(Si)4≤i≤m.

4.4 Numerical results

We first use q = 4 views at observation angles 0, π/4, π/2, and 3π/4. In the
case of noiseless views, the algorithm produces the image shown in Fig. 4.

We now turn to the case of noise-corrupted views. Fig. 5 and 6 show two
typical reconstructions produced by the algorithm, for two arbitrary realiza-
tions of the noise. To illustrate the impact of the total variation constraint,
we display the images obtained with and without this constraint.

In order to test the variability of our results, several hundreds of tests
were performed, using different realizations of the noise and various types
of images. These experiments reveal that, for a given image, the number of
wrong pixels does not vary significantly. This variability is quantified in Fig. 7
in the case of the original image of Fig. 1.

Finally, we show how the algorithm behaves on a standard image from
the binary tomography literature. This image, shown in Fig. 8, can be recon-
structed uniquely from its exact (noiseless) horizontal and vertical views [22].
This theoretical result is of course no longer true in a noisy environment. How-
ever, our algorithm reconstructs the image almost perfectly in the presence of
q = 3 noise-corrupted views at angles 0, π/4, and π/2 (see Fig. 9) with the 6
sets:
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(a) (b)

(c) (d)

Fig. 5. Poisson noise, q = 4 views. Reconstruction without the total variation
constraint: before (a) and after (b) binarization (error: 16 pixels). Reconstruction
with the total variation constraint: before (c) and after (d) binarization (error: 8
pixels).

• S1: pixel range, see (11).
• S2: sum of pixel values, see (15) and (39).
• (Si+2)1≤i≤3: residual energy of the views, see (29) and (47).
• S6: total variation, see (17).

5 Concluding remarks

We have proposed a convex programming approach to the discrete tomo-
graphic image reconstruction problem. Promising results have been obtained
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(a) (b)

(c) (d)

Fig. 6. Same experiments as in Fig. 5 with a different realization of the noise.
Reconstruction without the total variation constraint: before (a) and after (b) bina-
rization (error: 12 pixels). Reconstruction with the total variation constraint: before
(c) and after (d) binarization (error: 9 pixels).

with a limited number of constraints and a quadratic objective function. The
proposed algorithm can also handle a wide range of additional constraints as
well as more general objective functions. The exploration of such extensions
is left for future work. In particular, additional constraints could be derived
from a better understanding of the noise process. Likewise, while total vari-
ation appears to give good results, soft enforcement of binarity should be
possible through alternative convex functionals.
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Fig. 7. Experiments of Fig. 5 and 6: histogram of the number of wrong pixels based
on 2000 realizations of the noise.

Fig. 8. Original image.
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